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Abstract: Port Wine Birthmarks (PWBs) are a congenital vascular malformation on the skin, occurring
in 1–3 per 1000 live births. We have recently generated PWB-derived induced pluripotent stem cells
(iPSCs) as clinically relevant disease models. The metabolites associated with the pathological pheno-
types of PWB-derived iPSCs are unknown, and so we aim to explore them in this study. Metabolites
were separated by ultra-performance liquid chromatography and screened with electrospray ioniza-
tion mass spectrometry. Orthogonal partial least-squares discriminant, multivariate, and univariate
analyses were used to identify differential metabolites (DMs). KEGG analysis was used to determine
the enrichment of metabolic pathways. A total of 339 metabolites was identified. There were 22 DMs,
among which nine were downregulated—including sphingosine—and 13 were upregulated, includ-
ing glutathione in PWB iPSCs, as compared to controls. Pathway enrichment analysis confirmed the
upregulation of glutathione and the downregulation of sphingolipid metabolism in PWB-derived
iPSCs as compared to normal ones. We next examined the expression patterns of the key molecules
associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α
(HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate
cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to
blood vessels in normal skin. Other significantly affected metabolic pathways in PWB iPSCs included
pentose and glucuronate interconversions; amino sugar and nucleotide sugars; alanine, aspartate,
and glutamate; arginine, purine, D-glutamine, and D-glutamate; arachidonic acid, glyoxylate, and
dicarboxylate; nitrogen, aminoacyl-tRNA biosynthesis, pyrimidine, galactose, ascorbate, and aldarate;
and starch and sucrose. Our data demonstrated that there were perturbations in sphingolipid and
cellular redox homeostasis in PWB vasculatures, which could facilitate cell survival and pathological
progression. Our data implied that the upregulation of glutathione could contribute to laser-resistant
phenotypes in some PWB vasculatures.
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1. Introduction

Congenital capillary malformations, also known as port-wine birthmarks or stains
(PWB or PWS), are the most common types of congenital vascular malformations (CVMs).
PWBs result from developmental defects in the skin vasculature, with an estimated preva-
lence of 1–3 per 1000 live births [1–4]. The skin lesions can be isolated or in association
with other CVMs in children [5,6]. At birth, PWBs appear as flat red macules; lesions
progressively darken to purple during the growth of afflicted children. By middle age,
lesions in many patients show the development of vascular nodules that are susceptible to
spontaneous bleeding or hemorrhage [1–4]. Moreover, the quality of life of PWB children is
greatly affected during their development and growth due to the condition’s devastating
lifelong psychological and social impacts [1,7].

PWB lesions typically exhibit a progressive dilatation of the dermal capillaries, the
proliferation of endothelial cells (ECs) and smooth muscle cells (SMCs), the replication of
basement membranes, the disruption of vascular barriers, and the expression of endothelial
progenitor cell biomarkers [8–11]. Pulsed dye lasers (PDLs) are the treatment of choice
for PWB. Unfortunately, less than 10% of patients achieve the complete removal of PWB
after multiple PDL treatments, and approximately 20% of lesions show little or no response
to laser exposure [12,13]. A recent review showed that there has been little improvement
in clinical outcomes using laser-based modalities for PWB treatment over the past three
decades [14].

The absence of clinically relevant cell and animal models has been a long-term obstacle
to the understanding of the pathogenesis of and the development of therapeutics for PWB.
In an effort to overcome this barrier, we have recently generated PWB patient-derived
induced pluripotent stem cells (iPSCs) by introducing “Yamanaka factors” (Oct3/4, Sox2,
Klf4, c-Myc) [15] into lesional dermal fibroblasts. These disease iPSCs can be differentiated
into ECs that recapulate many of the pathological phentoypes of the PWB vasculature,
including the formation of an enlarged vasculature in vitro and in vivo [16]. However, the
metabolites reflecting the pathological phenotypes of PWB-derived iPSCs are unknown. The
identification of metabolic signatures from PWB-derived iPSCs will provide us with new
insights into the crucial signalosomes that lead to the development of a lesional vasculature.

2. Materials and Methods
2.1. Tissue Preparation

This study (#1853132) was approved by the Institutional Review Board at Prisma
Health Midlands. For iPSC generation, surgically excised nodular PWB lesions from two
patients (both male, Fitzpatrick II skin type, 45–60 years old) and one age and gender-
matched de-identified surgically discarded piece of normal skin tissue were collected. For
the immunohistochemistry (IHC) studies, de-identified surgically excised hypertrophic
and nodular PWB lesions (n = 4) and de-identified surgically discarded normal skin tissue
(n = 5) were collected through our previous studies [8,11,17,18].

2.2. PWB iPSC Culture and Sample Preparation

The generation of the PWB and control iPSC lines from skin biopsies are detailed
in our recent study [16]; these cell lines were maintained and propagated under feeder-
free conditions using an Essential 8 Medium on a geltrex-coated plate (ThermoFisher,
Waltham, MA, USA). The following iPSC lines were used in this study: PWB_4221_3,
PWB_4221_6, PWB_3921_9, PWB_3921_16, control_52521_8, and control_52521_9 [16].
There were experimental duplications for PWB_4221_3, PWB_3921_9, and control_52521_8,
resulting in a total of 9 samples. The iPSCs (~106 cells) were dissociated using StemPro
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Accutase (ThermoFisher, Waltham, MA, USA); cell pellets were collected and stored at
−80 ◦C until processing. Samples were thawed with the addition of 300 µL of 80% methanol.
Samples were vortexed for 60 s, sonicated for 30 min at 4 ◦C, and incubated at −20 ◦C
for one hour. The samples were then subjected to centrifugation at 12,000 rpm at 4 ◦C
for 15 min. The supernatant (200 µL) was mixed with 5 µL of L-o-Chlorophenylalanine
(0.14 mg/mL) for liquid chromatography–mass spectrometry (LC–MS) analysis.

2.3. Metabolomics by LC–MS

For metabolomics analysis by LC–MS, separation was carried out using the Van-
quish Flex Ultra-performance liquid chromatograph (UPLC) along with the Q Exactive
MS (ThermoFisher, Waltham, MA, USA), and it was screened with electrospray ion-
ization MS (ESI-MS). The LC system was comprised of the ACQUITY UPLC HSS T3
(100 × 2.1 mm × 1.8 µm) with the UPLC. The mobile phase was composed of 0.05% formic
acid water and acetonitrile with gradient elution (0-1 min, 5% acetonitrile; 1–12 min, 5–95%
acetonitrile; 12–13.5 min, 95% acetonitrile; 13.5–13.6 min, 95–5% acetonitrile; 13.6–16 min,
5% acetonitrile). The flow rate of the mobile phase was 0.3 mL/min. The column tempera-
ture was maintained at 40 ◦C, and the sample manager temperature was set at 4 ◦C. MS
in ESI+ and ESI− mode were listed as follows: (1) ESI+: Heater Temp 300 ◦C; Sheath Gas
Flow rate, 45 arb; Aux Gas Flow Rate, 15 arb; Sweep Gas Flow Rate, 1 arb; spray voltage,
3.0 KV; Capillary Temp, 350 ◦C; S-Lens RF Level, 30%; and (2) ESI−: Heater Temp 300 ◦C,
Sheath Gas Flow rate, 45 arb; Aux Gas Flow Rate, 15 arb; Sweep Gas Flow Rate, 1 arb; spray
voltage, 3.2 KV; Capillary Temp, 350 ◦C; S-Lens RF Level, 60%.

2.4. Immunohistochemistry (IHC)

IF microscopy was performed to access biomarker expression in iPSCs growing on
Geltrex-coated coverslips. The cells were fixed using 4% buffered paraformaldehyde
for 10 minutes, blocked using 5% normal donkey serum for 1 h at room temperature,
and followed by overnight incubation with the following primary antibodies at 4 ◦C
(1:100 dilution): anti-Tra1-60 (Abcam, Cambridge, UK, #ab16288), anti-Nanog (Abcam,
#ab21624), anti-Sox2 (Abcam, #ab79351), and anti-Oct4 (Abcam, #ab19857). Alexa488 or
Alexa555 fluorescent-conjugated anti-rabbit or mouse secondary antibodies (ThermoFisher,
1:200 dilution) were incubated with sections for 1 h at room temperature after the primary
antibodies’ reaction. Negative controls were performed without primary antibodies. Images
were acquired using a Leica Stellaris 5 DMS CS confocal microscope.

For IHC, skin biopsies were fixed in 4% buffered paraformaldehyde overnight and
embedded in paraffin. The paraffin sections (6 µm thickness) were deparaffinized in 100%
xylene for 10 min for three times. The sections then went through graded alcohols from
100%, 80%, to 70% and rehydrated in distilled water. Antigen retrieval was performed
in 10 mM sodium citrate buffer (pH 6.0) at 97 ◦C for 2 h. Sections were treated with 3%
hydrogen peroxide for 30 min and blocked using 5% normal horse serum for 1 h at room
temperature. Sections were then incubated in a humidified chamber overnight at 4 ◦C with
the following primary antibodies: anti-hypoxia-inducible factor 1α (HIF1α) (Santa Cruz
Biotech., Dallas, TX, USA; #SC-10790; 1:100 dilution); anti-glutathione S-transferase Pi 1
(GSTP1; Proteintech, #15902-1-AP; 1:1000 dilution), anti-γ-glutamyl transferase 7 (GGT7)
(Proteintech, Rosemont, IL, USA; #24674-1-AP; 1:1000 dilution), and anti- glutamate cys-
teine ligase modulatory subunit (GCLM; Proteintech, #14241-1-AP; 1:1000 dilution). Bi-
otinylated anti-mouse or -rabbit secondary antibodies (Vector laboratories, Newark, CA,
USA) (1:250 dilution) were incubated with sections for 2 hrs at room temperature after
the primary antibody reaction. An indirect biotin avidin diaminobenzidine (DAB) system
(Vector laboratories, Newark, CA, USA) was used for detection based on the manufac-
turer’s manual. IHC scores were developed as previously reported [17] and tailored for
individual blood vessels using the following two factors: (1) an intensity factor ranging
from 0 to 5, which was the average intensity of all the ECs in one blood vessel; Each EC
was graded using the following categories: no staining, 0; very weak staining, 1; mild
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staining, 2; intermediate staining, 3; strong staining, 4; and very strong staining, 5; and,
(2) a percentage factor also ranging from 0 to 5, which was equal to the multiplication of
the percentage (%) of immunoreactive-positive ECs in one blood vessel by a factor of 5. For
each blood vessel, an antibody immunoreactivity score was estimated by multiplying the
intensity and percentage factors, ranging from 0 to 30.

2.5. Statistical Analysis

The raw data were acquired and aligned using the Compound Discoverer (3.0, Thermo)
based on the m/z value and the retention time of the ion signals. Ions from both ESI− and
ESI+ were merged and imported into the SIMCA-P program (version 14.1) for multivariate
analysis. Principal Component Analysis (PCA) was used for data visualization and outlier
identification. Supervised regression modeling was then performed on the data set using
Partial Least Squares Discriminant Analysis (PLS-DA) or Orthogonal Partial Least Squares
Discriminant Analysis (OPLS-DA) to identify the potential dysregulated metabolites. The
metabolites were filtered and confirmed by combining the results of the Variable Importance
in Projection (VIP) values (VIP > 1.5) and t-test values (p < 0.05). The quality of the fitting
model was explained by the R2 and Q2 values. R2 displayed the variance explained by
the model and indicated the quality of the fit. Q2 displayed the variance in the data,
indicating the model predictability. The final metabolic signatures were confirmed using
the data on the accurate masses and MS/MS fragments with the criteria of a VIP score > 1.5,
absolute log2(fold change) > 0.5, and p value < 0.05. Hierarchical cluster analysis (HCA)
was performed using the complete linkage algorithm of the program Cluster 3.0 and the
results are visualized using Pheatmap 1.0.12 (Raivo Kolde).

3. Results

The expression of stem cell biomarkers such as Nanog, Tra1-60, Sox 2, and Oct4 in both
the control and PWB iPSC lines was verified using IF (Figure 1). The cellular metabolites
were extracted from these iPSC lines for LC–MS analysis. The total ion chromatograms
(TIC) showed the summed-up intensities of all the mass spectral peaks associated with
metabolites in the samples (Figures 2A,B, S1 and S2). The data were normalized after
alignment. For each mode (ESI− or ESI+), five internal quality control samples were
investigated (Supplementary Figures S1A and S2A). PCA showed that the quality control
samples were highly clustered, but no clear grouping trend was observed between the
PWB and control groups (Supplementary Figure S3A,B). To eliminate any non-specific
effects and to confirm the identified dysregulated metabolites, PLS-DA or OPLS-DA was
used to compare metabolic changes between the two groups, respectively. Both analyses
showed a clear separation of the PWB and control groups (Figures 2C,D, S4 and S5). A
total of 339 metabolites were detected amongst the samples. There were 156 metabolites
detected in the ESI− mode, 201 in the ESI+ mode, and 18 overlapping metabolites detected
in both modes.

Significantly changed metabolites between the two groups were called out based on
their VIP scores (VIP > 1.5; Supplementary Figure S6). The metabolic signatures were
filtered and collected by combining the results of the VIP scores (VIP > 1.5) and the t-test
values (p < 0.05; Figure 3A,B). The significantly differentiated metabolites (DMs; absolute
log2(fold change) > 0.5, and p value < 0.05) were determined using univariate analysis
(Figure 3C,D). There was an upregulation of glutathione and a downregulation of sphingo-
sine in the PWB iPSCs as compared to the control ones. The representative mass spectra for
glutathione and sphingosine are shown in Figure 4 and Supplementary Table S1. A total of
22 DMs were identified in the final list (8 in ESI− and 16 in ESI+, with two overlapped ones;
Table 1, Figure 5A,B). Next, the metabolic network was revealed using KEGG enrichment
analysis (Figure 5C,D). Significantly affected metabolic pathways included sphingolipid,
glutathione, pentose and glucuronate interconversions; amino sugars and nucleotide sug-
ars; alanine, aspartate, and glutamate; arginine, purine, D-glutamine, and D-glutamate;
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arachidonic acid, glyoxylate, and dicarboxylate; nitrogen, aminoacyl-tRNA biosynthesis,
pyrimidine, galactose, ascorbate, and aldarate; and starch and sucrose.
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Figure 1. Characterization of normal skin and PWB-derived iPSCs. (A–D) Normal and PWB disease 
iPSC colonies under a bright field. (E–H) Stem cell biomarkers Nanog (E), Tra1-60 (G), Sox 2 (G), 
and Oct4 (H) were used to verify the control and PWB iPSC cells. DAPI: nuclei staining. Scale bar: 
100 µm. 

Figure 1. Characterization of normal skin and PWB-derived iPSCs. (A–D) Normal and PWB
disease iPSC colonies under a bright field. (E–H) Stem cell biomarkers Nanog (E), Tra1-60 (F),
Sox 2 (G), and Oct4 (H) were used to verify the control and PWB iPSC cells. DAPI: nuclei staining.
Scale bar: 100 µm.
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Figure 2. An example of a total ion chromatogram (TIC), representing the summed intensity with 
all detected mass spectral peaks associated with metabolites. (A), TIC from the PWB_4221_6 iPSC 
line in a negative ion mode electrospray ionization (ESI−); (B), TIC from the same iPSC line in pos-
itive ion mode electrospray ionization (ESI+); (C), OPLS-DA model showing scattering scores and 
cluster tendencies among all samples in ESI + mode; (D), OPLS-DA model showing scattering scores 
and cluster tendencies among all samples in ESI − mode. Digits on the X or Y axis are eigenvalues 
of the regression coefficient for the predictive principal component (X) or the orthogonal component 
(Y), respectively. 

Significantly changed metabolites between the two groups were called out based on 
their VIP scores (VIP > 1.5; Supplementary Figure S6). The metabolic signatures were fil-
tered and collected by combining the results of the VIP scores (VIP > 1.5) and the t-test 

Figure 2. An example of a total ion chromatogram (TIC), representing the summed intensity with all
detected mass spectral peaks associated with metabolites. (A), TIC from the PWB_4221_6 iPSC line
in a negative ion mode electrospray ionization (ESI−); (B), TIC from the same iPSC line in positive
ion mode electrospray ionization (ESI+); (C), OPLS-DA model showing scattering scores and cluster
tendencies among all samples in ESI + mode; (D), OPLS-DA model showing scattering scores and
cluster tendencies among all samples in ESI − mode. Digits on the X or Y axis are eigenvalues of
the regression coefficient for the predictive principal component (X) or the orthogonal component
(Y), respectively.
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Figure 3. Discovery of differential metabolites (DMs) by multivariate analysis. A and B, distribution
of significant metabolites detected in ESI− (A) and ESI+ (B) modes using a PLS-DA model resulting
in coefficients for the variables in a w*c loading plot. w, PLS-weights for the X-variables; c, PLS-
weights for the Y-variables; Red box, metabolites with VIP > 1.5; green box: metabolites with
VIP < 1.5; Blue triangle is symbolized by two group dots and X-variables located near a group dot are
positively associated with that group; C and D, volcano plots showing clusters of DMs detected in
ESI− (C) and ESI+ (D) modes. Green triangle, significantly downregulated metabolites; red triangle:
significantly upregulated metabolites; black circle: insignificant metabolites; vertical dash lines: log2

(fold change) = ± 0.5; horizontal dash line: p value = 0.05.

Table 1. DMs in PWB iPSCs as compared to control iPSCs.

ESI − Mode ESI + Mode

Metabolite HMDB_ID VIP Log2(FC) p Value Metabolite HMDB_ID VIP Log2(FC) p Value

Glutamine HMDB000641 2.914 −1.742 0.013 Indoline HMDB253472 1.891 −0.876 0.022

15-Hydro-
peroxy-EPE HMDB062295 3.286 −1.937 0.002 Asymmetric

dimethylarginine HMDB001539 1.921 −0.916 0.015

Phenylalanylglycine HMDB028995 2.554 −1.419 0.005

N-Heptanoylglycine HMDB013010 2.446 −1.648 0.031

15-Hydroperoxy-EPE HMDB062295 2.675 −1.561 0.012

1,5,8-Heptadecatriene HMDB041082 1.868 −0.770 0.001

Histidylleucine HMDB028889 2.820 −1.660 <0.001

Sphingosine HMDB000252 1.767 −0.736 0.003

Thyronine HMDB000667 1.733 0.635 0.013 2-Heptadecylfuran HMDB033608 1.562 0.802 0.045

Glutathione HMDB000125 1.867 0.710 0.009 Glutathione HMDB000125 1.549 0.677 0.046

Islatravir HMDB253596 1.870 0.691 0.010 Thromboxane HMDB003208 1.774 0.969 0.037

CDP HMDB001546 1.953 0.691 0.002 11-Eicosen-1-ol HMDB034933 1.817 0.822 0.044

Uridine
diphosphate

glucose
HMDB000286 1.558 0.5164 0.018

N-(14-
Methylhexadecanoyl)

pyrrolidine
HMDB034373 1.803 1.030 0.043

Zeatin riboside
triphosphate HMDB304509 1.645 0.594 0.021 Pipericine HMDB031678 1.686 0.908 0.049

4,6-Heneicosanedione HMDB035571 2.106 1.538 0.031

N-Palmitoyl Leucine HMDB241928 1.537 0.629 0.048

Note: HMDB: the Human Metabolome Database; VIP: variable projection importance score (VIP > 1.5) of the
metabolite in Partial Least Squares Discriminant Analysis model; Log2(FC): the log2 of fold change of the
metabolites in PWB iPSCs vs. control iPSCs. If the value is greater than 0, the content of the metabolite is increased
in the PWB iPSCs. p value: a statistic result from t-test comparing PWB iPSCs with the control iPSCs.
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Figure 4. Identification of glutathione and sphingosine metabolites. (A), identified matched glutathione
MS fragments in ESI+ mode; (B), identified matched glutathione MS fragments in ESI− mode; (C), iden-
tified matched sphingosine MS fragments in ESI+ mode. The MS chromatograms of glutathione and
sphingosine fragments from each sample were extracted and aligned into one chromatogram.

Last, we focused on the glutathione pathway in PWB lesions by examining the expres-
sion patterns of HIF1α and several key enzymes related to glutathione metabolism, includ-
ing GSTP1, GGT7, and GCLM. The ECs in normal skin showed mild or moderate immunore-
active signals for the antibodies examined (Figure 6), which were also consistent with the
IHC data on human skin from the Human Protein Atlas (https://www.proteinatlas.org/;
accessed on 7 June 2023). In PWB lesions, these antibodies showed moderate to strong
immunoreactive signals on ECs (Figures 6 and S7). The immunoreactive scores of these
antibodies were significantly higher in the PWB vasculature than in normal dermal blood
vessels (Figure 6).

https://www.proteinatlas.org/
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as compared to the control ones; C and D, enriched KEGG pathways related to the perturbed meta-
bolic networks involving DMs identified in ESI − (C) and ESI + mode (D); the enriched metabolic 
pathways are indicated by color (−log10 (p value)) and size (black ball, enrichment ratio). 
PWB_3921_9d, PWB_4221_3d, and Control_52521_8d were experimental duplications of 
PWB_3921_9, PWB_4221_3, and Control_52521_8, respectively. 

Figure 5. Hierarchical cluster analysis (HCA) and KEGG pathway enrichment of metabolome data.
(A,B), the heatmap of significantly DMs identified in ESI− (A) and ESI+ mode (B) in PWB iPSCs as
compared to the control ones; C and D, enriched KEGG pathways related to the perturbed metabolic
networks involving DMs identified in ESI − (C) and ESI + mode (D); the enriched metabolic pathways
are indicated by color (−log10 (p value)) and size (black ball, enrichment ratio). PWB_3921_9d,
PWB_4221_3d, and Control_52521_8d were experimental duplications of PWB_3921_9, PWB_4221_3,
and Control_52521_8, respectively.
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Figure 6. Expressions of key molecules associated with glutathione metabolism in PWB lesions. The 
IHC assays using antibodies against HIF−1α (A), GCLM (B), GGT7 (C), and GSTP1 (D) show the 
immunoreactive blood vessels in control skin or PWB lesions. H.M., a higher magnification from the 
pink boxed area in the left panel showing immunoreactive positive PWB blood vessels for the cor-
responding antibodies. Scale bar: 50 µm. n, number of blood vessels from PWB (4 subjects) or normal 
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Figure 6. Expressions of key molecules associated with glutathione metabolism in PWB lesions. The
IHC assays using antibodies against HIF−1α (A), GCLM (B), GGT7 (C), and GSTP1 (D) show the
immunoreactive blood vessels in control skin or PWB lesions. H.M., a higher magnification from
the pink boxed area in the left panel showing immunoreactive positive PWB blood vessels for the
corresponding antibodies. Scale bar: 50 µm. n, number of blood vessels from PWB (4 subjects)
or normal ones (5 subjects). Whiskers: mean ± S.D.; Diamond boxes: IQR; Dotted curves: data
distribution. Paired t-test was used for comparing arbitary IHC scores. Blue arrows: control dermal
capillaries; red arrows: PWB blood vessels.
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4. Discussion

In this study, we have shown a downregulation of sphingosine and an upregulation
of glutathione in PWB iPSCs through a non-targeted metabolomics study, which is the
first of its kind. The PWB vasculature exhibited elevated HIF−1α levels, demonstrating
persistent and mild hypoxia as a driving force increasing glutathione. The dysregulation
of crucial enzymes involved in glutathione metabolism in PWB lesions further supports
our metabolic data. Our study provides the first link between metabolic signatures such
as sphingosine and glutathione and the pathological progression of PWB, opening new
avenues of investigations in the field.

Our results imply a potential association between sphingolipids and the pathogenesis
of PWB. Ceramide, sphingosine, and their derived sphingolipids are active lipids that
execute diverse cellular signaling [19,20]. Ceramide is produced by the breakdown of
membrane sphingomyelin by sphingomyelinase or de novo synthesis. In contrast, sph-
ingosine is generated through the de-acylation of ceramide by ceramidase. Sphingosine
can further generate sphingosine-1-phosphate (S1P) by sphingosine kinases. Sphingo-
sine and sphingolipids have been shown to have multiple biological functions, including
pro-apoptosis, cell cycle arrest, cytoskeleton regulation, endocytosis, autophagic process,
and antimicrobial effects [21–26]. Sphingosine is considered an endogenous inhibitor of
protein kinase C [23,27,28]; it also induces apoptosis via the activation of PKA and the
inhibition of MAPK [19,20]. Our previous studies have shown an activation of PKC, MAPK,
and PI3K pathways in the PWB vasculature [4,17,29]. These data suggest two possible
mechanisms by which sphingosine may contribute to the pathological development of
PWB: First, downregulated sphingosine in PWB lesions may cause lower inhibition of
PKC and MAPK, leading to cell proliferation. Second, a low level of sphingosine may
attenuate PDL-induced apoptosis due to its pro-apoptotic function; however, the detailed
mechanisms are yet to be determined.

Our data suggests that upregulated glutathione may play both beneficial and pathogenic
roles in PWB lesions. Glutathione is the most abundant non-protein thiol in the cell [30–32].
The synthesis of glutathione is regulated by many metabolic pathways, including the
glutamine, cysteine, glycine, glutamate, pentose, etc., pathways [33–35]. Many of these
pathways are dysregulated in PWB iPSCs from the KEGG data. In addition, growth fac-
tors, commons stressors, and cellular metabolic reprogramming also regulate intracellular
glutathione levels [31,33,36–38]. Glutathione plays major beneficial roles in maintaining
cellular redox homeostasis by acting as a free radical scavenger and a detoxifying agent;
it contributes to multiple cellular processes including proliferation, cell division, and dif-
ferentiation [31,32]. Alternatively, dysregulated glutathione metabolism has been shown
to have a pathogenic role in malignancy and many diseases [31,38,39]. Glutathione lev-
els are increased in many types of tumor cells [40–42]. Excessive glutathione promotes
tumor progression, correlates with increased metastasis, and increases chemo-therapeutic
resistance [31,43–47]. The progressively dilated PWB vasculature is a low-flow vascular
malformation, which results in persistently mild hypoxia in lesions. This is supported by
the elevated levels of HIF-1α in this study. Mild hypoxic conditions lead to an increase in
ROS levels in PWB lesions. This will facilitate the activation of proangiogenic pathways in-
cluding MAPK, JNK, PKC, and PI3K/AKT. In addition, increased glutathione will scavenge
excessive oxidation and maintain an intricate antioxidant status for PWB vascular cells. A
high level of glutathione can directly scavenge laser-induced free radicals such as reactive
oxygen species (ROS) and nitric oxide (NO) [48,49], thus attenuating treatment efficacy.
Our data suggests that the unexplored hypoxia/ROS/glutathione signaling axis may act
as an important factor in the progressive pathological development and laser-resistant
phenotypes of PWB. This will be the focus of our next studies.

There are several limitations to this study. First, it is essential to determine metabolomes
from PWB iPSC-derived ECs and skin lesions. Though the upregulated HIF-1α and en-
zymes regulating glutathione metabolism indicate an elevation of glutathione in PWB
lesions, it is unknown whether PWB patients have perturbative glutathione and sphin-
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golipid metabolisms and increased ROS levels in their skin lesions. Furthermore, the
expression patterns of the enzymes responsible for sphingosine metabolism are yet to be
examined. These important questions will be addressed in our future work. Second, the
inter-individual and inter-sample variances were not sufficiently addressed in this study
due to the small sample size. This might result in a lack of power for many metabolites
with high variances among samples. A follow-up study with a larger sample size including
both biological and experimental replications is planned as part of future works. Third,
non-targeted metabolomics covers a wide range of metabolites, but the absolute quantifi-
cation of metabolites is lacking. A follow-up targeted metabolomic study for glutathione
and sphingolipid metabolism is needed to validate the current data. Fourth, the exact link
between perturbed metabolites and pathology in lesions is yet to be determined, which will
be our next focus. Fifth, we only focused on sphingosine and glutathione in this study; the
study of other DMs such as pentose and glucuronate interconversions; amino sugars and
nucleotide sugars; alanine, aspartate, and glutamate; and arginine, purine, D-glutamine,
and D-glutamate were not performed. This prioritization was based on the following
postulations: (1) decreased sphingosine could regulate the activation of the MAPK and
PI3K pathways in the PWB lesions and (2) increased glutathione could result in the effec-
tive detoxification of ROS, thus attenuating the treatment efficacy of PDL in patients. We
then further examined the glutathione pathways in PWB lesions so that such information
could directly benefit patients undergoing regular PDL treatment. However, the potential
functions of other DMs in PWB pathology should not be underestimated or neglected,
which are worthy of future investigation. Sixth, the PWB iPSC lines generated in this
study were from two patients; however, these samples cannot represent the whole patient
population. Laser-resistant phenotypes are heterogeneous among PWB patients as well as
in different subtypes of the vasculature within an individual’s PWB lesion. Therefore, any
generalization of these conclusions to a broader patient population needs to be done with
caution. Additionally, validation studies with larger sample sizes are required prior to the
application of these results to patient care.

In summary, we have found that sphingosine and glutathione are perturbed in PWB
iPSCs. PWB vasculatures are under persistent and mild hypoxia. Our current data demon-
strate that there are dysregulated cellular redox homeostasis and sphingolipid-mediated
signalosomes in the PWB vasculature, which may facilitate cell survival and pathological
progression. Furthermore, elevated glutathione levels may contribute to laser-resistant
phenotypes in the PWB vasculature.

Supplementary Materials: The following supporting information can be downloaded at:
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for PWB_52521_8d in ESI – mode; Figure S1J: TIC for PWB_52521_9 in ESI – mode; Figure S2A: TIC
of metabolome analysis by LC-MS in ESI + mode; QC, n = 5; Figure S2B: TIC for PWB_3921_9 in
ESI + mode; Figure S2C: TIC for PWB_3921_9d in ESI + mode; Figure S2D: TIC for PWB_3921_16 in
ESI + mode; Figure S2E: TIC for PWB_4221_3 in ESI + mode; Figure S2F: TIC for PWB_4221_3d in
ESI + mode; Figure S2G: TIC for PWB_4221_6 in ESI + mode; Figure S2H: TIC for PWB_52821_8 in
ESI + mode; Figure S2I: TIC for PWB_52821_8d in ESI + mode; Figure S2J: TIC for PWB_52821_9 in
ESI + mode; Figure S3A: The scores scatter plot of PCA model in ESI – mode; Figure S3B: The scores
scatter plot of PCA model in ESI + mode; Figure S4A: The scores scatter plot of PLS-DA model in ESI
– mode; Figure S4B: The scores scatter plot of PLS-DA model in ESI + mode; Figure S5A: The scores
scatter plot of OPLS-DA model in ESI – mode; Figure S5B: The scores scatter plot of OPLS-DA model
in ESI + mode; Figure S6A: The loading plots of PLSDA model in ESI – mode. Red box: metabolites
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