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A genomic sketch is a small, probabilistic representation of the set of k -mers in a sequencing data set. Sketches are building
blocks for large-scale analyses that consider similarities between many pairs of sequences or sequence collections. Although
existing tools can easily compare tens of thousands of genomes, data sets can reach millions of sequences and beyond.
Popular tools also fail to consider k -mer multiplicities, making them less applicable in quantitative settings. Here, we describe
a method called Dashing 2 that builds on the SetSketch data structure. SetSketch is related to HyperLogLog (HLL) but dis-
cards use of leading zero count in favor of a truncated logarithm of adjustable base. Unlike HLL, SetSketch can perform
multiplicity-aware sketching when combined with the ProbMinHash method. Dashing 2 integrates locality-sensitive hashing
to scale all-pairs comparisons tomillions of sequences. It achieves superior similarity estimates for the Jaccard coefficient and
average nucleotide identity compared with the original Dashing, but in much less time while using the same-sized sketch.
Dashing 2 is a free, open source software.

[Supplemental material is available for this article.]

With rapid growth of genomic databases and improvements in se-
quencing and assembly, there is an increasing need for efficient
methods for comparing genomic sequences. Alignment-based
methods are usually accurate but computationally expensive. An
alternative is “genomic sketching,” a computational strategy for
taking a very long sequence or collection of sequences and distill-
ing it to amuch smaller data structure. A single bit of “sketch” data
structure might be standing in for manymillions of bases of input
data, for example. Despite being small, sketches are remarkably
useful, allowing users to ask various cardinality- and similarity-re-
lated questions using only the sketch, without having to return to
the larger input files.

For this reason, sketching methods based on MinHash
(Broder 1997) and HyperLogLog (HLL) (Flajolet et al. 2007) have
become key building blocks for scaling sequence comparison.
Sketches built over all the k-mers in a sequence have been applied
in clustering (Ondov et al. 2016), phylogenetic inference (Cris-
cuolo 2020), strain-level profiling (Dilthey et al. 2019; LaPierre
et al. 2020), species delineation (Gostinčar 2020), and summariza-
tion of genomic collections (Baker and Langmead 2019; Ondov
et al. 2019).

Although existing tools like Mash (Ondov et al. 2016) and
Dashing (Baker and Langmead 2019) can easily cluster tens of
thousands of genomes, relevant biological data sets can reach mil-
lions of sequences and beyond. Further, these tools fail to consider
multiplicities of the k-mers, limiting their applicability in settings
in which quantities matter, for example, when analyzing collec-
tions of sequence reads or summaries from quantitative sequenc-
ing assays.

Dashing 2 builds on the recent SetSketch structure (Ertl 2021).
SetSketch is related to HLL but replaces the HLL’s leading zero
count (LZC) operation with a truncated logarithm of adjustable
base. This addresses a major disadvantage of the HLL as imple-

mented in Dashing, because the LZC wastes ∼2 bits of space out
of every 8-bit estimator (“register”) stored. SetSketch also has sim-
ilarities to multiplicity-aware approaches like BagMinHash (Ertl
2018) and ProbMinHash (Ertl 2022). All three approaches (Set-
Sketch, BagMinHash, and ProbMinHash) make decisions about
whether and how to update registers by performing a random
draw fromadistribution, inwhich the draw is seeded by a hash val-
ue derived from the input item. This allows SetSketch to perform
multiplicity-aware sketching in the same way as the other sketch-
es. As an example of how users can leverage multiplicity-aware-
ness, Dashing 2 can sketch and compare sets of genomic
intervals representing RNA splice junctions, each with an associat-
ed measurement indicating how frequently the junction is ob-
served in a particular RNA-seq experiment. Many experiments
could then be compared and clustered according to the similarity
of their splicing profiles.

SetSketch also admits simple and accurate algorithms for
computing cardinality from a sketch, as well as computing similar-
ity between two data sets from their sketches in a joint fashion.

Beyond advances that come with using SetSketch, Dashing 2
uses locality-sensitive hashing (LSH) to scale all-pairs comparisons
to very large inputs. It finds near neighbors by grouping samples
with equal register groupings. This makes Dashing 2 particularly
effective for all-pairs comparisons over large sequence collections.

Dashing 2’s implementation of the SetSketch structure is effi-
cient and versatile. Like the original Dashing software, Dashing 2
can be run in a mode that sketches a sequencing data set and saves
the result to a file. This is activated by the dashing2 sketch com-
mand. Also, like Dashing, Dashing 2 can compare sequences or
sketches in an all-pairs fashion (dashing2 cmp or, equivalently,
dashing2 dist). When combined with the ‐‐cache option,
Dashing 2 loads pre-existing sketches from disk, making the com-
mandmuch faster.When the input to these commands consists of
many sketches or data sets, Dashing 2 performs all-pairs compari-
sons and outputs tabular results. Dashing 2’s new LSH-assisted all-
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pairs comparison mode can be activated via the ‐‐similarity-

threshold x option, where, for example, x=0.8 instructs
Dashing 2 to use an LSH approach to consider only pairs whose
similarity is likely to be ≥80%.

Dashing 2 supports a range of sequence alphabets, including
the 2-bit DNA alphabet and a standard 20-letter amino acid pro-
tein alphabet (using ‐‐protein option) and compressed
amino acid alphabets of size 14, eight, and six (‐‐protein14,
‐‐protein8, and ‐‐protein6) as described by Edgar (2004). Com-
pressed protein alphabets are more appropriate when sequence
identity is low.

Dashing 2’s new multiplicity-aware sketching mode can be
enabled for sequencing data inputs via the ‐‐prob option.
Dashing 2 can sketch bigWig inputs (Kent et al. 2010) encoding
numerical coverage vectors using the ‐‐bigwig option. The more
generic ‐‐wsketch mode can sketch inputs consisting of keys
and weights.

In addition, themodes discussed above, Dashing 2 hasmodes
for computing containment coefficients, symmetric containment
coefficient, and intersection size. Further, Dashing 2 hasmodes for
computing Jaccard coefficients in an exact manner, without
sketching or estimation; this is useful for evaluation but comes at
the expense of longer running time and larger memory footprint
compared with those of sketching-based approaches.

In short, Dashing 2 and the SetSketch impart a number of the-
oretical and engineering advances. The theoretical advances are its
accuracy in its cardinality and similarity estimates, its multiplicity
awareness, and its ability to scale to very large-scale all-pairs com-
parisons with LSH. The engineering advances of Dashing 2 enable
the SetSketch approach to operate efficiently through efficient
evaluation of logarithms and through use of vector instructions.

In this study, we describe the new Dashing 2 method and
show its performance relative to other sketching methods. We
show that Dashing 2 achieves superior similarity estimates for
the Jaccard coefficient and average nucleotide identity (ANI) com-
pared with Dashing and other tools while using the same-sized
sketch. We also compare its computational performance to com-
peting methods, showing that Dashing 2 is often the fastest tool
available, especially for similarity estimation.

Results
We used Dashing 2 v2.1.11-10-g128c. All experiments were per-
formed on a Lenovo ThinkSystem SR630 with 48 3.0-GHz Xeon
CPUs and 1.5 TB of memory.

We downloaded the RefSeq database on Jun 30, 2022
(O’Leary et al. 2016). Filtering to just complete genome sequences,
we gathered 128,827 sequences, 729 from the “archea” category,
115,548 from “bacteria,” 338 from “fungi,” two from “human”
(the GRCh38 and the CHM13 assemblies), 267 from “inverte-
brate,” 145 from “plant,” 88 from “protozoa,” 183 from “verte-
brate_mammalian,” 274 from “vertebrate_other,” and 11,253
from “viral.” The compressed FASTA files occupied 475 GB.
Overall, genome lengths varied from 223 bp to more than 34 bil-
lion bp, with mean and median lengths of 11.1 million bp and
4.22 million bp, respectively.

Some experiments required high-fidelity sketches. We com-
puted a 1-MB sketch for each using Dashing 2 with sketch

‐‐binary-output -S 20 -k 31. For all 128,827 complete ge-
nomes, this process took 50 min:45 sec using GNU parallel
(Tange 2011) for multiprocess parallelism.

The following subsections use these assemblies as a starting
point. In particular, sections “Similarity estimation” and “ANI es-
timation” use sets of 1010 genomepairs selected to cover a range of
similarities. The section “Large-scale sketching and pairwise com-
parisons” uses a subset of 50,000 assemblies to compare Dashing
2’s sketching and pairwise similarity speed to that of Dashing
1. The exact lists of accessions used in each experiment are provid-
ed in files referenced in the “Software availability” section.

Similarity estimation

We compiled a collection of pairs of assemblies covering a range of
Jaccard coefficients, estimated using high-fidelity sketches. If A
and B are sets of canonicalized k-mers from two assemblies, the
Jaccard coefficient J(A, B) = |A> B|/|A< B|. We first performed
an all-pairs comparison using the 128,827 high-fidelity sketches
described above. We then partitioned the space of Jaccard esti-
mates into 100 buckets of equal size; namely, one bucket spanned
Jaccard values in the range [0, 0.01), the next spanned values in
(0.01, 0.02], etc. We added an additional bucket for pairs with J
(A, B) = 1. For each bucket, we randomly selected 10 genome pairs
having a Jaccard coefficient estimatewithin the bucket’s range.We
limited our attention to RefSeq assemblies from the “archea,” “bac-
teria,” and “viral” groups. At the end of this process, we had a col-
lection of 1010 genome pairs (10 for each of the 101 buckets) with
Jaccard coefficients spread evenly across the range [0, 1].

To obtain a notion of “truth” to compare against, we used
Dashing 2’s full-accuracy mode (which does not use sketching)
to compute true Jaccard coefficients for all genome pairs for both
k-mer lengths. We also computed ANIs for all selected genome
pairs using FastANI v1.33 (Jain et al. 2018). FastANI computes an
approximation, so we do not call these “true” ANIs. But these
have the advantage of being calculated using a separate approach
from the one used to compute the Jaccard coefficients.

Using these genome pairs annotated with true Jaccard coeffi-
cients and FastANI-estimated ANIs, we compared the accuracy of
Dashing 2’s estimates to those of Dashing 1 v1.0 (Baker and
Langmead 2019), Mash v2.3 (Ondov et al. 2016), Sourmash
v4.6.1 (Brown and Irber 2016), and BinDash v1.0 (Zhao 2018).
We ranDashing 2 in two configurations.D2 used the “one-permu-
tation” SetSketch, with each update affecting at most one register.
D2-full used the full update rule. We did not run the D2W con-
figuration of Dashing 2 here because the goal of these experiments
is to assess howwell thesemodes estimate the typical “flat” version
of the Jaccard similarity, rather than the weighted version estimat-
ed by D2W.

To obtain Jaccard similarities for all genome pairs, we ran
bindash dist with the ‐‐mthres=1e9 option, which ensures it
outputs similarities for all genome pairs not only for those with
higher similarities.

Table 1 shows the sum of squared errors (SSE) between the
tool-estimated Jaccard coefficient and the true Jaccard, totaled
across all 1010 genomepairs.We show these results for sketch sizes
of 8 kbits (8 × 1024 bits, equivalent to 1 kilobyte), 32 kbits, and 128
kbits. Comparisons across tools and modes use sketches of the
same total size in bytes. We note that although we set the total
sketch size constant across tools, the tools use different register siz-
es according to their sketching algorithm.Mash and Sourmash use
64-bit registers for example, whereas Dashing and Dashing 2 used
1-byte registers. In all cases, either D2 or D2-full achieved lowest
SSE, with the other achieving second-lowest. Dashing 2 and
Dashing 1 both achieved lower SSE than Mash and Sourmash.
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Unlike Dashing 1, Dashing 2’s modes consistently yielded better
Jaccard coefficient estimates than BinDash.

We note that the increased accuracy of Dashing 2 over
Dashing 1 is expected, because the flexibility in its log base allows
it tomake the best possible use of the bits allocated to each register.
For details on how Dashing 2 makes more efficient use of register
space, see Methods (section “SetSketch”).

In these experiments, we used Sourmash in a way that
achieved the same overall sketch size as the other methods.
Because Sourmash’s default is to build a sketch proportional in
size to the input, this required that we configure it to use a fixed-
size sketch via its sketch dna -p num=X option, with X equal to
the number of 64-bit registers needed tomatch the other sketches.

ANI estimation

We further assessed the ANI estimates obtained by using theMash
distance equation and rescaling:ANIest = 1 +1/k · ln(2J/(1 + J)). Here
k is the k-mer length, and J is the estimated Jaccard coefficient.
Negative ANIest values were rounded up to zero. In this experi-
ment, we additionally assessed the new multiplicity-aware
(“weighted”) mode of Dashing 2, called D2W. The feature-hash-
ing structure needed to obtain the weights for D2W mode was
configured to consist of 5 million 64-bit counts.

In this case, the input J to the ANIest equation was the proba-
bility Jaccard similarity (JP) described in section “Weighted
SetSketch,” rather than the typical “flat” Jaccard coefficient. This
experiment allows us to assess whether J (as estimated by
Dashing 1, D2, or D2-full) or JP (as estimated by D2W) yields a bet-
ter ANI estimate.

We assessed SSE between ANIest and the FastANI-estimated
ANIs for Mash, Dashing 1, D2, and D2W (Table 2). In all cases,
the D2W approach achieved either the lowest or second-lowest
SSE, with either D2 or Dashing 1 achieving the second-lowest SSE.

We did not compare to Sourmash in this experiment because
Sourmash’s preferred method for estimating ANI uses a scaled
sketch, namely, a sketch whose size grows as a function of the
length of the input sequence. Because Dashing 2 operates using
a given, fixed sketch size, we designed a separate experiment to
compare Dashing 2 with Sourmash on ANI estimation, presented
in the following section.

Comparison to Sourmash ANI estimation

Sourmash (Brown and Irber 2016) has a specific facility estimating
the ANI between two sketches when the sketches are built in a
“scaled” fashion, in which the number of hash values retained is
proportional to the length of the input sequence. We conducted
a separate experiment to compare the ANI estimates from

Sourmash’s “scaled” mode to Dashing 2’s D2, D2-full, and
D2W’s modes.

Unlike Dashing 2, Sourmash’s scaled sketch does not have a
fixed size; rather, the number of registers is a function of the input
sequence length. To make the comparison fairer, we first ran the
Sourmash sketch dna command in its default mode, which
builds a scaled sketch, on each of the 1010 pairs of FASTA files
used in the previous experiments. We then determined the num-
ber of 64-bit registers (“signatures” using Sourmash’s term) includ-
ed in each sketch, which can be performed by loading and
interrogating the sketch file in Python. We then built Dashing 2
D2, D2-full, and D2W sketches for each FASTA, configuring
Dashing 2 to use the same-sized sketch (in total bits) as
Sourmash did for that FASTA. However, because Dashing 2 can
only estimate Jaccard (or ANI) between equal-size sketches, we
sketched both FASTAs in each pair using the size of the smaller of
the two Sourmash sketches for the pair. In this way, the
Sourmash sketches were always at least as large as the Dashing 2
sketches, and sometimes larger. Although this puts Dashing 2 at
a mild disadvantage, it still produces more accurate ANI estimates
overall, as seen in Table 3.

Large-scale sketching and pairwise comparisons

We used Dashing 1 and Dashing 2 to sketch a sample of 50,000
complete genome assemblies downloaded from RefSeq. Both
were run using GNU parallel, allowing up to 12 sketching process-
es to run at a time. Both tools were configured to produce sketches
1 MB in size. Dashing 1 took 2 h:00 min:34 sec to construct all the
sketches, and Dashing 2 took 50 min:46 sec.

We then used Dashing 1 and 2 to perform exhaustive all-pair-
wise Jaccard similarity comparisons across the 50,000 genomes
(two human assemblies and 49,998 bacterial assemblies),

Table 2. Sum of squared error between estimated Mash distance
and the ANI as computed by FastANI

k kbits Mash Dashing1 D2 D2-full D2W

21 8 6.80 1.94 2.61 1.41 0.273
32 6.06 3.05 2.02 3.72 0.279

128 6.06 3.17 3.66 3.06 0.276
31 8 8.20 4.54 3.88 4.40 0.538

32 5.36 2.38 4.47 3.30 0.544
128 5.37 0.787 3.75 3.64 0.543

Bright red indicates the lowest error in each row. Dark red indicates
second-lowest error. In all cases except D2W, Mash distance is comput-
ed as a function of the estimated “flat” Jaccard coefficient. In the case of
D2W, Mash distance is a function of the probability Jaccard similarity
from Equation 4.

Table 1. Sum of squared error between estimated and true Jaccard coefficients for Mash, Sourmash, BinDash, Dashing 1, D2-full, and D2 meth-
ods for all genome pairs

k kbits Mash Sourmash BinDash Dashing1 D2-full D2

21 8 1.79 1.79 0.752 1.10 0.776 0.814
32 0.872 0.873 0.677 0.711 0.669 0.651

128 0.765 0.764 0.650 0.644 0.628 0.616
31 8 1.95 1.95 0.601 0.938 0.584 0.595

32 0.766 0.765 0.481 0.580 0.475 0.463
128 0.544 0.544 0.474 0.479 0.461 0.456

Bright red indicates the lowest error in each row. Dark red indicates second-lowest error.
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comparing a total of 1.25 billion pairs of 1-MB sketches. Both tools
used their default similarity estimation methods. In the case of
Dashing 1’s, this was the MLE estimator of Ertl (2017). In the
case of Dashing 2, this was the simple joint estimator described
in the section “Similarity comparison.” Both Dashing 1 and
Dashing 2 were run with the -p80 ‐‐presketched options, en-
abling 80 simultaneous threads of execution and instructing
both tools to use the already-computed sketches. Dashing 1 took
49 h:41 min to estimate all-pairwise similarities, whereas
Dashing 2 took 5 h:41 min and was about 8.7 times faster.

Speed and memory footprint comparison

We compared several sketching tools with respect to their running
time and memory footprint when sketching and performing all-
pairs comparisons across the same 2020 genome assemblies
(1010 pairs) used in the similarity estimation results above.
Results are given in Supplemental Table S1. We found that
Dashing 2’s modes performwell in all categories. It particularly ex-
cels at all-pairs similarity comparison running time. BinDash has
the lowest memory footprint for sketching, and Mash and
BinDash are both competitive with Dashing 2’s modes for sketch-
ing running time.

All-pairs comparisons using LSH

We performed all-pairs comparisons for a large collection of pro-
teins by combining SetSketch, using the LSH scheme described
in section “LSH implementation” to avoid comparisons unlikely
to meet a minimum similarity threshold. We used the
UniProtKB/Swiss-Prot collection of 565,254 protein sequences,
v2021_03. For each protein, we used Dashing 2 to create a 10-
mer sketch (-k10) of 256 registers (-S256). Proteins were translat-
ed to a 14-letter reduced alphabet (‐‐protein14) to capture more
distant homology (Edgar 2004). We ran Dashing 2 in sketch ‐‐

topk mode to perform all-pairs comparisons while avoiding pair-
ings that fail to appear in the top 256 neighbors of a protein. We
used the default of ‐‐nLSH 2 to use two distinct sizes of superregis-
ter groupings, corresponding to the N parameter of Algorithm 2.
The output was a k-nearest-neighbor (KNN) graph in tabular
(TSV) format, associating each protein to the 256 otherswith great-
est Jaccard coefficient. We used 80 simultaneous threads for these
experiments.

Because of both estimation and LSH error, the graph may in-
clude false positives (reported neighbors that are not truly among
the top 256) and/or false negatives (unreported neighbors that are

truly in the top 256). To measure the error introduced by LSH, we
compared theKNNgraph to another KNNgenerated using exhaus-
tive all-pairs comparisons. Importantly, the exhaustive KNN was
also built using Jaccard coefficient estimates, because exact com-
putation of the Jaccard coefficient is too computationally expen-
sive. Thus, this experiment isolates error owing to the LSH filter
only and does not assess error owing to the Jaccard estimate.

Relative to the exact method, Dashing 2’s LSH method
achieved 100%recall and precision; namely, therewere no false pos-
itives or false negatives among the neighbors found using LSH filter-
ing. Further, using the LSH, Dashing 2 was able to generate the
graph in 43 sec comparedwith 56.2min for the exhaustivemethod,
a 78-fold speedup. The exhaustive method ultimately performed
159,755,759,631 pairwise comparisons, compared with approxi-
mately 470 million comparisons performed by the LSH-assisted
method. The 470 million comparisons performed by LSH is about
3.5 times greater than the minimum determined by the number
of neighbors (256) times the number of proteins (565,254).

We also applied this approach to create a nearest-neighbor
graph over the largerUniRef50 data set, which is built by clustering
UniRef90 seed sequences from the UniProt Knowledgebase
v2021_03 having at least 50% sequence identity to and 80% over-
lapwith the longest sequence in the cluster. The database contains
53,625,855 sequences totaling over 15 billion amino acids. After
sketching, the KNN graph was generated in <10 min. In contrast,
the exhaustive all-pairs comparisons approach required a much
longer amount of time; we interrupted this computation after 2
d and extrapolated that the total time would have exceeded a year.

We note that although there are tools for large-scale cluster-
ing that use similar ideas, like Linclust (Steinegger and Söding
2018), no other genomic sketching method (Mash, BinDash,
Sourmash) currently has this ability.

Discussion
Dashing 2 combines the SetSketch with LSH to bring multiplicity-
aware sketching and fast filtering to genomic sketching analysis.
Its all-pairs comparisonmethod scales effectively to millions of se-
quences. Dashing 2 can sketch FASTA and FASTQ inputs, as well as
protein-sequence inputs using a variety of protein alphabet reduc-
tions. It can compare sequences based on Jaccard coefficient,Mash
distance, or containment coefficient. It can also compare sequenc-
es based on a weighted version of the Jaccard coefficient that is
aware of the multiplicities of the input items.

Table 3. Sum of squared error between ANIs estimated by FastANI versus ANIs estimated by sketching-based methods, including Sourmash’s
scaled mode and Dashing 2’s D2, D2-full, and D2W modes

Sourmash

k ANI range No. Scaled D2 D2-full D2W

21 ≤85% 19 4.08 4.09 4.09 0.142
85%–90% 35 0.796 0.0416 0.0333 0.0433
90%–95% 117 0.0136 0.00984 0.00945 0.0181

95%–100% 839 0.0224 0.0185 0.0247 0.0146
31 ≤85% 19 4.69 1.79 2.91 2.92

85%–90% 35 0.0637 0.0481 0.819 0.103
90%–95% 117 0.0379 0.0313 0.0317 0.0612

95%–100% 839 0.0244 0.0225 0.0223 0.0173

Results are compiled over all 1010 genome pairs, stratified by ranges of FastANI-estimated ANI. Bright red and dark red indicate lowest and second-
lowest error, respectively, in each row. In the case of D2W, Mash distance is a function of the probability Jaccard similarity from Equation 4.
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Dashing 2’s estimation error for the Jaccard coefficient and
ANI estimates was lower than that of the previous version of
Dashing and was substantially lower than that of Mash. Dashing
2 had lower or comparable error to BinDash. Thus, it will be impor-
tant to continue to study the SetSketch as a highly accurate alter-
native not only to the HLL sketch but also to the MinHash and
b-bit MinHash methods.

Notably, Dashing 2’s ANI estimation error was lowest when
taking multiplicities of the input items into account, namely,
whenusing aweighted Jaccard coefficient as input to theMash dis-
tance equation. This shows that multiplicities are helpful not only
for quantitative applications but also in typical “flat” sketching
scenarios. This motivates future study of sketch data structures
that account for multiplicities, as well as methods—like Dashing
2’s feature hashingmethod—for efficiently compilingmultiplicity
information before sketching.

We have concentrated on comparing SetSketch to the more
commonly used methods of MinHash (as implemented in Mash
and Sourmash), HLL (as implemented in Dashing 1), and b-bit
MinHash (as implemented in BinDash). But there are other sketch-
ing approaches that have been proposed with which it may also be
relevant to compare, including HyperMinHash (Yu and Weber
2022).

The term “sketch” is used for various data structures in
Bioinformatics. Dashing 2 is particularly designed for scenarios
in which many sequencing data sets must be compared with
each other in an efficient, scalable way. For this scenario, we use
the expedient of modeling sequence data as a set (or multiset) of
k-mers, which is reduced to a sketch of fixed size, for example, 1 ki-
lobyte. Other studies describe approaches that use some form of
sketching, but that keep more detail about the sequence content
of each data set, for example, by keeping an ordered sequence of
representative subsequences from the longer sequence (Marçais
et al. 2019; Jain et al. 2020). Other studies focus on only pairwise
or one-versus many queries (Jain et al. 2018; Ondov et al. 2019;
Shaw and Yu 2023). Such tools can be a better fit in situations in
which there is good reason to treat the sequences in very small
batches (e.g., pairwise comparisons) or to treat themasymmetrical-
ly (e.g., one-vs.-all queries). ButDashing 2 particularly excels when
many are compared in a symmetric, all-pairs fashion.

We note that Dashing 2’s LSH mode is intended to facilitate
scalable all-versus-all comparisons among sequences in a large col-
lection. This is distinct from the purpose of tools like mash

screen, which seek to estimate similarity (more specifically, con-
tainment) between a single query and many reference sequences
in a database. In short, whereas mash screen applies sketching
to accelerate one-to-many comparison problems, the new meth-
ods described here are designed to accelerate many-to-many
comparisons.

Finally, we note that although genomic sketching tools have
typically been applied to compare sequences or sets of sequences,
they are also useful for comparing other inputs, such as genomic
intervals or other very large sets of string identifiers. Dashing 2
takes a step toward enabling this large set of applications by allow-
ing for BED and LeafCutter inputs.

Methods

Background

A sketch distills a large set of items into a small data structurewhile
preserving the ability to estimate quantities like the data set’s car-

dinality, namely, how many distinct items/k-mers are present.
Sketches for different data sets can also be compared to estimate
their similarity. This can be performed with far less memory or
in far less time compared with that required to compare the origi-
nal, unsketched data sets.

Genomic data usually take the form of long sequences, so we
must first convert the sequence to a set. Usually,we decompose the
sequence into the set of its constituent length-k substrings, name-
ly, its k-mers. Because sequences that are reverse complements of
each other should be considered identical, k-mers are usually can-
onicalized: If a given k-mer is greater than its reverse complement,
it is replaced with its reverse complement.

The three sketch types most relevant to this work are
MinHash (Broder 1997), HLL (Flajolet et al. 2007), and the recent
SetSketch (Ertl 2021). All three consist of an array of registers, in
which a register is an instance of a “high-water-mark” random var-
iable (RV for short). The nature and form of a high-water-mark RV
differs between sketch types, but its purpose is to record the most
“extreme” input item observed so far. Second, all three sketch
types have an update rule that executes once per input item and
that can update the values of zero or more registers. Third, all
the sketch types have associated algorithms for estimating sum-
mary quantities of interest, including cardinality and Jaccard sim-
ilarity, from the register values. These algorithms differ across
sketch types, both in their details and in their statistical guaran-
tees. Finally, all of these sketch types are composable, in the sense
that two sketches of the same type (and same hashing scheme and
size) created for data sets A and B can be combined to obtain a
sketch for the data setA< B through a simple combination of their
register values.

The sketch types differ in the nature of their high-water-mark
RVs and, consequently, their update rules and summary algo-
rithms. Practical MinHash implementations like Mash use a bot-
tom-k approach; a hash function is applied to each input item,
and then the m sketch registers are set to the m smallest distinct
hash values obtained. In this way, registers act as order statistics
(minimum, secondminimum, thirdminimum, K,mthminimum)
over uniform randomdraws seeded by the input items. The update
rule simply involves hashing the new input item and, if its hash
value is less than themthminimumcurrently in the sketch, updat-
ing the sketch to include the new value. Algorithms for estimating
cardinality and Jaccard similarity using bottom-k MinHash are
simple, and their statistical guarantees are shown elsewhere
(Cohen 2014; Hassanian-esfahani and Kargar 2018).

HLL implementations use a k-partition approach, rather than
the bottom-k approach. Each item is hashed, and its hash value is
partitioned into a prefix p and a suffix q. The prefix p determines
which register (“partition”) the item maps to, whereas the suffix
q determines how the register should be updated. Specifically,
the algorithm finds the number of consecutive unset bits in the
most significant digits of q, namely, its LZC. If the LZC is greater
than the register’s current value, the value is set to the LZC.
Because the individual bits of the hash values can be considered in-
dependent Bernoulli(0.5) draws, the HLL high-water-mark RVs are
essentially taking themaximumover many Geometric(0.5) draws.
Algorithms for estimating cardinality and Jaccard similarity using
HLL are relatively more complex, sometimes with fewer statistical
guarantees compared with the MinHash estimators (Ertl 2017).

SetSketch

Dashing (Baker and Langmead 2019) used the HLL data structure
and its LZC strategy to update register values, as described above.
Whereas Dashing’s HLL registers were each 8 bits wide and able
to hold a value in the range zero to 255, LZCs could range only
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from zero to 64. In fact, LZCs would usually span a smaller range
than this, because bits used for the prefix p are not considered.
An LZCwould therefore fail to use at least 2 bits of an 8-bit register,
leaving the structure 25% empty. Although registers could be
shrunk to 6 bits, this would conflict with Dashing’s use of SIMD
instructions with 8-bit operands.

Ertl’s SetSketch (Ertl 2021) addresses this issue by replacing
the LZC with a logarithm of configurable base b. This comes
with a drawback: The addition of a single item to the SetSketch po-
tentially updates the values of all registers, rather than just one.
Given a data item d, the update rule for each register Ki, is

Ki = max (Ki, ⌊1− logbhi(d))⌋), (1)

where hi is an independent hash function specific to register i dis-
tributed exponentially; namely, hi(d) � Exp(a). An illustration of
this sketch building is shown in Supplemental Figure S1.

For reasons explained below, it is useful to factor this update
rule into two phases, with delaying the logarithms to the second
phase. We use Ki to denote the register’s value at update time
and K′

i to denote its value after the final truncation:

Ki = min (Ki, hi(d)) K′
i = ⌊1− logbKi⌋. (2)

where again hi(d) � Exp(a). The subtraction in the K′
i formula in-

verts the notion of “extremeness” from a minimum to a maxi-
mum, hence the use of min in Equation 2 versus the use of max
in Equation 1.

The strategy of letting each register’s value be a function of all
the input items has advantages. First, because the final value is a
function of all items rather than a register-specific subset of
them, the final values are statistically independent. Second, the ex-
ponential rate a and logarithm base b are parameters of the sketch.
We can set b in a way that spreads the Ki values over a range of our
choosing. If registers are 8 bits wide, we can choose a and b so that
⌊1− logbhi(d))⌋ ranges from zero to 255, landing outside the range
only with low (and controllable) probability. If registers are anoth-
er size (e.g., Dashing 2 supports 4-, 8-, 16-, 32-, and 64-bit registers),
a and b can be adjusted. Methods for setting a and b are described
in Section 2.2 of Ertl (2021).

This comes with a potential disadvantage. Because each regis-
ter is a function of every input item, each addition may require O
(m) work, wherem is the number of registers. Ertl (2021) proposes
optimizations that ensure that the work per update quickly be-
comes O(1) in the typical case in which the input is much larger
than m. This is accomplished by (1) maintaining a value Kmax

equal to the maximum among all the registers’ current values,
and (2) reordering the inner loop so that iterations occur in in-
creasing order by value of the hi(d) � Exp(a) draw. Note that the
maximum is maintained over the original, untruncated exponen-
tial draws in the Ki variables, not the truncated version eventually
stored in the K′

i variables. Once we reach an iteration in which the
draw has value hi(d) >Kmax, neither the current nor a subsequent
iteration can possibly change the value of a register, and the inner
loop can break.

Another disadvantage of the SetSketch is the computational
cost of the exponential draws and, related to that, the computa-
tional cost of logarithms. Although the strategy just described re-
duces the number of exponential draws, later sections describe
how we reduce the cost of logarithms.

Similarity comparison

Dashing 1’s default algorithm for estimating the Jaccard coeffi-
cient between HLLs A and B, J(A, B) used the maximum likelihood
estimation (MLE) method of Ertl (2017). This models register val-
ues as Poisson random variables and uses an iterative root-finding

to estimate the Poisson parameter from the histogram of register
values in the union (A< B) HLL. This was less accurate but sub-
stantially faster than the related joint MLE (JMLE) method (Ertl
2017), which required histogramming of joint register values.

Dashing 2 uses a simpler joint estimator named m̂simple (Ertl
2021). (Note that this estimator is described only in the “v1” ver-
sion of the Ertl [2021] paper preprint-cited. Later versions of the
paper describe Brent’s root-finding algorithm instead.) It has a
closed-form solution and does not require an iterative root-finding
procedure. Being a “joint” estimator, m̂simple also does not require a
union sketch; it is a function only of the input sketches A and B.
Finally, m̂simple does not require a histogram of register values.
Instead, it requires two counts:D+ andD−.D+ is the number of reg-
isters in A that are greater than their counterparts in B, and D− is
the number of registers in A that are less than their counterparts.
UnlikeMLE and JMLE histograms,D+ andD− can be computed us-
ing only single-instruction multiple-data (SIMD) instructions. In
particular, a combination of SIMDgreater-than/less-than and pop-
ulation-count instructions enable rapid tallying ofD+ andD− with
respect to chunks of registers at a time. As described by Ertl (2021),
a mathematical complication arises when the sets are mostly dis-
joint. We fall back on Ertl’s alternative formulae αdisj and βdisj
from Ertl (2021) in such cases.

Full Dashing 2 sketch update

Algorithm 1 gives the update algorithm for the full version of the
Dashing 2 SetSketch. This is the default for weighted sketching and
can be enabled for nonweighted sketching using the option ‐‐

full-setsketch. Without this option, the one-permutation
strategy described in the next subsection is used instead. Inputs
consist of the register array K comprising the sketch, a MaxTree ar-
ray T maintaining maxima over power-of-two-sized stretches of
registers, the item X to be added, and the item’s weight W.
When used for unweighted sketching, W equals one. Registers in
K are initialized to the maximum possible value.

Algorithm 1. Update full Dashing 2 SetSketch.

Input: SetSketch K[0..m−1], MaxTree T[0..m−2], item X of
weight W
Result: K and T updated according to X, W
1 RNG ←RandomNumberGenerator(X, m)
2 RV ←RNG.nextExponentialSpacing(0, m, W)
3 Kmax←T.max()
4 if RV>Kmax then
5 return
end

6 i←RNG.nextFisherYates()
7 if RV<K[i] then
8 K[i]←RV
9 Kmax←T.update(K[i], i)
end

10 for i←1, m−1 do
11 RV ←RV+RNG.nextExponentialSpacing(i, m, W)
12 if RV>Kmax then
13 return

end
14 i ←RNG.nextFisherYates()
15 if RV<K[i] then
16 K[i]←RV
17 Kmax←T.update(K[i], i)

end
end
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A single update could require modifying any number of regis-
ters, from zero tom. To avoidO(m) work on average, the algorithm
follows the strategy of Ertl (2021), examining registers in order ac-
cording to the probability they will be updated, namely, according
to the extremeness of that register’s exponential randomdraw. The
algorithm uses a pseudorandom number generator RNG, seeded
with X for deterministic updates. RNG.nextExponentialSpacing
(i, m, W) returns the value that must be added to obtain the next
draw in increasing order, according to the recurrence

xi = xi−1 + 1
m− i+ 1

Exp(aW). The recurrence follows from the

memoryless property of the exponential distribution (Ertl 2022).
RNG.nextFisherYates() samples a new register randomly without
replacement with Fisher–Yates shuffling, as in algorithm 6 by
Ertl (2022). Bymatching the increasing series of exponential draws
with a random sequence of register choices, we visit registers in the
desired order of most to least likely to be updated. Kahan summa-
tion (Kahan 1965; Babuska 1969) is used to reduce numerical er-
rors when summing exponential spacings.

Conditional statements in lines 4 and 12 of Algorithm 1 abort
upon reaching a draw that is less extreme than the least
extreme that could affect a register value (Kmax). Accordingly, the
Kmax←T.update(K[i], i) statements in lines 9 and 17 update a struc-
ture maintaining the current “least extreme draw” in the Kmax var-
iable per algorithm 4 of Ertl (2022). Updates to the Kmax structure
take O(log (m)) time and are required only when a register is mod-
ified. The number of loop iterations is inversely related to the num-
ber of items added, approaching zero as the number far exceedsm.

One-permutation SetSketch

By default, Dashing 2 computes unweighted sketches and uses an
economical “one-permutation” update method (Wang et al.
2017), which modifies at most one register per update. This meth-
od uses some bits of the random draw to choose which register to
update (Supplemental Material, Algorithms S2 and S4), similar to
how the HLL update rule in Dashing uses the hash prefix p.

Although the one-permutation approach is efficient com-
pared with a full update, accuracy suffers when many registers
are empty, namely, when the input has few items relative to m.
To maintain accuracy, we implement the densification approach
of Shrivastava (2017), applied after finalization. This strategy has
similar accuracy compared with the full SetSketch but is more effi-
cient in practice. Because of this, we made this one-permutation
mode the default for unweighted sketching. The full update rule
is used instead when the user enables weighted sketching or
when the user enables it with the ‐‐full-setsketch option.

SetSketch parameters

Like the HLL, the number of registers m is a parameter of the
SetSketch. Unlike HLL, SetSketch has a related parameter, the reg-
ister width in bits. Other key parameters are the rate for the expo-
nential draws (a), and the log base used for truncation needed to
fit draws into registers (b). As in the work by Ertl (2021), we use q
to denote the value that is one less than themaximum register val-
ue; for example, for 8-bit registers, q=28−1−1 =254.

Although Ertl (2021) gives theoretical guidelines for choosing
a, b, and other parameters, these assume foreknowledge of input
cardinalities. On the other hand, multiple SetSketches are compa-
rable only if they were built using identical parameters. This cre-
ates a tension between wishing to choose the parameters sooner,
in order to make compact sketches, versus later, to delay trunca-
tion until we can ensure all relevant sketches are constructed
and truncated with identical a, b, and q.

Dashing 2’s default strategy is to set a and b according to the
overall set of input data sets and to shape and truncate the sketches
according to user-configurable choices form and q. Dashing 2 also
allows the user to delay the choices for a, b, and q, so that larger,
untruncated sketches can be stored temporarily in preparation
for future truncation and comparison with other sketches.

To select a and b according to the data, Dashing 2 first forms
untruncated sketches and then computes b and a according to the
expression

b = exp
lnmax (K∗)/min (K∗)

q

( )
a = max (K∗)/b, (3)

where K∗ denotes a concatenations of all untruncated register val-
ues from all inputs. For experiments in this study, we invoked
Dashing 2 with all input data sets at once, ensuring a and b are
set identically for all.

Two other parameters to discuss are the k-mer length used
when the input is a sequence and the total number of registers
in the sketch, m. Dashing 2’s default k-mer length is the largest
such that the representation of a k-mer fits in a 64-bit unsigned var-
iable. For DNA this is 31, and for protein, this is 14 (or greater for
reduced protein alphabets). The default sketch size m is 1024.

Delayed logarithms

Potentially expensive logarithm calculations are used in two tasks:
(1) truncation of register values and (2) to perform the exponential
draws. Dashing 2 avoids these costs in two ways, described here
and in the following section.

First, it uses the two-step strategy of Equation 2 to delay trun-
cation until a finalization step, which runs only after all items are
added (Supplemental Material, Algorithm S3). Before finalization,
intermediate register values are stored as untruncated 64-bit float-
ing-point numbers. As a result, the update rule uses only a mini-
mum, rather than both a logarithm and a maximum. The total
number of logarithmic truncations performed atmostm regardless
of the number of items added to the sketch.

This comes at the cost of requiring additional space at sketch-
ing time. For the entire algorithm up to finalization, we must store
a 64-bit value for each register even if finalization will later reduce
that to, for example, 8 bits. Because practical sketches require only
thousands of registers, this is not onerous in practice.

Approximate logarithms

The second use of logarithms is in the exponential Exp(a) random
draw, which is accomplished by computing −ln(Unif())/a, where
Unif() is a uniform random draw between zero and one. We ob-
served that, once the sketch becomes quite full, many exponential
draws are well above the Kmax ceiling, aborting the inner loop.
Although an inaccurate logarithm might cause us to miscompute
whether a draw is under the Kmax ceiling, this arises only for draws
near the ceiling. We use a fast, approximate logarithm first, revert-
ing to a more accurate (and expensive) logarithm only if the first
result is close to Kmax.

For fast logarithms,weuse an approximation computed using
the floating-point number’s integral representation. Specifically,
we use a modified version of the algorithm of Schraudolph
(1999). This can overestimate the result by a multiplicative factor
of up to 1.42. By dividing the fast-logarithm result by this number,
we can determine if the approximation is close enough to Kmax to
require a full logarithm computation. This affects the computation
within RNG.nextExponentialSpacing(), called in lines 2 and 11, as
well as the conditional checks in lines 4 and 12, of Algorithm 1, al-
though we omitted these details from the algorithm listing.
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Weighted SetSketch

Although Ertl (2021) describes applications only to unweighted
sketching, we extended SetSketch to consider weightedness using
the ProbMinHash (Ertl 2022) strategy, namely, by multiplying the
exponential draw’s rate parameter by the item’s weight, represent-
ed by argument W to RNG.nextExponentialSpacing() in lines 2
and 11 of Algorithm 1. When comparing sketches weighted in
this way, the quantity being estimated is a version of the Jaccard
coefficient called the “probability Jaccard similarity,” JP:

JP(A, B) =
∑

d[D s.t.wA(d)=wB(d)=0

1
∑

d′[D max
wA(d′)
wA(d)

,
wB(d′)
wB(d)

( ) , (4)

where D is the item universe, and wA and wB are weight functions
for items in sets A and B.

A key question is how to obtainwA andwB. When the input is
sequencing data, theweight of an item (k-mer) should equal its rel-
ative frequency. By default, Dashing 2 will use a hash table to track
the exact relative frequency for each item. But Dashing 2 also sup-
ports a faster and more memory-efficient method that estimates
each item’s frequency using a feature hashing (Moody 1988) ap-
proach, equivalent to a single-row Count-Min Sketch (Cormode
and Muthukrishnan 2005). This mode is enabled with the ‐‐

countsketch-size option. Nonsequencing data sets might
also come with an inherent notion of “weight”; for instance, if in-
put items represent genes and associated expression levels, these
levels could be immediately used as weights, without the need
for counting or for the feature-hashing data structure.

Optimizations for the logarithms described above are also
used for weighted sketching.

LSH implementation

To scale all-pairs comparisons, we implemented a filtering approach
basedonLSH. First,wenote that although sketching approaches like
MinHashcan themselves be viewed as a formof LSH,hereweuse the
term to refer to an approach that Dashing 2 performs after sketches
are already computed. This approach’s goal is tominimize the num-
ber of below-threshold pairwise comparisons performed while skip-
ping as few above-threshold comparisons as possible.

The LSH method works by grouping SetSketch registers into
“superregisters.” For instance, the first four registers (K[0…3])
might constitute the first superregister, the next four (K[4…7])
the second superregister, etc. Associated with each superregister
is a map from possible values to a list of all input data sets having
that value in that superregister. In our example, the keys for the
first superregister will consist of all combinations of the first four
registers K[0…3] observed in an input data set, and the values
will be the associated lists of data sets. An LSH indexmight consist
of several such tables, each with a distinct superregister group size.
In the Supplemental Material, Algorithm S1 shows how the index
is updated with one additional data set.

Because registers are independent, a size-P superregister will
match between data sets A and B with probability J(A, B)P, where
J is the Jaccard coefficient. When performing a large-scale all-pairs
comparison, Dashing 2 begins by computing LSH indexes for val-
ues of P in a user-configurable subset of the values {1, 2, 4, 6, 8, 10}.
By default, Dashing 2 tries P∈ {1, 2}, but it can be configured to try
more values for P via the ‐‐nlsh option, corresponding to the N
variable in Algorithm S1 (in the Supplemental Material) and
Algorithm 2. For P∈ {1, 2}, the superregisters are formed by parti-
tioning registers intom/Pnonoverlapping groups. For larger values
of P, we select a random set of m · 8 /P contiguous groups of regis-
ters. In this case, superregisters can overlap.

In the SupplementalMaterial, Algorithm S1 details howa sin-
gle data set is added to an LSH index. Algorithm 2 details how we
query to find a list of candidate nearest neighbors for a data set us-
ing the LSH index. In both cases, a pair of nested loops is used. The
outer loop iterates over LSH tables from the most to least specific
(largest to smallest P), whereas the inner loop iterates over super-
registers. In the case of Supplemental Algorithm S1, an iteration
of the inner loop updates the LSH table with the id of the current
data set. In the case of Algorithm 2, an iteration of the inner loop
contains a final loop that updates a running list of candidate data
sets with all other data sets having the same value for the current
superregister.

Algorithm 2. Find candidates for k-nearest neighbors for data sets
using the LSH index. The result is a list of at most three k candidates,
which is later refined and ordered using Jaccard similarity.

Input : Ks: Map from id’s to SetSketches, for all data sets
Input : k: Target number of nearest neighbors to find
Input : id: Identifier for this data set
Input : RNG: Pseudorandom number generator
Input : seed: Pseudorandom seed
Input : N: Number of superregister sizes in index
Input : LSH: map from table id, superregister id, superregister

value triples to a corresponding list of data sets
Output: L: List of nearest neighbors
1 i ←N−1
2 if i>2 then
3 RNG.initialize(seed)
end

// Over tables 0.. N-1, from largest superregister size (most spe-
cific) to smallest (least specific)
4 while i≥0 do
5 P ←min (2i, 2i)
6 if i≤2 then
7 S � m/ N

else
8 S � m · 8/ N

end
9 j←0

// Loop over superregisters
10 while j< S do
11 if i≤2 then

// Next nonoverlapping superregister
12 SuperReg � Ks[id][K · j..K · j+ P − 1]

else
// Random superregister of length P

13 ri ← RNG.randomInt(0,m−P)
14 SuperReg � Ks[id][ri..ri+ P − 1]

end
// Append this data set to the list for this table,
superregister
// superregister value combination

15 for n∈ LSH[〈i,j,SuperReg〉] do
16 L.append(n)
17 if L.length() = k · 3 then
18 return L

end
end

19 j← j+1
end

20 i← i−1
21 return L
end
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The LSH tables are used in two distinct modes of Dashing
2. The mode activated with (‐‐topk) builds a k-nearest neighbor
(KNN) graph from the input data sets and follows the logic of
Algorithm 2. For a given pivot genome, we use the LSH tables to
generate a list of ⌈Os × k⌉ candidates for each input genome, where
Os>1 is an oversampling rate, set to three by default. We then es-
timate the Jaccard similarity between the pivot and each of the
candidates in the order they were discovered, keeping only the k
with the greatest Jaccard coefficients. Although this can result in
somemisreported neighbors, for example, because a near neighbor
happened not to coincide with the pivot in any superregister, this
possibility is reduced both by oversampling and by the order in
which we attempt the LSH tables, namely, from most to least
specific.

In another mode, Dashing 2 reports pairwise distances be-
tween all pairs of genomes having similarity above some threshold
(‐‐similarity-threshold X). In thismode, there is no addition-
al limit on the number of “neighbors” that might be reported for a
genome. Although querying the index, we maintain a heap of all
neighbors with similarity above a given threshold.

Exact similarity mode

The ability to compute exact Jaccard coefficients is useful for eval-
uating Dashing 2’s estimates. Dashing 2 therefore implements two
modes for exact computation of Jaccard coefficients. One uses sort-
ed k-mer hash sets (‐‐set); the other uses k-mer count dictionaries
(‐‐countdict).

Sketching sequencing reads

Dashing 2 can also sketch inputs consisting of sequencing reads,
for example, in FASTQ format. This involves the extra challenge
of handling sequencing errors, because k-mers containing errors
can be far more numerous than correct k-mers and so can domi-
nate and bias similarity estimates. For this reason, methods for
sketching sequencing-read inputs attempt to filter out k-mers con-
taining sequencing errors before computing cardinality or similar-
ity. Dashing 2 adapts the approach ofMash (Ondov et al. 2016) for
eliminating k-mers below a specific count threshold. For instance,
if the target threshold is set to two, Dashing 2’s SetSketch imple-
mentations (both one-permutation and full)maintain a dictionary
of items seen fewer than two times so far. Once an item’s count
reaches two, it is added to the final SetSketch structure.

Dashing 2 can also use a down-sampling approach
(‐‐downsample <fraction>) to randomly keep a specified frac-
tion of the input k-mers. The decision to keep or suppress a k-
mer is made independently for each k-mer rather than for each dis-
tinct k-mer. In this way, frequent k-mers—namely, those occurring

more than
1
F

of the time—are unlikely to have all copies sup-

pressed. The filter incurs little computational cost but greatly re-
duces the number of error k-mers ending up in the sketch. This
is similar to the ideas used in sequencing error correction (Song
et al. 2014) to distinguish k-mers with or without sequencing
errors.

Weighted sketchingmodes can be particularly appropriate for
sequencing reads because they have the effect of down-weighting
error k-mers, which tend to occur infrequently compared with cor-
rect k-mers.

RefSeq data sets

A list of the accessions for the 1010 RefSeq genome pairs used in
the section “Similarity estimation” is available at https://www.cs
.jhu.edu/~langmea/resources/d2/pairs1010.csv.

Accessions for the 50,000 RefSeq genomes used in the exper-
iments in the section “Large-scale sketching and pairwise compar-
isons” are available at https://www.cs.jhu.edu/~langmea/
resources/d2/refseq50k.txt.

Software availability

Open source code for the Dashing 2 software is available as
Supplemental Code and at GitHub (https://github.com/dnbaker/
dashing2). Scripts for performing the experiments described in
this paper are available as Supplemental Material and at GitHub
(https://github.com/dnbaker/dashing2-experiments).
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