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ABSTRACT
This study focuses on ischaemia-reperfusion injury (IRI) in kidneys, a
cause of acute kidney injury (AKI) and end-stage kidney disease
(ESKD). Traditional kidney damage assessment methods are semi-
quantitative and subjective. This study aims to use a convolutional
neural network (CNN) to segment murine kidney structures after IRI,
quantify damage via CNN-generated pathological measurements,
and compare this to conventional scoring. The CNN was able to
accurately segment the different pathological classes, such as
Intratubular casts and Tubular necrosis, with an F1 score of over
0.75. Some classes, such as Glomeruli and Proximal tubules, had
even higher statistical values with F1 scores over 0.90. The scoring
generated based on the segmentation approach statistically
correlated with the semiquantitative assessment (Spearman’s rank
correlation coefficient=0.94). The heatmap approach localised the
intratubular necrosis mainly in the outer stripe of the outer medulla,
while the tubular casts were also present in more superficial or deeper
portions of the cortex and medullary areas. This study presents a
CNN model capable of segmenting multiple classes of interest,
including acute IRI-specific pathological changes, in a whole mouse
kidney section and can provide insights into the distribution of
pathological classes within the whole mouse kidney section.

KEY WORDS: Deep-learning, Ischaemia-reperfusion injury, Mouse,
Kidney

INTRODUCTION
Acute kidney injury (AKI) is a global public health problem, with
rising incidence and mortality rates in recent decades (Lameire
et al., 2013). AKI is caused by various pathological processes,
including ischemia-reperfusion injury (IRI), follow-on effects of

kidney transplantation, drug toxicity, sepsis, and other insults
(Lameire et al., 2013). AKI resulting from IRI has complex
pathogenesis, and experimental animal models of kidney IRI offer
the possibility to examine key pathogenesis-related morphological
changes. The gold standard to assess kidney injury remains semi-
quantitative histopathology scoring; however, traditional scoring
systems are time consuming, in some cases subject to inter-observer
variability and are based only on a small sample area of the kidney
section (Wang et al., 2005), hence lacking quantitative power. In
addition, kidney tissue has a complex non-redundant architecture,
rendering semi-quantitative scoring intrinsically challenging due to
the potential lack of representativeness of randomly selected areas of
interest. Moreover, the scoring systems available differ in terms of
morphological structures and areas analysed (Hesketh et al., 2014;
Wang et al., 2005), and a comparative analysis of their performance
is lacking.

Digital image analysis techniques can improve the visual
assessment of a wide range of images (Kshirsagar and Joshi, n.d.),
including histological microphotographs (Niazi et al., 2019). The
advantages of using computer algorithms include increased
reproducibility and, with sufficient computational power, the
ability to analyse the whole sample or multiple batches of samples
in automation. As visual assessment is monotonous and prone to lack
of objectivity, it represents a significant limiting factor in extensive
studies, and the use of automated assessment could overcome this.
The traditional approach to performing image analysis refers to
computer vision methods such as feature descriptors for object
detection (O’Mahony et al., 2020). For tasks such as image
classification, a feature extraction step is needed. The main
inconvenience with this method is that it is necessary to choose a
priori, which features are valuable in each image. Therefore, as the
number of classes increases, this step becomes burdensome. These
methods have been successfully used in small kidney histopathology
studies; one study developed a segmental histogram of oriented
gradients that successfully performed a comprehensive detection of
glomeruli in whole kidney sections (Kato et al., 2015) while another
study (Grimm et al., 2003) used computerised image analysis of
Picro Sirius Red-stained kidney tissue sections to quantify the extent
of collagen and consequently interstitial fibrosis, a valuable predictor
of long-term graft function. Although these traditional image analysis
techniques can be useful to answer specific research questions, it
would be challenging to automatically apply them in large-scale
studies with data sets that are likely to present variations. Moreover, it
is up to the computer vision scientist to decide which features best
define the various classes of objects after a time-consuming trial-and-
error approach. On top of that, a plethora of parameters are required to
define each feature, all of them having to be fine-tuned by the
operator (O’Mahony et al., 2020). Finally, in some cases, traditionalReceived 15 June 2023; Accepted 22 August 2023
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machine-learning approachesmay not detect complexmorphological
features.
In the last 2 decades, digital imaging has seen the emergence and

progress of whole slide imagining (WSI), which permits full slides
to be digitised and stored at high resolution (Niazi et al., 2019).
More recently, with the advent of the graphics processing unit
(GPU)-based computation and convolutional neural networks
(CNNs), a full histological section can be completely and
consistently analysed for several objects of interest, using a
supervised training strategy without the need to pre-set the
features for each object. CNNs represent a deep-learning method
that draws inspiration from the intricate organisation of human
brains. By employing a model structure comprising multiple
processing layers, deep learning (DL) allows for the acquisition of
diverse levels of data representation, leading to unprecedented
improvements in model performance. This state-of-the-art
technology has revolutionised various fields, including speech
recognition, visual object identification, and drug discovery and
genomics domains (Xie et al., 2020). CNNs are the most applied
deep-learning models for bio-image analysis. CNNs mimic the
human visual perception process via a cascade of interconnected,
layered units (neurons) that resemble the visual system architecture
(Lindsay, 2021; Tang et al., 2019). In contrast with the traditional
approaches for image analysis, neural networks can be trained to
automatically detect underlying patterns in classes of images that
have been previously labelled and extract and the most descriptive
features (O’Mahony et al., 2020). Previous work involving CNNs
applied to WSIs focused on classifying human cancers, such as
invasive breast cancer (Cruz-Roa et al., 2017) and identifying
pancreatic endocrine tumours (Niazi et al., 2018), among others. In
animal models, CNNs have also been applied to histologically score
lung fibrosis and inflammation (Heinemann et al., 2018) and to
assess the severity of various pulmonary lesions (Asay et al., 2020).
The use of CNNs in the domain of kidney histopathology is a
relatively recent development, and the existing body of literature
primarily focuses on the detection of glomeruli (Bukowy et al.,
2018; Gallego et al., 2018). The latest investigations pertaining to
human kidney biopsies have also directed their attention towards the
segmentation of multiple classes of interest within distinct
scenarios. For instance, some studies have specifically targeted
the segmentation of classes within healthy kidney tissue (Marechal
et al., 2022), while others have concentrated on biopsies associated
with IgA-nephropathy (Hölscher et al., 2023) and chronic kidney
injury (Ginley et al., 2021). Furthermore, certain studies have
exclusively addressed the segmentation of the healthy kidney cortex
or both the cortex and medulla, omitting the inclusion of vital
components such as the papilla, transitional epithelium, and
associated connective tissue (e.g. stroma and adipose tissue),
which frequently appear in the observed sections (Bukowy et al.,
2018; Hermsen et al., 2019). However, no study so far has included
the CNN-based segmentation on a specific disease model
quantifying both injured and healthy structures on an entire
mouse kidney section. The present study aimed at applying CNNs
to kidney WSI and testing their efficacy to detect levels of kidney
damage in an IRI mouse model using a segmentation approach and
to compare it to a widely used traditional semi-quantitative method.

RESULTS
CNN multiclass segmentation performance
Multiclass semantic segmentation of kidney sections enabled
the extraction of quantitative histological features on a large scale.
An example of a fully segmented pathological mouse kidney section

is depicted in Fig. 1 (a healthy segmented kidney is presented in
Fig. S1).

The segmentation performance on the test set was assessed via a
confusion matrix (Fig. 2) from where precision, recall, specificity
and F1 were extracted (Table 1). Good performances were obtained
for the ‘Glomeruli’ class, where 94% of the ground truth labels were
correctly identified with a precision of 0.99. Segmentation
performances for ‘Stroma’, ‘Transitional epithelium’, and
‘Adipose tissue’ were similar to the ‘Glomeruli’ class (above
90%) but with lower precision. For the ‘Proximal tubule’ class, 88%
of all pixels labelled with this name were correctly classified by
CNN with a precision >0.95. As regards the classes representing
pathological changes, ‘Intratubular casts’ and ‘Tubular necrosis’,
70% and 85% of the ground truth pixels were correctly classified,
respectively, with a precision of 0.87 and 0.94. The overall model
statistics are presented in Table S3.

Lower precision values were observed for the ‘Regenerating
epithelium’ class, and the misclassification was mainly with the
‘Distal tubules/Collecting ducts’ class (44%). The ‘Regenerating
epithelium’ class was further excluded from the generation of the
CNN-based scoring due to its lower statistical values.

CNN-based IRI scoring versus semi-quantitative IRI scoring
method and heatmap
Two classes (Intratubular casts and Tubular necrosis) were selected
as representative of pathological changes as they presented good
statistical values (F1=0.78 for Intratubular casts class and F1=0.89
for Tubular necrosis class). The network applicability to score IRI
damage was assessed by comparing CNN’s quantification of
selected classes, ‘Tubular Necrosis’ and ‘Intratubular casts’
(Table S2), to the semi-quantitative scoring method. Upon
heatmap analysis (Fig. 3), the classes Intratubular casts and
Tubular necrosis were clearly spatially identified. Areas of more
intense necrosis were often focused in between the cortex and
medulla (Outer stripe of outer medulla; OSOM), a region known to
be affected by hypoxic damage (2,3). Casts were often associated
with the same area but varied in localisation, involving more
superficial or deeper portions of the cortex and medullary areas.

The conventional semiquantitative method of scoring appeared
highly correlated to the CNN scoring with a Spearman’s rank
correlation coefficient (31)=0.94 (P<0.0001) (Fig. 4).

DISCUSSION
Acute IRI models are, at present, evaluated morphologically using
semi-quantitative histological methods. Limitations of this approach
include lack of reproducibility, interobserver variability and limited
sample analysis. Additionally, the systems used may differ in terms
of the morphological structures and areas that are analysed (Hesketh
et al., 2014; Sun et al., 2016; Wang et al., 2005). Here, we have
developed a novel system to quantify kidney damage in a mouse
model of IRI by using a DL approach. Compared to the traditional
way of scoring IRI, where only ten fields of view focused on the
OSOM are being used, which represents approximately 10% of the
kidney surface, our methods use WSIs that allow a full assessment
of the mouse kidney section, increasing the quantitative power of the
scoring method. We have obtained good segmentation results for
the majority of classes of interest, with 9/10 presenting an F1 value
higher than 0.70.

With an overall model precision of 0.85, these results align with
previous work on human kidneys (Hermsen et al., 2019). The
present study represents the first deep learning model to
simultaneously segment and classify nine classes of interest on a
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full mouse kidney section originating from ischaemia-reperfusion
injury surgery. Previous work focused only on detecting glomeruli
(Gadermayr et al., 2019) in mouse sections or creating multiple
networks for different morphological structures in human samples
(Jayapandian et al., 2021), possibly increasing the time required to
segment and classify all structures. Using a single network to
identify multiple structures accurately decreases the overall time
needed for full classification. The DL model described here was
trained and tested on single stain (PAS) WSIs, compared to

Jayapandian and colleagues (Jayapandian et al., 2021), who tested a
CNN approach on multiple stains (Hematoxylin and Eosin, H&E,
PAS, Silver, and Trichrome). This also represents an advantage of
our system in terms of time andmaterial needed for the analysis. The
selection of PAS staining was based on its ability to provide a more
precise evaluation of the basement membrane when compared to
H&E staining. Furthermore, PAS staining was preferred due to the
increased positivity exhibited by the proteinaceous casts in contrast
to H&E staining, where the casts appear significantly lighter

Fig. 1. CNN-based automated segmentation on WSI of an injured murine kidney on day 3 after IRI. (A) PAS stained WSI; (B) corresponding
segmentation result of WSI in A. (C) High-magnification PAS stained WSI, with further higher magnification area (inset); (D) corresponding segmentation
result of WSI in C, with further higher magnification area (inset). Scale bars: 2 mm (A,B); 400 um (micrometers) (C,D).
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(Dvanajscak et al., 2020). This study used pathological sections
from three IRI experiments, with the experimental design being
consistent with one another but conducted at different time points.
A fourth experiment had a distinct experimental setup, featuring
unilateral rather than bilateral ischemia and a longer duration. This
study used only the unclamped kidneys from the unilateral IRI
experiment as healthy controls. Additionally, sections were
processed in two separate laboratories to account for domain shift,
encompassing variations in experimental conditions and processing

techniques such as embedding. It is important to note that the
PAS staining was performed in the same laboratory, thereby
limiting the debate on staining variability in this study.
However, colour normalisation can be used in cases where
staining intensity varies. Moreover, the DL model performed well
on both healthy and pathological sections. The best segmentation
performance was achieved for the ‘Glomeruli’ class (F1>0.95), as
similarly achieved in previous studies on the human kidney
(Hermsen et al., 2019).

The DL model also demonstrated great potential to distinguish
between proximal (F1>0.90) and ‘Distal tubules/Collecting ducts’
(F1>0.70). Although the focus of the work was to achieve a system
to quantify pathological classes, the identification of multiple
healthy classes compared to a single ‘healthy kidney tissue’ class
opens the option of more detailed types of analyses, such as the
quantification of the amount of damage per number of glomeruli,
per nephron or tubular area. In addition, this approach allows spatial
analysis (e.g. the average distance between specific healthy areas
and pathological ones) between different classes using a heatmap
approach which can complement the quantitative analysis of the
whole section.

In histopathology, overfitting can occur when the DL model has
learned to recognise the unique features of the training images set,
but it does not generalise well to new images that contain different
variations of the same tissue structure. In generating the CNN injury
score, we deemed it appropriate to extract quantification results from
both our training and testing datasets, as overfitting does not
represent a crucial issue when the task is to accurately quantify an
experimental dataset of WSIs from which annotation examples will
be generated. In this regard, each WSI offers training and testing
areas within the same slide. Two pathological classes, namely

Fig. 2. Heat map confusion matrix for the CNN performance on the test set of mouse kidney IRI sections. The ground truth classes are given vertically
(percentage of pixels), and the predicted classes (percentage of pixels) are shown on the horizontal axis. Examples of readings: 85% of all pixels labelled as
‘Tubular necrosis’ were classified as ‘Tubular necrosis’ by the DL model; 94% of all pixels labelled as ‘Glomeruli’ were classified as ‘Glomeruli’ by the DL
model; 44% of the pixels labelled as ‘Regenerating epithelium’ were misclassified with the ‘Distal tubules/Collecting ducts’ class.

Table 1. Accuracy parameters for CNN performance on the test set

Accuracy parameter

Class of interest Precision True positive rate Specificity F1

Background 1.00 0.97 1.00 0.98
Intratubular casts 0.87 0.70 1.00 0.78
Tubular necrosis 0.94 0.85 1.00 0.89
Regenerating
epithelium

0.94 0.13 1.00 0.23

Adipose tissue 0.77 0.93 0.98 0.85
Glomeruli 0.99 0.94 1.00 0.97
Proximal tubules 0.97 0.88 1.00 0.92
Distal tubules/
Collecting ducts

0.58 0.91 0.99 0.71

Transitional
epithelium

0.85 0.94 1.00 0.89

Stroma 0.63 0.94 0.98 0.76

*Precision refers to the proportion of items classified as belonging to a particular
class that are actually part of that class. True positive rate (recall) represents the
proportion of items correctly identified as belonging to a specific class out of all
the items that truly belong to that class. Specificity is the metric that evaluates a
model’s ability to predict true negatives of each available category. F-score is a
metric that combines precision and recall into a singlemeasure. It is calculated by
taking twice the product of precision and recall and dividing it by the sum of
precision and recall.
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‘Intratubular casts’ and ‘Tubular necrosis’, were considered reliable
and were further used to score damage in the mouse kidney sections.
These two classes represent the most widely used parameters in
different scoring systems to identify acute IRI changes (Hesketh
et al., 2014; Sun et al., 2016; Wang et al., 2005). Necrosis, in
particular, overlapped as expected with OSOM in most samples, as
mentioned in previous studies (Hesketh et al., 2014; Wang et al.,
2005).
‘Regenerating epithelium’ represented the least successful class

to segment efficiently. The regeneration process in the kidney is a
complex process encompassing a continuum of pathogenetic
transition (degeneration, necrosis, regeneration) and associated

different morphological hallmarks (e.g. flattened cells, mitotic
figures, and plump cells). Therefore, obtaining the ground truth for
this class presented as quite challenging, likely due to the intrinsic
variable morphology of the class itself overlapping with a single
concept of ‘regeneration’. This translated into minor statistical
values (F1>0.20) and would benefit from more training data or a
further splint into the morphological stages of this particular change,
which is beyond the scope of the present study. In addition, because
the mice in the acute IRI model were only kept for 3 days after
surgical induction of IRI, the regenerating process was minimally
represented compared to the necrotic phase identified, suggesting
that this class should be likely better characterised in subsequent
timeframes of the IRI and regeneration process (e.g. sub-acute,
chronic) (Frazier et al., 2012). It is important to note that the
‘Regenerating epithelium’ class represented a very small portion of
the segmented kidney area (average 0.02%) and was confused
mainly with the ‘Distal tubules/Collecting ducts’ class, not
interfering significantly with the classes we used to score IRI
damage. Pitfalls related to morphologically difficult classes are
expected in this type of study, as seems to be the case in the work of
Hermsen and colleagues (Hermsen et al., 2019), where the class
‘empty bowman capsule’ is likely overlapping large veins according
to the segmentation masks provided.

The CNN-based scoring was compared to a previously used
semiquantitative way of scoring performed by a board-certified
pathologist. The results support a positive correlation between the
pathologist and the DL model for detecting IRI severity in an acute
mouse model, suggesting that the algorithm correctly assesses
general features that are accepted signs of IRI by pathologists. As a
general trend, the DL algorithm assigned lower grades than the
pathologist. This could be because the area analysed has been
dramatically extended, and/or the traditional way of scoring looks
only at the OSOM, a region known to be affected by hypoxia
(Hesketh et al., 2014; Wang et al., 2005), ignoring all the other
kidney regions. In addition, it is important to consider that the
pathologist’s personal perception may unintentionally lead to the
selection of more severely injured areas for analysis. However, the
pathologist and the CNN scorings overlap in the healthy non-injured
kidney sections (n=3) as both assigned a score of 0. It is important to

Fig. 3. PAS stained WSI of mouse kidney (A) and heatmaps of ‘Intratubular casts’ (B) and ‘Tubular necrosis’ (C). Percentage of area of each patch
(512×512 pixels) occupied by pathological classes is represented as colours ranging from deep blue (0%) to red (100%) in order to spatially visualise the
pathological classes within kidney parenchyma. Scale bars: 2 mm.

Fig. 4. Scatterplots visualising the correlation between the traditional
scoring systems and CNN-based scoring per kidney section (N=34;
Normal kidney results overlap at 0). The conventional method of scoring
appears highly correlated to the CNN scoring, with the Spearman
Correlation coefficient=0.94 (P<0.0001).
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note that the inter-observer variability issue was not addressed in
this study, as the quantification by the CNN was only compared to
the opinion of one pathologist.
Heatmaps were drawn based on the quantification of ‘Intratubular

casts’ and ‘Tubular necrosis’ of each grid patch. As expected, most
of the damage was localised in the OSOM region of the kidney
(Hesketh et al., 2014; Sun et al., 2016; Wang et al., 2005). However,
in several cases, a substantial amount of damage (mainly cast
formation) was visually identified in cortical and medullary areas,
indicating that traditional scoring systems that analyse fields of view
only from the cortex or only from the OSOM might not provide the
most accurate assessment.
Many studies developed DL models to detect and grade tumours

in the past decade. In kidney histopathology, the morphological
changes associated with disease (e.g. IRI, allograft rejection) are
more complex in appearance compared to the more spatially
homogeneous morphological landmarks of the neoplastic process;
from this point of view, our approach represents a useful DL
algorithm for the segmentation and classification of renal structures
that is applicable to the preclinical field of IRI.
This study presents a CNN model capable of segmenting and

classifying multiple classes of interest, including acute IRI-specific
pathological changes, in a whole mouse kidney section. Moreover,
the DL model was applied to sections from different IRI
experiments, suggesting that the model generalises well and can
represent a useful tool for quantitatively investigating acute IRI
models upon histology.

MATERIALS AND METHODS
Animals and surgery
All experiments were conducted in accordance with the Animals (Scientific
Procedures) Act 1986 under a project licence (PPL 7008741 and
PP3076489) and were approved by the Animal Welfare and Ethical
Review Board (AWERB) of the University of Liverpool. B6 albino mice
(C57BL/6J.Tyrc-2J) were purchased from Charles River, Italy, and used to
establish a colony that was maintained by the Biomedical Services Unit
(BSU) at the University of Liverpool, UK. Mice were housed in ventilated
cages with a 12-h light:dark cycle and access to water and food ad libitum.

The mouse model of renal IRI was induced by bilateral clamping of the
renal pedicle using a dorsal approach. Male mice (9–10weeks) were
anaesthetised (isoflurane 1.5%; 1.0 L/min, O2) for 30 min prior to the
surgical procedure (Harwood et al., 2019). The body temperature was
controlled at 36.5–37.1°C with a homeothermic monitor system
(PhysioSuite, Kent Scientific, Torrington), and the renal pedicle was
carefully dissected and clamped with a non-traumatic vascular clamp
(InterFocus Ltd, Liton, 18052-03) for 27.5 min. The confirmation of
ischaemia was observed through a colour change in the kidney, from red to
dark purple. Once the clamp was released, the kidney returned to its normal
red colour, indicating reperfusion. Subsequently, the surgical wound was
repaired, and the animal allowed to recover in awarmed chamber at 37°C for
30 min prior to returning to their cage.

Four different sets of experiments were carried out, three of them
following the procedure described above. The fourth experiment followed
the same surgery and anaesthesia methods, except the clamp was unilateral
right-sided and for a period of 40 min. Only the unclamped kidneys from the
unilateral IRI experiment were used from this fourth study as healthy
controls.

Animals were euthanized via cervical dislocation 3 days post-IRI surgery,
kidneys exteriorised after laparotomy and immediately fixed in 10% neutral
buffered formalin (Thermo Fisher Scientific, Leicestershire, 10463750) for
24–72 h.

Histology and semi-quantitative scoring
Mice kidneys were fixed in 10% neutral buffered formalin (Thermo Fisher
Scientific, Leicestershire,10463750) for 24–72 h. After fixation, kidneys

were sagittally sectioned in two halves and placed in formalin into slotted
tissue cassettes (Thermo Fisher Scientific, Leicestershire, 15327260) until
further processing (Morawietz et al., 2004). The specimens were paraffin–
embedded and sectioned, using standard procedures, by the LBIH Biobank
(University of Liverpool, Liverpool, UK) or the Veterinary Pathology
Laboratory, Department of Veterinary Anatomy and Physiology. Sections
of 3–4μm were mounted on glass slides, stained with Periodic Acid-Schiff
(PAS) and coverslipped by the Veterinary Pathology Laboratory (Leahurst
Campus, University of Liverpool, Wirral, UK) and dried for histological
analysis.

A total of 34 mid-coronal renal full sections, originating from 18 animals,
were used in the study. These included 28 sections originating from 15
animals (23 clamped kidneys), subject to direct IRI and six sections
originating from three animals (unclamped kidneys).

Subsequently, the slides were scored using a semi-quantitative scoring as
previously performed by the same group (Sharkey et al., 2019), adapting a
method previously described by Wang and colleagues (2005). Briefly,
kidney lesions were scored depending on the displayed pathological
changes (tubules that displayed typical changes of the IRI model, including
cell necrosis, intratubular cast formation, reduction of brush border, tubular
dilation and tubule regeneration) on ten randomly selected fields of view
(FOV) from the outer stripe of the outer medulla (OSOM) and cortex. The
FOVswere given a score of 0–4where 0=0%; 1=1–25%; 2=26–59%; 3=51–
75%; 4=76%–100%, then the average of 10 FOVs scores were considered
the final score for each tissue section. Scorings were performed using a
brightfield microscope (Leica Biosystems, Nussloch, Germany) at 200X
magnification by a board-certified veterinary pathologist (LR).

Digitisation and neural network training and analysis
PAS-stained slides were digitally scanned using the Aperio CS2 slide
scanner (Leica Biosystems, Nussloch, Germany), with Plan Apo 20X
objective lens setup, image size ranging from 21,000 to 35,000-pixel width
and 13,000-to-31,000-pixel height (0.504 microns per pixel), and visualised
using ImageScope™ software (Leica Biosystems, Nussloch, Germany).

The WSIs (n=34) were randomly split into training and testing sets as
follows: 17 training and 17 testing. The ground truth was created by
manually annotating regions corresponding to normal or pathological
changes: of the following normal renal structures represented classes as per
normal microscopic anatomy: ‘background’ (area of the slide characterised
by the homogeneous white area without the presence of any histological
structure), ‘adipose tissue’ (area of the stroma characterised by large
numbers of adipocytes), ‘glomeruli’ (round structures that represent a
complex web of capillaries), ‘proximal tubules’ (elongated structures with
abundant, pink cytoplasm and an easily identifiable brush border), ‘Distal
tubules and collecting ducts’ (tubular structures with wider lumen, no brush
border and less pink cytoplasm than proximal tubules in the cortex and
tubules within the medulla), ‘stroma’ (connective tissue containing
fibroblasts) and ‘transitional epithelium’ (multiple cuboidal layers of
epithelium within the renal pelvis). Pathological classes selected for the
purpose of model training were: ‘intratubular casts’ (uniformly staining
proteinaceous material structures found within/filling the tubular lumen):
‘tubular necrosis’ (destruction of tubular epithelial cells shedding into the
tubule lumen): ‘regenerating epithelium’ (tubular epithelium with flattened
cells, and/or more cuboidal cells and/or mitotic figures). References (Percy
and Barthold, 2007; Scudamore, n.d.) were used during annotations of
normal and pathological structures. Annotations were performed by one
investigator (AL) and reviewed by a board-certified veterinary pathologist
(LR). An example of annotated tissue is available in Fig. S1. The
‘intratubular casts’, ‘tubular necrosis’, and ‘regenerating epithelium’ classes
were considered representative of pathological changes associated with IRI.
Cutting/staining artefacts were rarely present on the slides and were not
included in the annotations. The number of annotations was automatically
balanced to a median of 288 per class. The total number of training
annotations used to train the CNN model was 2880 in total (Table S1).

The deep-learning process took approximately 8 days on a system
equipped with 4x Nvidia® Quadro® RTX8000 GPUs (Nvidia, Santa Clara,
CA, USA) using dedicated software MIMPro (Medical Image Manager Pro
with Deep Learning Add On; HeteroGenius®). The employed CNN model
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is composed of the descending, downsampling portion of a UNET
architecture (Ronneberger et al., 2015), where upsampling layers were not
included with an 8× downsampled mask as an output. The network was
trained for a total of 2300 epochs on the training set, at one iteration per
epoch, with batch sizes of 1, 32 and 64. Patches of 512×1024 pixels and
magnification of 20× (18,167×17,001 pixels) were used. Adaptive learning
rates between 5e-7 and 5e-4 and momentum with values of 0.9 and 0.99
were used depending on monitoring error curve progress ‘on the fly’. Data
balancing, dropout (ranging from 0 to 0.1) and random transforms were used
to increase generalisation and improve the algorithm’s robustness for
variation in tissue section morphology and staining intensity.

The model obtained was deployed through MIMPro® to create a
segmentation where individual pixels are assigned to one of the pre-defined
classes. Subsequently, an overlay image (mask) was created where each
classified pixel was assigned a colour relating to its class, making the
quantification of the pre-defined classes possible. The model was then tested
on the test set.

Application of CNN to score acute IRI lesions
All classified areas in pixel except ‘background’ were summed together for
each WSI, representing the surface of the kidney section. The number of
pixels representing the pathological classes was transformed into
percentages as follows:

ðNumber of pixels classified as }sum of pathological classes} classÞ=
ðnumber of pixels representing the surface of the kidney sectionÞ x100
¼ Percentage of pixels classified as }pathological classes}:

The percentage of pixels classified as ‘pathological classes’ was considered
the score assigned by the CNN model.

To visually map the quantified pathological areas of each single
pathological class within the processed WSI, a grid of patches was
created and overlayed on the digitally scanned slides (MIMPro®). For each
patch of 512×512 pixels, the area covered by the pathological classes was
quantified using the previously developed CNN and expressed as a total
number of pixels belonging to the class of interest per patch. Pathological
classes were then spatially visualised within the kidney parenchyma using a
heat map where in a gradient, low values of the classes of interest are
represented in blue and high values in red.

Data analysis
To summarise the algorithm’s performance, a multiclass confusion matrix
was created, from where precision (fraction of predictions as true positives),
recall (sensitivity), specificity and F1 (harmonic mean between precision
and recall) values were extracted. After the true positives (TPs), true
negatives (TNs), false positives (FPs), and false negatives (FNs) were
estimated using a confusion matrix, precision, recall and specificity were
calculated using the following formulas:

Precision=TP/(TP+FP); Recall=TP/(TP+FN)]; Specificity=TN/(TN+FP).
The F1 was calculated using the following:
2×PrecisionxRecall/(Precision+Recall)=2TP/(2TP+FP+FN)

Pearson’s correlation coefficients were calculated among the traditional
Wang and CNN-based scoring on both datasets (training and testing).
Significance was set as P<0.05.
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