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DNA sequencing data continue to progress toward longer reads with increasingly lower sequencing error rates. We focus on

the critical problem of mapping, or aligning, low-divergence sequences from long reads (e.g., Pacific Biosciences [PacBio]

HiFi) to a reference genome, which poses challenges in terms of accuracy and computational resources when using cut-

ting-edge read mapping approaches that are designed for all types of alignments. A natural idea would be to optimize

efficiency with longer seeds to reduce the probability of extraneous matches; however, contiguous exact seeds quickly reach

a sensitivity limit. We introduce mapquik, a novel strategy that creates accurate longer seeds by anchoring alignments

through matches of k consecutively sampled minimizers (k -min-mers) and only indexing k -min-mers that occur once in

the reference genome, thereby unlocking ultrafast mapping while retaining high sensitivity. We show that mapquik signifi-

cantly accelerates the seeding and chaining steps—fundamental bottlenecks to read mapping—for both the human and

maize genomes with . 96% sensitivity and near-perfect specificity. On the human genome, for both real and simulated

reads, mapquik achieves a 37× speedup over the state-of-the-art tool minimap2, and on the maize genome, mapquik

achieves a 410× speedup over minimap2, making mapquik the fastest mapper to date. These accelerations are enabled

from not only minimizer-space seeding but also a novel heuristic O(n) pseudochaining algorithm, which improves upon

the long-standing O(n log n) bound. Minimizer-space computation builds the foundation for achieving real-time analysis

of long-read sequencing data.

[Supplemental material is available for this article.]

Recent advances in DNA sequencing enable the rapid production
of long reads with low error rates; for example, Pacific Biosciences
(PacBio) HiFi reads are 10 to 25 kbp in lengthwith a≤1% error rate.
High-quality long reads have been used to accurately assemble ge-
nomes (Kolmogorov et al. 2019; Nurk et al. 2020; Ekim et al. 2021;
Bankevich et al. 2022), complete the human genome (Nurk et al.
2022), accurately detect small variants in challenging genomic re-
gions (Olson et al. 2022), and further elucidate the landscape of
large structural variants in human genomes (Denti et al. 2023).
Critical to these successes are algorithms that perform genomic
data analysis, such as reconstructing a reference from reads (ge-
nome assembly) (Logsdon et al. 2020), or mapping reads to a refer-
ence genome (read mapping) (Alser et al. 2021). With up to
hundreds of gigabytes of sequenced data per sample, analysis algo-
rithms need to balance efficiencywith high sensitivity and accura-
cy (the percentage of reads mapped correctly) (Berger and Yu
2023), which is especially critical in rapid sequencing to diagnos-
tics (Galey et al. 2022; Owen et al. 2022).

We recently introduced the concept of minimizer-space com-
putation (Ekim et al. 2021), in which only a small fraction of the
sequenced bases is retained as a latent representation of the se-

quencing data, enabling orders of magnitude improvements in ef-
ficiency without loss of accuracy. Minimizers are sequences that
are selected under some local or global minimum criteria
(Schleimer et al. 2003; Roberts et al. 2004), similar to locally con-
sistent parsing (Şahinalp and Vishkin 1996). We applied the min-
imizer-space concept to perform genome assembly of long and
accurate reads in minutes instead of hours—even for humans,
and hypothesized that other types of genome analysis tasks would
benefit from it in the future (Ekim et al. 2021). We now pursue the
intuition that readmappingwould also be amenable tominimizer-
space computation, but there are multiple algorithmic challenges
to overcome owing to the repetitive nature of genomes, biological
variation between samples and references, and sizable input data.

Two cornerstones of read alignment/mapping algorithms—
ubiquitous in sequence analysis pipelines—are the seeding and
chaining steps, inwhich each read is locally placed at a homologous
location in a reference genome. Seeding is performed by finding
pairs ofmatching seeds, which are snippets of DNAwith high-con-
fidence (exact or inexact) matches between a query and a reference
genome. Seeds are initialmatches that serve as anchoring points of
alignments: They allow a challenging instance to be split into a set
of easier subinstances by aligning only the shorter intervals
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between seeds. In the short-read era, state-of-the-art alignment algo-
rithms (e.g., BWA-MEM [Li 2013], Bowtie 2 [Langmead and Salzberg
2012], andCORA [Yörükoğlu et al. 2016; Shajii et al. 2021]) typically
relied on finding all possible seeds using a full-text index of the ref-
erence genome. For long reads, there has been a recent break-
through by sampling and indexing only a relatively small number
of short potential seeds from the reference genome, which has led
to faster and more accurate mapping tools, for example, minimap2
(Li 2018) and Winnowmap2 (Jain et al. 2022b). Chaining consists
of finding maximal ordered subsets of seeds that all agree on a cer-
tain genomic location (Jain et al. 2022a); seeds often have spurious
matches owing to their short lengths.

However, even the most recent long-read alignment tools are
bottlenecks in analysis pipelines (Berger and Yu 2023). For in-
stance, the popular minimap2 software requires 12 CPU hours to
map a typical PacBio HiFi data set to the human genome, and
Winnowmap2 requires 15 CPU days, preventing both real-time
analysis of sequencing data (Loose et al. 2016) and efficient reanal-
ysis of previously sequenced data collections (Edgar et al. 2022). A
significant part of the minimap2 and Winnowmap2 running
times are in their seeding and chaining steps (Kalikar et al.
2022). These state-of-the-art long-read alignment tools are sensi-
tive and accurate, but their underlying seed constructs (k-mers)
are tailored to noisy reads. These small seed sizes induce longer
computation times owing to themultiple potential mapping loca-
tions of seeds that need to be examined and filtered out. Recent ad-
vances in short-read alignment methods have shown that 98% of
many organism’s genomes are nonrepetitive and can be uniquely
aligned to with longer seeds (Edgar 2020). Therefore, it seems nat-
ural to explore the use of longer seeds also in long reads: This idea is
at the heart of our approach.

Here, we provide a highly efficient and accurate read map-
ping tool for state-of-the-art and low-error long-read data. We in-
troduce mapquik, which instead of using a single minimizer as a
seed for a reference sequence (e.g., minimap2) builds accurate
longer seeds by anchoring alignments throughmatches of k con-
secutively sampled minimizers (k-min-mers). Our approach bor-
rows from natural language processing in which the tokens of the
k-mers are the minimizers instead of base pair letters. We asked
whether long-readmapping can be sped up by newly substituting
k-mer seeds with k-min-mers that occur uniquely in the genome.
In this work, we evaluate the extent to which k-min-mers can act
as suitable seeds for accurate long-read alignment, as well as the
performance of mapquik in making use of them for HiFi-read
alignment. Our work represents the promise of unique, inexact
seeds, such as k-min-mers, for ultrafast long-read mapping and
beyond.

Results

Related work

minimap2 (Li 2018) is a de facto standard for mapping accurate
long reads to a reference genome. It applies a seed-and-extend
strategy. Specifically, seeds are short k-merminimizers, namely, se-
quences of length k that are lexicographically minimal within a
window of w consecutive k-mers. The extension step is performed
using an optimized implementation of the Needleman–Wunsch
algorithm (Needleman andWunsch 1970) with an affine gap pen-
alty. Several attempts have beenmade to improvemapping perfor-
mance compared to minimap2. Mashmap (Jain et al. 2018a) and
Mashmap2 (Jain et al. 2018b) compute read-versus-genome and

genome-versus-genome mappings without an alignment step
and use 5× less memory than minimap2 at the expense of longer
runtime. In very recent work developed concurrently to ours, the
aligner BLEND (Fırtına et al. 2023) uses strobemers (Sahlin 2021)
and locality-sensitive hashing (inspired by Şahinalp and Vishkin
1996) to speed up minimap2 end-to-end by about 2 ×; however,
their seeding approach is integrated into minimap2’s codebase,
which is implemented and optimized for exact short seeds (mini-
mizers by Roberts et al. 2004), thus suffering from similar limita-
tions (for the sake of completeness, we compare with BLEND in
Results).

Other works have focused on improving the sensitivity and
accuracy of minimap2, at the expense of speed. Winnowmap
(Jain et al. 2020) andWinnowmap2 (Jain et al. 2022b) use weight-
ed minimizer sampling and minimal confidently alignable sub-
strings to better align in highly repetitive regions, for example,
centromeres of chromosomes. Winnowmap2 is around 15×
slower than minimap2 end-to-end, yet uses around 3× less
memory.

In recent years, many research groups focusing on low-level
and/or hardware-specific acceleration have proposed ways to
accelerate minimap2. mm2-fast (Kalikar et al. 2022), a CPU accel-
eration of minimap2 developed by Intel, achieved a 1.5 × accelera-
tion over minimap2, end-to-end on HiFi reads. The bulk of the
speedup was obtained in the alignment phase, not in the seed-
ing-chaining phase (see Fig. 1 of Kalikar et al. 2022). The
domain-specific language Seq was developed to speed up genomic
sequence analysis and achieved two orders of magnitude improve-
ment in the homology table reconstruction of the CORA read
mapper (Yörükoğlu et al. 2016; Shajii et al. 2021).

There also exist efficient implementations that use special-
ized hardware. mm2-ax (Sadasivan et al. 2023), a recent GPU accel-
eration ofminimap2 developed by NVIDIA, achieved 2.5 × to 5.4 ×
acceleration over mm2-fast in the chaining step. Guo et al. (2019)
also proposed GPU and FPGA accelerations of minimap2 that, re-
spectively, achieve 7× and 28× speedups on the distinct task of de-
tecting pairwise read overlaps. These specialized hardware
accelerators are outside the scope of this work. Methods that accel-
erate short-read alignment, for example, using cloud computing
resources (Schatz 2009) or optimized k-mer indexing (Almodaresi
et al. 2021), are also not considered here, given that they do not
support long reads.

Why use k-min-mers as alignment seeds instead of k-mers?

To motivate why k-min-mers are superior alignment seeds, com-
pared with k-mers, for accurate long reads, we formulate and verify
the following two hypotheses: (1) Long exact k-mer seeds are inad-
equate for accurate long-read alignment owing to lack of sensitiv-
ity, whereas (2) k-min-mers are adequate and also offer near-
perfect specificity. An empirical analysis on actual HiFi reads
with an average error rate of 0.1% over the entire human genome
justifies these observations (Fig. 1). In the experiments that follow,
we compared Jellyfish (Marçais and Kingsford 2011), DSK (Rizk
et al. 2013), rust-mdbg (Ekim et al. 2021), and mapquik. All
code and data are available in the mapquik repository (see
“Software availability”).

To assess hypothesis 1, we examined the specificity of k-mers
and k-min-mers as seeds (Fig. 1, left) by recording their number of
occurrences in theCHM13v2.0 as a proxy for the number of poten-
tialmapping locations. The x-axis reports the seedweight, which for
k-mers corresponds to their length and for k-min-mers
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corresponds to ℓ× k, namely, the total number of bases in the k-
min-merminimizers. As indicated by the plot, k-mer seeds have ei-
ther toomanymatches in the reference (from tens to thousands in
the k=10–100 range) or too few (below one match for k> 300).
Notably, minimap2 uses a default k value of 19 for HiFi reads, re-
flecting that it has to sift through hundreds of false matches for
each read on average. On the other hand, k-min-mers have or-
ders-of-magnitude fewer potential matches to examine, on aver-
age, one to tens depending on k, owing to their longer lengths
being less affected by genomic repetition.

To verify hypothesis 2, we showed that selecting all the
k-min-mers that are seen only once in the reference genome is a
viable indexing strategy (Fig. 1, right). Indeed, the reads have, on
average, 1.05–1.30 candidate reference genome locations when
all their k-min-mers are queried on such an index. This finding
hints that a readmapping algorithm based on k-min-mers is likely
to immediately identify the correct genome location by querying
all read k-min-mers, only paying attention to those that occur
once in the genome. This algorithmpotentially would not even re-
quire a subsequent chaining step, given the low number of false
matches to remove. This is in stark contrast with existing k-mer-
based algorithms, for which colinear chaining removes hundreds
of false seed matches per read.

Overview of minimizer-space read mapping with mapquik

To allow computation in minimizer space (Fig. 2), we here
develop mapquik, a read mapper based on k-min-mer seeds.
mapquik follows a seed-and-extend strategy used by most read
mappers, with two exceptions: (1) Only the k-min-mers that ap-
pear exactly once in all reference sequences are indexed (Fig.
2E,F), and (2) unlike a typical colinear chaining procedure that
makes use of a dynamic programming formulation (Fig. 2A–D),
for example, in minimap2 (Li 2018), a linear-time recursive ex-
tension step is performed for each initial k-min-mer match be-

tween the query and the reference, followed by a novel,
provably linear-time step we call pseudochaining that ensures k-
min-mer matches are approximately colinear. Figure 2, G
through I, depicts the idea behind our pseudochaining algo-
rithm. Given a set of maximal k-min-mer matches, we chain
only the k-min-mer matches that are colinear with the match
with the highest score (k-min-mer count). Unlike the DP formu-
lations used in regular colinear chaining, this step can be per-
formed in linear time by identifying the k-min-mer match with
the highest score and by checking colinearity with the other
matches through a linear scan. Note that the matches in the out-
put chain after this step are not guaranteed to be pairwise colinear;
however, thanks to the low number of k-min-mer matches, pseu-
dochaining performs adequately in practice while offering a sub-
stantial speedup over classical colinear chaining. The philosophy
behind these drastic changes is that mapping long and accurate
reads to close reference genomes is “easy enough” that long min-
imizer-space seeds are sufficient for the vast majority of the reads.
The remaining few unmapped reads can, in principle, be fed to a
more sensitive, albeit slower, read mapper such as minimap2 or
Winnowmap2 (see Discussion).

Data sets and mapping evaluation

We used the complete human reference genome CHM13v2.0 for
our evaluations. We constructed a simulated data set of long reads
with 99% base-level accuracy and 24-kbp mean length using
PBSIM (Ono et al. 2013),mimickingHiFi reads at 10 × genome cov-
erage. We also used real HiFi reads for the HG002 individual cor-
rected using DeepConsensus (Baid et al. 2023) at 30× genome
coverage. For maize, we simulated reads from the maize RefSeq ge-
nome (GCF_902167145.1) at 30 × coverage using the same proto-
col as the human simulated reads. mapquik was run with default
parameters (k=5, ℓ=31, δ=0.01, β=4, μ=11, 1 = 2000); we pro-
vide an extensive evaluation of the parameters k, ℓ, and δ in

Figure 1. Increased sensitivity and specificity of k-min-mers versus long k-mers. Both panels use the human reference genome CHM13v2.0 and the
HG002 DeepConsensus HiFi reads. (Left) Each continuous line indicates the median abundance of read k-mers (darker blue line) and k-min-mers (lighter
orange line) in the reference, averaged across all reads (the closer to one, the better). The vertical dashed darker blue line (respectively, the lighter orange
line) corresponds to the seed length chosen by minimap2 (respectively, by mapquik). The median is computed from a random subsample of 50,000
HG002 reads. (Right) Average number of reference genome locations indicated by seed matches for each read using k-min-mers (the closer to one, the
better). k-min-mer parameters are ℓ=31, δ=0.01 with k=2–10 (left) and 2–15 (right). Regular k-mer lengths are k=12–500.
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Figure 2. Overview of the long-read mapping pipeline using mapquik and comparison with state-of-the-art methods using minimizers as seeds. State-of-
the-art readmappers such as minimap2 andWinnowmap2 (top; pink-shaded) build an index for a reference sequence by computing windowminimizers (k=
3, w=5; A) and by storing the positions of the minimizers in the index (B). To map a query sequence using the reference index (top right; nucleotide C in blue
denotes a sequencing error),mappers compute theminimizers on the query sequence (C) and findmatches between theminimizers of the query and those in
the reference index. Onceminimizermatches are found,minimap2 andWinnowmap2 perform a colinear chaining step to output a high-scoring set ofmatch-
es, using dynamic programming (D). In contrast, mapquik (bottom; green-shaded) indexes reference sequences by generating k-min-mers, k consecutive, ran-
domly selected minimizers of length ℓ (k=3, ℓ=2; E) and storing only the k-min-mers that appear exactly once in the reference (F). mapquik stores the start
and endpositions of each k-min-mer, alongwith the order inwhich the k-min-mers appear. Tomap a query sequence using the k-min-mer index,mapquik first
obtainsmatches between the query and the reference index byquerying the indexwith eachquery k-min-mer (G). k-min-mermatches are extended if the next
immediate pair of k-min-mers also match (H). Instead of a colinear chaining step, mapquik performs a linear-time pseudochaining step to locatematches that
are colinear with the match with the highest number of k-min-mers (I).
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Supplemental Note S8 and Supplemental Figure S3 and of β and μ
in Figure 3. All other tools were runwith default parameters in HiFi
mapping mode. Command lines and versions are given in
Supplemental Note S2.

For simulated reads, we assessed mapping accuracy using the
mapeval command of the paftools software distributed in the
minimap2 package. A read is considered to be correctly mapped
if the intersection between the true and mapped reference inter-
vals is at least 10% of their union. For real reads, we evaluated
the concordance between the alignments of minimap2 and
mapquik using a custom script (experiments/intersect_pafs.py
in the GitHub repository) (Supplemental Code), similar to
mapeval. In our evaluation of both the simulated and real data
sets, we focus on reads of the highest mapping quality (Q60).
Mappers report a mapping quality metric for each read, indicating
their confidence that the read is mapped at the right location, as
an integer between zero and 60, where 60 corresponds to the high-
est confidence. Reads with low mapping quality are less frequent
and are often removed in downstream applications (e.g., the pop-
ular variant-calling pipeline GATK filters out reads with MAPQ≤20
by default) (McKenna et al. 2010). With minimap2 results,
mapeval reports only two mapping quality groups (Q0 and
Q60), with no value between. With mapquik, we report a MAPQ
of 60 if the output pseudochain has score ≥μ or length ≥β, and
zero otherwise.

Mapquik achieves faster and accurate mapping of HiFi reads

to the human and maize genomes

Table 1 shows the enhanced overall performance of mapquik and
other evaluated methods (minimap2, mm2-fast, Winnowmap2,
and concurrently developed BLEND) on mapping simulated and
real PacBio HiFi reads to the human and maize genomes. We

show mapquik’s 37× and 975× relative speedup over the state-
of-the-art mapping methods minimap2 and Winnowmap2, re-
spectively, for both simulated and real HiFi reads from the human
genome. We further apply mapquik to mapping simulated
HiFi reads from the highly repetitive maize genome and show a
410× speed-up over minimap2, with no loss of sensitivity nor
accuracy.

On the simulated human data set, mapquik is 54× faster than
minimap2. mapquik maps 95.8% of reads at a MAPQ score of 60
(Q60), indicating a high-confidence match, with two errors. In
contrast, other mappers map 96.1%–98.6% of reads at Q60 with
also no/almost no error. On the real data set fromHG002, a similar
trend is observed. mapquik outperforms all mappers except
Winnowmap2 in terms of percentage of reads mapped (96.1%),
as opposed to 92.2%–97.9% for the other tools. The concordance
of minimap2 and mapquik mappings is 99.8% on the Q60 reads
mapped by minimap2. In Supplemental Table S1, we provide the
fraction of the reference genome covered by each tool for all exper-
iments. All mappers required less than 14 GB of memory on the
human genome (MashMap2 was not further evaluated as it took
more than 13 wall-clock hours on the simulated human data set
and does not output mapping quality scores).

A highlight of mapquik is a 410× mapping speedup com-
pared with minimap2 on the maize genome. Notably, this
speedup comes with near-perfect precision for mapquik and no
loss of sensitivity, as mapquik reports the second highest number
of mapped reads at mapping quality 60 across all tools after
Winnowmap2. Of note, Winnowmap2 has a faster performance
on maize than the human genome and than that of minimap2
on the maize genome.

We further investigated why some reads weremapped at lower
qualities than Q60 or were not mapped at all. Out of 58,004 reads
from the simulated human data set that were not mapped at Q60

Figure 3. Effect of pseudochain score on mapping accuracy. The x-axis in both subfigures corresponds to the score of the maximal pseudochain
per read; on the left, the y-axis denotes the total number of reads with the corresponding maximal pseudochain score; on the right, the percentage of
reads that are correctly mapped (assessed by paftools mapeval) with the corresponding maximal pseudochain score. Only the scores below a thresh-
old s, where s denotes the maximum score at which a read was mapped incorrectly, are plotted. The parameters used for mapquik were k = 5–8, ℓ =
31, δ = 0.01.
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bymapquik, 94.4% of these reads intersected with centromeric/sat-
ellite regions of chromosomes, as reported by BEDTools (Quinlan
and Hall 2010) using the chm13v2.0_censat_v2.0.bed annota-
tion from the Telomere-to-Telomere (T2T) Consortium. Thus, the
vast majority of reads not aligned at Q60 correspond to challenging
genomic regions that would likely have been masked in down-
stream analyses, making their lack of alignment potentially incon-
sequential. We hypothesize that similar conclusions hold on real
data, but this cannot be ascertained as the true reference interval
of each read is not known.

Efficient genome indexing using k-min-mers

Table 2 shows the computing resources necessary to index a hu-
man genome for mapquik compared with minimap2, mm2-fast,
Winnowmap2, and the concurrently developed BLEND.
Although indexes created by the alternative mapping methods
to mapquik are different in nature, a similar order of magnitude
of numbers of sequences (tens to hundreds of millions) end up be-
ing indexed. minimap2 and mm2-fast index positions of win-
dowed minimizers. Those minimizers are different from the (ℓ,
δ)-minimizers defined in this article. Winnowmap2 indexes
weighted minimizers to increase the accuracy of seeds. BLEND
(in HiFi mapping mode) indexes a locality-sensitive seed built
from strobemers (Sahlin 2021), which are chains of consecutive
windowed minimizers (Roberts et al. 2004), different in nature
from k-min-mers.

mapquik indexing is 9 × faster than minimap2 and 6× faster
than BLEND. Themapquik seeding strategy provides ultrafast con-
struction of an index that records unique k-min-mer positions
across the reference genome. This index is of independent interest,
for example, for indexing larger databases such as RefSeq (Li et al.
2021). We anticipate that this index will have other uses beyond
long-read mapping, such as large-scale sequence search. We have
already shown the usefulness of performing a k-min-mer search
in antimicrobial-resistance tracking (Ekim et al. 2021), albeit in

earlier work that did not benefit from the speedup of such an index
presented here.

Comparison with BLEND

While concurrently developed, we compare with BLEND in
Tables 1 and 2 for completeness and show that mapquik achieves
a 7 × speedup overall (indexing plus chaining) over BLEND on hu-
man data.

Robustness of mapping shorter reads with mapquik

Wenext asked howmapquik would perform on smaller reads than
those offered by HiFi, which are currently available for lengths
ranging from 10–25 kbp. Future technologies may also offer long
high-accuracy reads, although HiFi is currently the only high-
throughput solution available. To determine whether mapquik is
also suitable for mapping HiFi reads <24 kbp, we tested mapquik
on other data sets with overall shorter reads using both real and
simulated data. To assess mapquik’s robustness in mapping reads
of varying length, we ran mapquik on real HG002 HiFi 16-kbp
length reads from DeepConsensus (Baid et al. 2023), using identi-
cal parameters as in the run with 24-kbp read length. mapquik’s
performance on 16-kbp reads is similar to that on 24-kbp reads:
The running time increased by only 4%; memory usage remains
nearly identical; and the concordance with minimap2 remains
99.8%.

To determine if mapquik is still robust to larger variation in
read length, we simulated seven samples with 10× coverage from
CHM13, using the same protocol, except that a different average
read length is selected for each sample (from 2 kbp–14 kbp, by
2-kbp increments). Supplemental Figure S2 reports that both
minimap2 andmapquikmap >93% of the reads at Q60 in samples
having read lengths of ≥10 kbp, without tuning their parameters.
Both minimap2 and mapquik are challenged by read lengths of 2
kbp;with their default HiFi parameters, they respectivelymap 89%
and 27% of the reads at Q60. Note that mapquik maps 63% of the

Table 1. Mapping statistics of mapquik and other evaluated methods (minimap2, mm2-fast, Winnowmap2, BLEND) on simulated and real HiFi
human reads, and simulated maize HiFi reads

Tool name Mapped Q60 Q<60 or missed Wrong Q60 Memory (GB) Time (sec) Speedup

CHM13 10× coverage simulated 24-kbp HiFi reads
minimap2 1,340,993 27,819 0 13.1 978 1.00
mm2-fast 1,340,993 27,819 0 13.1 805 1.21
Winnowmap2 1,350,016 18,796 6 11.8 21,009 0.05
BLEND 1,315,676 53,136 1 6.8 188 5.20
mapquik 1,310,808 58,004 2 12.2 18 54.33

HG002 30× coverage real 24-kbp HiFi reads (DeepConsensus)
minimap2 3,611,990 303,304 N/A 10.8 3146 1.00
mm2-fast 3,611,983 303,311 N/A 10.8 2693 1.17
Winnowmap2 3,835,225 80,069 N/A 8.8 83,180 0.04
BLEND 3,708,582 206,712 N/A 6.0 626 5.03
mapquik 3,760,677 154,617 N/A 12.1 85 37.01

Maize 30 × coverage simulated 24-kbp HiFi reads
minimap2 2,807,058 58,730 1 15.1 17,194 1.00
mm2-fast 2,807,059 58,729 1 15.0 14,693 1.17
Winnowmap2 2,854,041 11,747 93 14.1 15,376 1.12
BLEND 2,836,244 29,544 5 4.8 349 49.27
mapquik 2,837,524 28,264 2 13.1 42 409.38

Only reads with reported mapping quality of more than 60 were included in columns 1 and 3. Incorrectly aligned reads were detected using paftools
mapeval. The “time” column consists of wall-clock times and includes on-the-fly reference indexing. Reads were ungzipped. Tools were run on 10
threads. For Winnowmap2, the time for reference k-mer counting (meryl) was not included. The last column indicates the speedup over minimap2
taken as a baseline.
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remaining 2-kbp reads atQ0, with a lowmapping error rate (1%) as
reported by mapeval. We expect mapquik has more difficulty
mapping these 2-kbp reads owing to its longer seed weight than
minimap2.

Limitations of our study

We evaluated the limitations of ourmethodwith respect to several
aspects: the choice of k, internal cut-off parameters, and the re-
quirement of having low divergence between the reads and the
reference.

As seen in Table 1, mapquik is unable to map some of the
reads, mostly in low-complexity regions of the genome, partially
because no indexed k-min-mer exists but also because of the lack
of a long enough (i.e., high-scoring) pseudochain. We examined
themagnitude of the second effect. Figure 3 (left) shows the total
number of reads (y-axis) whose highest pseudochain score is giv-
en on the x-axis. Read numbers follow approximately a Gaussian
distribution, confirming the soundness of filtering out
the leftmost tail containing erroneous pseudochains. Figure 3
(right) depicts filtering thresholds by showing the percentage
of reads mapped correctly (y-axis) at each pseudochain
score per read (x-axis), depending on the choice of k. The mono-
tonically increasing relationship suggests that the pseudochain
score is a reliable proxy for evaluating mapping accuracy.
Mapping accuracy plateaus around pseudochain scores of nine
to 11. In our implementation, we apply a threshold of pseudo-
chain score ≥μ, with μ = 11 by default (Algorithm 3 in
Supplemental Note S1).

The mapping performance of mapquik degrades markedly
when identity between reads and the reference is <97%, and
<1% of the reads are mapped at Q60 for identities <93%
(Supplemental Fig. S1). Therefore,mapquik is not suitable formap-
ping PacBio CLR reads at all and potentially also Oxford Nanopore
reads until base-calling consistently reaches identity levels >98%.
Remarkably, the mapping error rate at Q60 remains negligible at
all identity levels.

Discussion

Our work shows that minimizer-space computation can be suc-
cessfully applied to read mapping, and overcomes a significant
barrier to real-time analysis of sequencing data that simply using
longer k-mers or minimizers as seeds cannot. We show for the
first time that indexing only the long minimizer-space seeds
(k-min-mers) that occur uniquely in the genome is sufficient
for sensitive and specific mapping. By leveraging the high specif-
icity of these seeds, we are able to devise a provably O(n) time

(heuristic) pseudochaining algorithm, which improves upon
the subsequent best O(n log n) runtime of all other known colin-
ear chaining methods (Jain et al. 2022a), without loss of perfor-
mance in practice.

We previously used minimizer-space computation for fast
and accurate genome assembly; however, long-readmapping is en-
tirely different as no de Bruijn graph is constructed. This work thus
establishes the versatility of k-min-mers in algorithms for biologi-
cal sequences. As sequencing reads are getting longer andmore ac-
curate, we anticipate that our approach will particularly benefit
from technological advances: Longer readswill be increasingly eas-
ier to map with minimizer-space seeds.

A potential concern with providing a faster alignment meth-
od is the loss of sensitivity in “hard-to-map” regions, such as cen-
tromeres or structural variant breakpoints. In Supplemental Note
S9 and Supplemental Figures S4 and S5, we investigated themissed
genomic regions by both minimap2 and mapquik and found that
they overlap by >90%.One could partiallymitigate this concern by
performing a conservative, but fast alignment of reads using map-
quik and by remapping the unmapped reads with minimap2 or
Winnowmap2 to increase alignment sensitivity while keeping
the efficiency of mapquik. Another possible direction would be
to use a pangenomic reference to provide more indexable k-min-
mers.

Future extensions of this work include implementing base-
level alignment, which will allow the design of a complete
single-nucleotide variant–calling pipeline, as well as one with
structural variant–calling built on top ofmapquik. Currently,map-
quik is directly usable for quickly finding genomic positions of
HiFi reads, which enables many downstream applications such
as sorting reads by genome position, separating them by chromo-
some, filtering nonhuman reads, etc. Because the k-min-mer
matches have k exact matches of minimizers of length ℓ, only
the regions between minimizers and between neighboring k-
min-mer matches would need to be aligned, which potentially
lowers both the memory usage and runtime of the alignment
step. Another potential improvement to mapquik would be to re-
fine the mapping quality scores, in light of the observations made
in Figure 3 that the pseudochain score reliably tracks mapping ac-
curacy. We expect minimizer-space computation to further miti-
gate challenges in other sequencing data analysis tasks, such as
sequence-to-graph alignment, metagenomic binning, and similar-
ity search.

Methods

Although Figure 2 and Algorithm 1 describe the steps of mapquik,
we go into more detail below.

Table 2. Indexing a reference human genome using mapquik and other evaluated methods (minimap2, mm2-fast, Winnowmap2, BLEND)

Tool name Indexed sequences Singletons Memory (GB) Wall-clock (sec)

minimap2 215,125,355 92% 10.1 33
mm2-fast 215,125,355 92% 10.1 28
Winnowmap2 23,616,987 41% 2.6 64
BLEND 111,799,540 97% 5.3 23
mapquik 39,603,738 100% 12.1 3.4

The CHM13v2.0 reference sequence was given as input to each tool. Tools were run using 10 threads with a warm cache; namely, the reference
genome file was already preloaded in memory. The “indexed sequences” column indicates the number of distinct sequences that are keys of the final
index. The “singletons” column indicates how many indexed sequences have only one position in the reference genome.
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Algorithm 1. The mapquik algorithm

Input: A collection of reference sequences R and a collection of
query sequencesQ. We assume global parameters k, ℓ, δ, 1, μ, β, f,
and φ are predefined.
Output: Query-to-reference mappings S.
1: function MAP(R, Q)
2: I← {} ⊲ Empty hash table of reference k-min-mers
3: L← {} ⊲ Empty hash table of sequence lengths
4: S← {} ⊲ To store mapping results
5: for r∈R do
6: Xr←EXTRACT(r) ⊲ Extract k-min-mers from reference se-

quence into a list
7: L[rID]← |r| ⊲ Store length of r
8: for every xir [ Xr do
9: if wi

r is not a key in I then
10: I[wi

r ] � (rID, sir , e
i
r , p

i
r , ir) ⊲ Record the reference ID

rID and tuple of xir
11: else I[wi

r ] � () ⊲ Assign empty entry
12: for q∈Q do
13: L[qID]← |q| ⊲ Store length of q
14: Xq←EXTRACT(q) ⊲ Extract k-min-mers from query se-

quence into a list
15: H←MATCH(Xq, I, qID) ⊲ Generate maximal k-min-mer

matches
16: S [q]←PSEUDOCHAIN(H, qID, L, 1, m, b) ⊲ Create pseudo-

chain from k-min-mer matches
17: return S

Methodological formalization

For a fixed integer ℓ>1, let f :Sℓ 7! [0, H] be a random hash func-
tion that maps strings of length ℓ to integers between 0 and H.
In practice, we use a 64-bit hash function. Moreover, we require f
to be invariant with respect to reverse-complements; namely, an
ℓ-mer and its reverse complement map to the same integer. For a
density 0 < δ<1, we define Uℓ,δ as the set of all ℓ-mers m with f
(m) < δ ·H. We refer to the elements of Uℓ,δ as (ℓ, δ)-minimizers.
Note that whether an ℓ-mer is a (ℓ, δ)-minimizer does not depend
on any sequence besides the ℓ-mer itself.

Let S be a sequence of length≥ℓ.Wedefine itsminimizer-space
representation MS as an ordered list of (ℓ, δ)-minimizers that appear
in S. Because the contents of Uℓ,δ only depend on f, and as long as
the same hash function f is used,MS will always be a subset of Uℓ,δ.
We omit S from the subscript when it is obvious from the context.

LetM be aminimizer-space representation of S, and let k>0 be
a fixed integer parameter. We define a k-min-mer xi of S as an or-
dered list of k consecutive minimizers in M starting from index i;
namely, xi= (mi, …, mi+k−1). We denote the ordered list of all k-
min-mers (x0, …, x|M|−k) of S as XS. We omit S from the subscript
when it is obvious from the context.

To avoid explicitly storing nucleotide sequences of minimiz-
ers, we use a random hash function φ that maps sequences of k ℓ-
mers to 64-bit hash values. We define φ so that it is invariant to re-
versing the order of the k-min-mer; namely, φ(xi) = φ(REV(xi)),
where REV(xi) denotes the list of minimizers of xi with the order
reversed. This is achieved by hashing xi and REV(xi) and by taking
φ(xi) to be the minimum value.

Then, instead of storing X as an ordered list of k-min-mer se-
quences, we store the ith k-min-mer xi of X as a tuple
(i, fi, si, ei, pi), where

• i is the rank of xi in X,
• φi= φ(xi),

• si and ei the nucleotide start and end positions of xi, namely, the
start position ofminimizermi and the end position ofminimizer
mi+k−1, respectively, on S, and

• πi a Boolean variable that evaluates to 1 if, in the construction of
φ, the hash of REV(xi) was smaller than that of xi, and 0
otherwise.

We call this the tuple of xi. When the sequence S is not obvious
from the context, we add it as a subscript in the above notation, for
example, pi

S. The hash functions f and φ are instantiated before
constructing the k-min-mer lists for the input sequences. We con-
sistently use the same functions f and φwhen selectingminimizers
and consequently building k-min-mer lists for both the reference
and query sequences throughout.

Indexing reference sequences

The mapquik index I is a hash table that associates a k-min-mer x to
its unique position in the reference genome, whether or not it ap-
pears reverse-complemented, and its rank in the list of k-min-mers
X. As described in the section “Methodological formalization,” this
information is represented by a tuple in the form (rID, s

i, ei, πi, i).
We construct I using a two-pass approach. First, we call the EXTRACT
function. It builds the listX by a linear scan through the reference se-
quence, during which it identifies minimizers and outputs each k
consecutive minimizers, together with their hash values. We use
the same efficient algorithm as rust-mdbg (Ekim et al. 2021), which
runs inO(|X|) time, sowe do not include the pseudocode for EXTRACT
here. Second, we load every entry ofX into a hash table I, indexed by
the hash value. In this step, we discard from I any k-min-mer that ap-
pears in more than one reference location. Therefore, the hash table
holds a single value per distinct k-min-mer key.

Locating and extending query-to-reference k-min-mer matches

Informally, a k-min-mer match is a stretch of k-min-mer seeds that
appear consecutively both in the reference and in the query (under
the hash function used). Note that all matches are unique, in the
sense that all seed k-min-mers appear only once in the genome,
by definition. Given a query q and a reference r, we formally define
a match as a triple (i, j, c) such that 0≤ i≤ |Xq|− c, 0≤ j≤ |Xr|− c, c≥
1, and, for all 0≤ c

′
< c, wi+c′

q = w
j+c′
r . A match (i, j, c) is said to be

maximal if it cannot be further extended to the right or left, name-
ly, (1) either i=0, j=0, or wi−1

q = w
j−1
r and (2) either i+ c= |Xq|, j+ c=

|Xr|, or wi+c
q = w

j+c
r .

For each query q, themapquik algorithm first builds the list of
k-min-mers Xq sorted in increasing order of location (line 14).
Then, it runs the MATCH routine (line 15), which finds all maximal
matches between q and the reference. MATCH works by scanning
through Xq and, for each seed x∈Xq, using the reference index I
to see if x exists in the reference. If it does, then it marks the start
of a match and proceeds to extend the match to the right as long
as the seeds continue to match. Because we only have to query
the index with the hash value of each k-min-mer in Xq, the exten-
sion procedure can be performed during a single linear pass over
the elements of Xq and thus takes O(|Xq|) time [assuming O(1)
hashing, look-ups, and insertions]. Caremust be taken owing to re-
verse complements, which can change the direction of matching,
but we omit these details. For completeness, the full algorithm
(Algorithm 2) and the proof of maximality of k-min-mer matches
(Supplemental Note S7) are in the Supplemental Material.

In theory, generating a single 64-bit hash value for each
unique k-min-mer could lead tohash collisions and, consequently,
lead to false k-min-mer matches. However, because a k-min-mer
match can only be extended with a consecutive k-min-mermatch,
k-min-mers that match an entry in the reference owing to a hash
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collision are likely to be singletons and get filtered out in the pseu-
dochaining step, with no decrease in final accuracy.

From maximal k-min-mer matches to pseudochains

Recall that k-min-mer matches are extended based solely on
whether the next immediate k-min-mer of qmatches the next im-
mediate k-min-mer of r. However, k-min-mer matches on q might
occur in multiple nonoverlapping positions on r (owing to se-
quencing errors or biological variation in q); namely, for two
matches (i, j, c) and (i

′
, j

′
, c

′
) between q and r, it is not necessarily

true that |i− j| = |i
′
− j

′
|.

To output a list of matches that are likely to be true positives
while avoiding a computationally expensive dynamic program-
ming procedure, mapquik uses a pseudochaining procedure that
finds k-min-mer matches between a query q and a reference r
that are gap-bounded colinear but not all pairwise colinear.

Concretely, let h= (i, j, c) and h
′
= (i

′
, j

′
, c

′
) be twomatches, and

consider the coordinates (sq, eq, π) and (sr, er, π) of, respectively, the
first and last k-min-mers of h, as well as (s′q, e

′
q, p

′) and (s′r , e
′
r , p

′) for
the k-min-mers of h

′
. Let g>0 be a fixed-integer gap upper bound.

We say that h and h
′
are gap-bounded colinear if

• the matches are on the same relative strand; namely, π= π
′
;

• the reference start positions of the matches agree with the order
of the matches; namely, if π=0, sr , s′r , or if π= 1, s

′
r , sr ; and

• the length of the gap between the two matches in the query is
similar to that on the reference; namely, if π=0,
|(s′q − eq)− (s′r − er)| , g, or if π= 1, |(s′q − eq)− (sr − e′r)| , g.

This last gap length difference condition, on top of the tradi-
tional definition of colinearity (the first two conditions), ensures
that the regions outside thematches are similar in length. A similar
parameter (e) is used in minimap (Li 2016).

Let H be the list of all maximal k-min-mer matches between a
read q and a reference sequence r. We define a pseudochainΨi as the
list of all matches inH that are colinear with the ithmatch inH; we
say thatΨi is anchored at i. Note that even though everymatch inΨi

is colinear with the ith match in H, it is not necessarily true that
every pair of matches in Ψi are pairwise colinear; thus, Ψi does
not satisfy the criteria of chains as defined in other works (e.g.,
Li 2018).

The score of a pseudochain Ψi is the number of matching k-
min-mers in Ψi; namely,

SCORE(Ci) =
∑

h[Ci

c(h),

where c(h) denotes the number of matching k-min-mers in match
h. Because the maximal matches in Ψi are guaranteed to not share
any query k-min-mers because both the start and end locations of
eachmaximal match are distinct, the cumulative sum of the num-
ber of matching k-min-mers in each match in Ψi equals the num-
ber of total matching k-min-mers in Ψi.

Computing high-scoring pseudochains in linear time

We now introduce a novel algorithm for computing a single high-
scoring pseudochain Ψ∗ for a query q given a list of maximal
matches, and prove that it runs inO(n) time. Thematch extension
step outputs a hash tableH ofmaximal k-min-mermatches per ref-
erence, indexed by their reference identifier. In the pseudochain-
ing step, however, the objective is to output a single list of
matches between q and a single reference, even though H might
contain matches between q and more than one reference se-
quence. We first initialize C∗ = [], and iterate over the key-value
tuples in H, processing each list of maximal matches Hq,r for a sin-

gle reference r one by one. In every iteration, we obtain a candidate
pseudochainΨq,r from the list ofmaximalmatchesHq,r by comput-
ing the pseudochain anchored at the match in Hq,r with the high-
est number of matching k-min-mers. After computing Ψq,r, we
compare its score to that of Ψ∗, and replace Ψ∗ with Ψq,r if
SCORE(Ψq,r) > SCORE(Ψ∗). At the end of the loop, Ψ∗ will be the
highest-scoring pseudochain out of all possible candidate pseudo-
chains per reference sequence in H.

Finally, if the pseudochain Ψ∗ has score ≥μ or length ≥β,
where μ and β are user-defined parameters, we retrieve the query
and reference coordinates of the region covered by the matches
inΨ∗. The final query and reference coordinates for a mapping be-
tween query q and reference r are computed by extending the start
and end coordinates of the first and last matches in Ψ∗ to the
length of the query. In the Supplemental Material, Algorithm 3
provides a complete description of the pseudochaining procedure,
and Algorithm 4 describes the coordinate computation step.

Proof of pseudochaining algorithm’s complexity

The complexity of computing pseudochain Ψi for each read q is as
follows. Let n be the total number of matches in H. To determine
Ψ∗, each candidate pseudochain Ψq,r for a single reference se-
quence r needs to be computed. Computing a single pseudochain
Ψq,r requires determining the match with the highest number of
matching k-min-mers and comparing each match in Hq,r to this
match, which can both be performed in Θ (|Hq,r|) time.
Moreover, every single candidate pseudochain (for every reference
in H) needs to be computed to determine Ψ∗. Then, the running
time of the pseudochaining procedure is Q(

∑
r[H |Hq,r |). Note

that |Hq,r|≤n, and the number of reference sequences that appear
inH is upper bounded by the total number of reference sequences,
which is O(1). Hence, the pseudochaining procedure runs in O(n)
time, where n is the total number of matches in H.

Note that colinear chaining (as implemented by state-of-the-
art read mappers) has an asymptotic complexity of O(n logn). We
also implemented two alternative heuristics that (1) compute c
pseudochains anchored at c matches with the highest number of
k-min-mers [thus running inO(cn) time], and (2) set c=n and com-
pute all possible pseudochains [thus running in O(n2) time].
However, we observed that the runtime of the O(n) pseudochain-
ing procedure is faster in practice: In our tests, the O(n) pseudo-
chaining procedure performed � 20%− 50% faster than the
other heuristics, with little decrease in accuracy.

Software availability

The data and source code are freely available at GitHub (https://github
.com/ekimb/mapquik) under the MIT License and as Supplemental
Code.
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