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Multiple sequence alignment (MSA) is a critical step in the study of protein sequence and function. Typically, MSA algo-

rithms progressively align pairs of sequences and combine these alignments with the aid of a guide tree. These alignment

algorithms use scoring systems based on substitution matrices to measure amino acid similarities. Although successful, stan-

dard methods struggle on sets of proteins with low sequence identity: the so-called twilight zone of protein alignment. For

these difficult cases, another source of information is needed. Protein language models are a powerful new approach that

leverages massive sequence data sets to produce high-dimensional contextual embeddings for each amino acid in a sequence.

These embeddings have been shown to reflect physicochemical and higher-order structural and functional attributes of ami-

no acids within proteins. Here, we present a novel approach to MSA, based on clustering and ordering amino acid contex-

tual embeddings. Our method for aligning semantically consistent groups of proteins circumvents the need for many

standard components of MSA algorithms, avoiding initial guide tree construction, intermediate pairwise alignments, gap

penalties, and substitution matrices. The added information from contextual embeddings leads to higher accuracy align-

ments for structurally similar proteins with low amino-acid similarity. We anticipate that protein language models will be-

come a fundamental component of the next generation of algorithms for generating MSAs.

[Supplemental material is available for this article.]

Multiple sequence alignments (MSAs) underlie much of sequence
analysis in computational biology. Protein MSAs are the main in-
put to algorithms for reconstructing gene and species trees
(Felsenstein 2004); for identifying conserved (Capra and Singh
2007), co-evolving (Marks et al. 2011), specificity-determining
(Capra and Singh 2008), and positively selected sites (Miyata and
Yasunaga 1980); for building protein motif and domain represen-
tations (Sonnhammer et al. 1998); and for predicting de novo pro-
tein structural features (Rost and Sander 1994) and full protein
structure prediction (Jumper et al. 2021). Highly accurate MSAs
are necessary, as misaligned amino acids can lead to incorrect in-
ferences for this wide range of downstream tasks. However,
when the average sequence identity among the sequences to be
aligned is low, most MSA methods struggle to obtain high-quality
alignments (Nute et al. 2019); sequence identity below 20%–35%
has been termed the “twilight zone” of alignment (Rost 1999).

Over the past 40 years, numerous algorithms for obtaining
MSAs have been developed and refined, including CLUSTAL
(Sievers et al. 2011), MAFFT (Katoh and Standley 2013), Muscle
(Edgar 2004), T-Coffee (Notredame et al. 2000), ProbCons (Do
et al. 2005), Saté (Liu et al. 2012), and PASTA (Mirarab et al.
2015), amongothers. The predominant approach to alignmultiple
sequences is to first align pairs of sequences and then progressively
combine these subalignments into larger alignments in an order
determined by a guide tree (Feng and Doolittle 1987). Pairwise
alignment algorithms (Needleman and Wunsch 1970; Smith and
Waterman 1981) uncover a highest scoring alignment between
two sequences when given a similarity measure between all pairs

of amino acids and a gap penalty function. Similarities between
each pair of the 20 amino acids are typically based upon substitu-
tion matrices that encapsulate the frequency with which amino
acid pairs are observed in equivalent positions across large data
sets of alignments of homologous sequences (Dayhoff et al.
1978; Altschul 1991; Henikoff and Henikoff 1992). Although in
theory optimal pairwise alignment algorithms can be adapted to
multiple sequences, the runtime would be exponential in the
number of sequences, and further, it is not clear how to score mul-
tiple amino acids in a single aligned column. Instead, guide tree–
basedMSA approaches are heuristics that optimally combine pairs
of alignments in which the similarity of a pair of columns in two
different alignments is computed based on substitution matrix
scores of the amino acids within the columns. Alternatively, con-
sistency-based progressive MSA approaches use similarity scores
that consider how frequently pairs of amino acids in two different
sequences are aligned to the same amino acid position in other se-
quences when considering optimal pairwise alignments (Notre-
dame et al. 1998, 2000).

Here, we consider a new approach to determining the similar-
ities between amino acids across proteins, based on protein lan-
guage models (Rao et al. 2019; Bepler and Berger 2021; Rives
et al. 2021; Chowdhury et al. 2022; Elnaggar et al. 2022). Protein
language models are “self-supervised” deep learning language
models that have been pretrained on large compendia of protein
sequences, generally trained to predict “masked” amino acids
within input protein sequences based on the rest of the sequence.
Once trained, these models embed each amino acid within a pro-
tein sequence as a high-dimensional vector, and importantly,
these vectors capture the sequence “context” of each amino
acid. Machine learning models using these embeddings have
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been successfully trained to predict
many protein structural and functional
features, including conservation (Mar-
quet et al. 2022), ligand binding (Litt-
mann et al. 2021), homology (Rives
et al. 2021; Heinzinger et al. 2022), and
subcellular localization (Stärk et al.
2021). Because amino acids at equivalent
positions in two different protein se-
quences play the same structural and
functional role, we reasoned that cluster-
ing amino acid context vectors across se-
quences could be the basis of a new
approach for aligning sequences. Al-
though recently neural network machin-
ery has been leveraged to perform
dynamic program-based alignments
(Morton et al. 2020; Petti et al. 2023),
our approach is, to the best of our knowl-
edge, the first that uses protein sequence
embeddings to identify analogous posi-
tions across protein sequences in order
to determine MSAs. Our MSA approach
is based on clustering the amino acid
contextual vectors produced by protein
language models and then using graph-
theoretic approaches to determine a con-
sistent ordering of MSA columns. Our
method, vector-clustering Multiple Se-
quence Alignment (vcMSA), is a true
multiple sequence aligner that aligns
multiple sequences at once instead of
progressively integrating pairwise align-
ments. Our core methodology diverges
from standard MSA methods in that it
avoids substitution matrices and gap
penalties, and in most cases, does not
use guide tree construction. In proof-of-
concept testing, we aim to establish the
power of leveraging protein language
models for building MSAs, particularly
for low identity sequence families that current methods have the
most difficulty on.

Methods

Overview

A brief overview of our algorithm is as follows. First, for all protein
sequences, we obtain per-position and sequence-level embeddings
via a protein language model (Fig. 1A). Second, we cluster protein
sequences via the sequence-level embeddings to uncover sets of se-
quence-similar proteins (Fig. 1B). Third, within each cluster of se-
quences, wemeasure the similarities of amino acid vectors and, for
each amino acid, find the one that is most similar to it in each of
the other sequences (Fig. 1C) and filter to amino acid pairings
that are reciprocal best hits (RBHs) of each other. Fourth, we build
an RBH network and cluster the network to find “guidepost” ami-
no acid positions in different sequences that are clearly aligned to
each other (Fig. 1D). Fifth, we order the clusters into columns of
the MSA by constructing a directed acyclic graph (DAG) based
on sequential positions within each protein sequence and per-
forming a topological sort (Fig. 1E). Sixth, we use guidepost clus-

ters to limit the scope of searches for the remaining unplaced
amino acids (Fig. 1F). Seventh, we continue creating guideposts
and assigning amino acids to columns until all amino acids are
placed in the alignment (Fig. 1G). Finally, we combine subalign-
ments from the sequence clusters into the final MSA (Fig. 1H).
Further details about each of these steps are provided below.

Embedding generation

For each protein sequence, we use the encoder portion of the
ProtT5-XL-UniRef50 languagemodel to generate sequence embed-
dings (Elnaggar et al. 2022). T5 models undergo self-supervised
training on a large corpus of text, in this case over 11 million pro-
tein sequences in the UniRef50 data set (Elnaggar et al. 2022). For
each amino acid in a sequence, the ProtT5-XL-UniRef50 model
produces one embedding vector of length 1024 for each of its 24
encoder layers.We choose to use embeddings from the final 16 lay-
ers, giving us a final vector representation of each amino acid with
dimension 16,384. For each sequence, we average all of the vector
embeddings for each of its amino acids to obtain a sequence-level
embedding. We additionally add padding to sequences, where we
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Figure 1. Overview of vcMSA algorithm. (A) Proteins are embedded using a protein languagemodel to
produce vector representations of each amino acid, and the mean of these amino acid embeddings is
taken to produce a sequence-level representation. (B) We cluster sequence representations and detect
outlier sequences. (C ) For each sequence cluster, we determine bidirectional/reciprocal best hits
(RBHs) of cosine similarity between pairs of amino acids in different sequences. (D) From a network built
from RBHs, we determine confident clusters of amino acids, corresponding to columns in theMSA. (E) To
determine column order, we trace the path of each sequence through clusters and combine all paths into
one network, taking edge weights from the number of sequences that traverse between the pairs of clus-
ters. We trim any clusters that cause cycles and use a topological sort of the resulting directed acyclic
graph to find column order. (F) Clusters/columns limit scope of search for unplaced amino acids. (G)
We iterate limited searches until all amino acids are placed. Gaps in the alignment occur when a cluster
does not contain an amino acid from a sequence. (H) We combine alignments from each sequence clus-
ter and outliers in the final output MSA.
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first add 10X’s to the start and end of each sequence before embed-
ding (Supplemental Fig. 1A).

Sequence clustering

We find that vcMSA performs best on semantically consistent sets
of sequences and that performance is degraded when outlier se-
quences are included. Therefore, we first cluster input sequences
based on sequence-level embeddings to obtain groups of similar
sequences and detect outliers (Supplemental Methods). We then
apply the remaining steps of vcMSA to each cluster of sequences
individually. Left out sequences and alignments for clusters are
merged into a full alignment as described below.

Amino acid similarity across sequences

The contextual similarity between a pair of amino acids is defined
as the cosine similarity between their embedding vectors. To re-
duce sequence-specific effects and increase the overall similarity
between different sequences, we first apply “batch correction” to
amino acid embeddings in the same sequence cluster, considering
each sequence as analogous to a batch (Supplemental Fig. 1C;
Supplemental Methods). For each amino acid in each sequence,
we next find the most similar amino acid in each of the other se-
quences by considering cosine similarities between their embed-
dings. We use Facebook’s fast AI similarity search (faiss) library
to perform nearest neighbor searches for all amino acids
(Johnson et al. 2021). For each pair of sequences, the set of pairwise
similarities between amino acids between different sequences is fil-
tered to only RBHs, for which the bestmatch to a query amino acid
in the target sequencemust also have its highest score in the query
sequence be the query amino acid (Fig. 1C). For each pair of se-
quences, we construct a bipartite graph composed of nodes for
each amino acid in the two sequences, with an edge for each
RBH identified between amino acids in the two sequences. We
will keep a largest set of these RBHs that are “consistent” with
each other in a pairwise alignment using a maximumnoncrossing
matching (MNCM) formulation (Malucelli et al. 1993). In particu-
lar, if the ith and jth amino acids in the first sequence (we assume
without loss of generality that i< j) have as their RBHs the kth and
lth amino acids, respectively, in the second sequence, then this
pair of RBHs is consistent only if k< l; that is, if k< l, it is possible
for a pairwise alignment between these two sequences to simulta-
neously align the ith and jth amino acids in the first sequencewith
the kth and lth amino acids in the second sequence. If two pairs of
RBHs are not consistent with each other, we say that the edges that
correspond to them “intersect,” as theywould if the nodes were ar-
ranged in two columns (one for each sequence) in the order in
which they appear in the sequences. We define a noncrossing
matching to be a selection of edges such that no two edges inter-
sect, and an MNCM to be the largest possible set of such edges.
In the case that there are multiple MNCMs, we select the MNCM
that has the highest average cosine similarity score between all
RBHs in the matching. We remove from consideration any RBHs
that are not part of this MNCM; in this manner, we obtain a fil-
tered set of RBHs across all pairs of sequences. MNCM performs
well in preserving RBHs corresponding to correctly aligned amino
acid pairs, while removing false-positive matches (Supplemental
Fig. 2).

Amino acid clustering

Webuild a network inwhich there is a node for each amino acid in
each sequence, and there is an edge between two nodes if the cor-
responding amino acids are RBHs included in the filtered set of
RBHs.Weuse this network of RBHs in order to cluster sets of amino

acids that align to each other with high confidence (Fig. 1D;
Supplemental Methods). Amino acids within a cluster will com-
prise a column in theMSA.We term these aligned positions guide-
posts and will use these guidepost columns to limit the scope of
future searches for amino acids that align to each other (Fig. 1F).
Our guidepost columns are similar to user-defined or automatical-
ly inferred “anchor points” that have been used in the past to con-
strain traditional MSA approaches (Morgenstern et al. 2006;
Pitschi et al. 2010).

Column order determination

Each cluster corresponds to a column of the MSA; however, these
columns must be placed in the correct order in the alignment that
is being built. To do this, we will first build a graph based on the
correct ordering of amino acids in each protein sequence and
then prune this graph to be a DAG and perform a topological
sort of this graph (Fig. 1E). In particular, we will introduce a
node for each cluster. Next, for clusters A and B, if there exists ami-
no acids u ∈ A and v ∈ Bwhere u and v are in the same sequence, u
is before v in the sequence, and v is the first clustered amino acid
after u in the sequence, then we will add a directed edge from u
to v. This edge will be weighted by the number of sequences in
which such u and v exist. Out-of-order amino acids, in which an
amino acid is placed in a cluster that occurs too late or too early
in the MSA, will cause cycles in this directed graph. To remove
these out-of-order amino acids, we detect feedback arc sets
(Eades et al. 1993; Csardi and Nepusz 2006), finding edges to re-
move to obtain an acyclic graph and prioritizing edges with low
weight for removal. Because feedback arc set detection is NP-com-
plete, we use the linear time heuristic approach of Eades et al.
(1993). Feedback arc set detection has been previously used in
MSA to enforce order consistency for multiple local areas of align-
ment (Pitschi et al. 2010).

For each node-pair of each feedback arc, we discard the node/
cluster ID with lowest total edge weight and finally confirm that
the trimmed network is a DAG. We then perform a topological
sort of the graph to obtain an ordered path that visits every node
(cluster ID). This sequence of cluster IDs is the order of columns
in the MSA.

Limited scope searches

At this stage, we have a subset of guidepost columns in the align-
ment, as well as sets of amino acids that have not been assigned
to any column (Fig. 1F). If an unassigned amino acid occurs after
an amino acid that has been assigned to column p and before an
amino acid that has been assigned to column q, we only need to
consider amino acids from other sequences that also fall between
p and q as candidate matches.

We repeatedly alternate two phases of adding amino acids
into the alignment until there are no remaining unplaced amino
acids with cosine similarity > 0.1 to any potential match amino
acid in the scope. Our two phases are (1) create new columns by
amino acid clustering, as described above, among all amino acids
also falling between the appropriate guideposts and (2) add amino
acids into existing columns by best match score (Supplemental
Methods). Existing columns can only be modified during the sec-
ond phase with the addition of new members. In early iterations
following clustering stages, we remove clusters in which anymem-
ber of the cluster is “stranded,” meaning that neither of its previ-
ous or next amino acids is found in the previous and next
aligned column/cluster. This quality-control step prevents early er-
rors in which an amino acid is placed in the wrong cluster. For the
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final stage, amino acids with no matches to any clusters or other
amino acids in the scope are placed in their own cluster of size one.

Gaps

Our method does not require parameters related to setting gaps.
Once all amino acids are assigned to columns, we lay out the final
alignment (Fig. 1G). A column that has one amino acid from every
sequence has no gaps. If a column does not contain an amino acid
from a particular sequence, a gap is left for that sequence in that
column.Our algorithm therefore does not need to use gap opening
or gap extension parameters, which are required by other
methods.

Merging excess partitions over neighboring columns

We observe cases in which two adjacent columns contain amino
acids from a mutually exclusive set of sequences. We detect and
merge these paired columns using a low threshold cosine similar-
ity score of 0.1 between amino acids in adjacent clusters, on the
basis that independent insertions of one amino acid at the site
are biologically unlikely.

Benchmarking

We use the QuanTest2 (Sievers and Higgins 2020) reference align-
ment data set, which consists of 151 protein sets, each composed
of 1000 proteins. The QuanTest2 alignment set is a subset of the
HOMSTRAD (Stebbings and Mizuguchi 2004) database of curated
structure alignments. We use HOMSTRAD alignments that are not
included in the QuanTest2 set to evaluate correspondence be-
tween RBH pairs of amino acids and aligned positions. We modi-
fied the nextflow pipeline nf-benchmark (Garriga et al. 2019) to
wrap our scripts and manage comparison to other methods and
evaluation on the QuanTest2 set of alignments.

We compare our method to Clustal Omega (Sievers et al.
2011), MAFFT-FFTNS1, MAFFT-GINSI, MAFFT-LINSI (Katoh and
Standley 2013), MUSCLE (Edgar 2004), ProbCons (Do et al.
2005), T-Coffee (Notredame et al. 2000), UPP (Nguyen et al.
2015), and FAMSA (Deorowicz et al. 2016) and build initial guide
trees for all methods except UPP with MAFFT-PartTree (Katoh
and Toh 2007).

We use the same default parameters for other algorithms as in
the supplemental information of Garriga et al. (2019). As with pre-
vious work, alignment performance is evaluated using gold-stan-
dard reference alignments of the first three proteins in each
FASTA file (Garriga et al. 2019). For the proof-of-concept testing de-
scribed here, we created smaller sets of proteins to align consisting
of 20 sequences, for which we select the first three sequences from
each FASTA file, as well as 17 randomly selected protein sequences.
We additionally remove four protein sets with a more than four-
fold difference in length between the three reference sequences
and the 17 random sequences, leaving a benchmarking data set
of 147 protein sets. We calculate sequence identity for each gold-
standard alignment by recording the mean proportion of times
each aligned position in the pairs of sequences matches exactly.
For sequence identity bins, identities <0.2 fall in bin 0.1, <0.3
fall in bin 0.2, and so on. For runtimemeasurements, we also create
larger sets of proteins consisting of 50, 100, and 200 sequences,
where we select the first three sequences and then 47, 97, and
197 sequences, respectively. For evaluating against structured por-
tions of the alignment, we filter downgold-standard alignments to
the subset of amino acids with DSSP structure codes H, G, I, E, and
B (Kabsch and Sander 1983).

Evaluation score

We use the total column score calculated with the aln_compare
plugin from T-Coffee to score sequence alignments against the
gold-standard alignments. This score is the percentage of columns
in the output alignment that fullymatch columns in the reference
gold-standard alignment.

Speed

On an NVIDIA A100 GPU, initial protein embedding of 20 se-
quences and indexing of embeddings with faiss take, on average,
22.6 sec, and 100 sequence takes, on average, 31.3 sec, including
loading the model. On a CPU configuration, protein embedding
is substantially slower, taking 2–5 min to embed 20 sequences, de-
pending on the length of the sequences and CPU memory. The
time to produce an alignment depends on the number of sequenc-
es in the alignment and on the number of iterations required to
place all amino acids (Supplemental Fig. 3A). After embedding,
an alignment of 20 sequences when run on an NVIDIA A100
GPU (for similarity searches on the faiss index) and a 2.6-GHz
AMD EPYC Rome CPU (remaining steps) with 64 GB of memory
takes a median of 1.2 min, for 50 sequences a median of 6.1
min, for 100 sequences amedian of 22.6min, and for 200 sequenc-
es a median of 82.9 min.

For comparison, on these data sets, T-Coffee is about five to 10
times faster when run on a 2.6-GHzAMDEPYCRomeCPUwith 64
GB of memory. Not including time to build trees, as this varies
highly by the tree building method, in our benchmarking, T-
Coffee takes a median of 0.2 min for 20 sequences, a median of
1.47min for 50 sequences, a median of 5.8min for 100 sequences,
and a median of 26.1 min for 200 sequences (Supplemental Fig.
3B). As our implementation of the vcMSA is a proof of concept,
we expect the speed of producing alignments to fall substantially
with program optimization.

Merging subalignments and excluded sequences

Thirteen of 147 of our QuanTest2 20 protein sets contain more
than one cluster of sequences, and 59/147 contain at least one out-
lier sequence. For these 63 protein sets, we must combine vsMSA
produced subalignments and excluded sequences into a complete
alignment containing all sequences (Fig. 1H). For this step, we use
MAFFT-LINSI merge (Katoh and Standley 2013), which uses our
sets of prealigned sequences as internal nodes of a guide tree con-
structed by UPGMA, using the command mafft ‐‐clustalout ‐‐

merge key_table ‐‐auto sub.alns>merged.aln. For the re-
maining 84 protein sets, no merging of alignments is necessary.
Although in a typical use case, outlier sequences would be re-
moved, we include them for compatibility with benchmark pro-
tein families.

Results

RBHs between amino acid representations are a solid

foundation for MSA

To show that RBHs between amino acid embeddings in two differ-
ent sequences accurately reflect aligned amino acids, wemeasured
the proportion of aligned positions in 562 pairs of sequences from
the HOMSTRAD gold-standard structural alignment database
(Stebbings and Mizuguchi 2004) that are RBHs when comparing
amino acid embeddings. For 93% of gold-standard protein align-
ments, at least 50% of aligned columns are additionally RBHs be-
tween amino acid embeddings even after filtering RBHs based on
uncovering a MNCM (Fig. 2A). The correspondence between
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RBHs and aligned columns is roughly dependent on sequence
identity of the alignment (Fig. 2B). Thus, protein language models
are highly effective in identifying analogous positions across pro-
tein sequences. These RBHs are the main input to the vcMSA
algorithm.

Clusters of amino acid representations correspond to columns

in the MSA

When amino acid representations in a PCA are colored by their
corresponding column in theMSA, it can be seen that amino acids
in the same aligned column cluster together (Fig. 2C). We show
this correspondence with 20 sequences from the csp protein fam-
ily using their HOMSTRAD alignment. One initial concern about
using amino acid representations for MSAwas that the representa-
tions of the same amino acid (e.g., glycine) would be too similar
wherever that amino acid occurs in the sequence. Instead we
find that representations of the same amino acids are distinguish-
able across the alignment (Fig. 2D).

vcMSA produces more accurate

alignments than other algorithms,

particularly at low sequence identity

We benchmarked vcMSA on 147 protein
alignments consisting of 20 sequences
each from the QuanTest2 data set and
compared our results to seven alignment
algorithms (Fig. 3A). As the metric to
evaluate alignment accuracy, we chose
total column score, which measures the
number of columns that match the
gold-standard alignment, owing to its
high dynamic range relative to other
metrics. vcMSA generally matches or
exceeds the alignment accuracy of
other algorithms and performs especial-
ly well on the lowest sequence
similarity proteins in the benchmark.
For example, vcMSA is able to align the
Asp_Glu_race_D family with a total col-
umn score of 63.9, whereas the maxi-
mum score of other alignment methods
is 0.9.

For low sequence identity align-
ments, we frequently exceed the align-
ment accuracy of existing algorithms. In
our benchmarking, compared with other
methods, we perform notably better on
low sequence identity alignments. Figure
3B illustrates the performance of vcMSA
against the two algorithms that score
highest and lowest on sequences with
identity <0.2, MAFFT-GINSI and Clustal
Omega, respectively. As sequence identity
increases, vcMSA generally matches the
accuracy of other algorithms. When we
compute the total column score for struc-
tured portions of the gold-standard align-
ment compared with the full gold-
standard alignment, it is apparent that
vcMSA performs better on structured
components (Fig. 3C). Further, vcMSA is
specifically strong at structured regions

of the lowest identity protein sets. This is likely because of the lan-
guage model capturing structural properties of these low identity
structured regions, even though their sequence identity is beyond
the typical twilight zone limit.

Discussion

Although sequence aligners were some of the earliest bioinfor-
matic algorithms, and although sequence alignment forms the
basis ofmany computational biology analyses,MSA is not a solved
problem. Current sequence alignment algorithms particularly
strugglewith alignments in the so-called twilight zone of sequence
identity, in which structure and function is conserved, but amino
acid sequence is not.

Here, we present vcMSA, a novel algorithm for MSA that di-
verges substantially from other approaches, and show that it is
an improvement on the state of the art for some of the most chal-
lenging to align protein families. The ability to create accurate

A
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Figure 2. RBHs and clustered amino acid representations reflect aligned columns. (A) For 562 pairs of
aligned proteins from the HOMSTRAD database, the MNCMs of RBHs between vector representations
frequently correspond to correctly aligned positions. For each gold-standard alignment, we compute
the fraction of aligned gold-standard positions that are additionally RBHs after MNCM filtering for
that protein pair and display these results as a histogram. (B) The proportion of columns in the gold-stan-
dard pairwise alignments that are in the MNCM of RBHs is related to sequence identity of the reference
alignment. (C) Principal components 2 and 3 for amino acid vector representations of 20 cold-shock pro-
teins from the csp protein family. Amino acid representations (below) are colored by their corresponding
column in the multiple sequence alignment (above). (D) Identical amino acids in different columns are
distinguishable from each other. All glycines in the amino acid PCA plot and the multiple sequence align-
ment are colored red.
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MSAs opens up these low sequence identity families to all the
downstream bioinformatics applications that take alignments as
input. Notably, the core vcMSA algorithm avoids standard features
of the most widely used alignment algorithms, including gap pen-
alties, substitution matrices, and guide trees. Although substitu-

tion matrices and gap penalties are standard components of
alignment approaches, they are used to formalize optimization cri-
teria and do not reflect fundamental properties of alignments.
Instead, aligned amino acids within anMSA are meant to be those
that have evolved from a shared ancestral amino acid. Protein

A

B C

Figure 3. vcMSA alignments are frequently more accurate than previous methods, particularly for alignments with low levels of sequence identity. We
benchmarked our implementation of vcMSA on sets of 20 sequences from each of 147 gold-standard multiple sequence alignments from the QuanTest2
data set. (A) We compare our method to eight state-of-the-art algorithms for sequence alignment. Each point corresponds to one protein MSA and is col-
ored by its sequence identity. Each panel is a tilted scatterplot of relative performance of each other algorithm tested against vcMSAby total column score of
produced alignments. Points to the right of the vertical dashed line are alignments where vcMSA outperformed the other method. The number of align-
ments to the left or right of the line is in gold. vcMSAperforms better onmore test sets than all other tested algorithms. The point lying on the right axis line is
the Asp_Glu_race_D alignment, which all other algorithms perform poorly on (TC score ∼0). (B) We compare the median total column score of vcMSA
alignments to MAFFT-GINSI and Clustal Omega alignments, grouping alignments by sequence identity bins. We observe increased scores for vcMSA at
low sequence identities. (C) We show median total column scores for structured portions and full gold-standard reference alignments for all algorithms,
separated by sequence identity bin.
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language models may be especially suited to identify these analo-
gous amino acids, as they capture structural and functional prop-
erties of amino acids via sequence context, much as natural
language transformer models capture the semantics of words in a
sentence based on other words (Vaswani et al. 2017). We find
that vcMSA performs particularly well at aligning structured por-
tions of sequences; it is possible that the less well-structured por-
tions of sequences do not have specific functionally analogous
positions in other sequences.

Protein alignment based on protein language representation
appears to bemost suited to global alignment for sets of protein se-
quences with similar structure and function, where the underlying
meaning of the sequence is as consistent as possible. We have ob-
served that alignment of a small subsequence of a protein (e.g., one
domain) to a longer protein is often highly inaccurate, as the con-
textual embeddings for the small portion are sufficiently different
from those computed for the longer protein. To produce the high-
est quality alignment, outlier sequences can be automatically de-
tected based on sequence embeddings and removed from the
alignment process. In these cases, we first use sequence representa-
tions to divide sequences into high similarity groups and detect
outlier sequences. We then perform vcMSA on each cluster of se-
quences individually, producing high-quality subalignments.
Although we currently use MAFFT-LINSI to combine subalign-
ments produced by vcMSA, we are exploring methods to combine
subalignments using purely language models. However, diver-
gence in protein meaning between sequence groups complicates
this process.

Additionally, for alignments in which start positions are not
aligned, we find it helpful to add sequence padding to either end
of the sequence before embedding, which reduces an observed first
character effect, inwhich the first characters of each sequence tend
to have the most similar embeddings, regardless of the sequence
context of that first character (Supplemental Fig. 1A). In these cas-
es, padding can substantially improve correctly aligned columns
beyond the first column (Supplemental Fig. 1B). However,
adding padding either substantially degrades or does not change
alignment accuracy for protein sets in which the start positions
align.

For certain protein groups, we observe a sequence-specific off-
set in amino acid embeddings (Supplemental Fig. 1C), even for se-
quences with relatively high sequence and structure similarity. On
the other hand, we observe that fairly divergent protein sequences
can result in embeddings without noticeable sequence-level ef-
fects. To reduce sequence specific effects, we consider the amino
acids from each sequence as analogous to a batch and remove se-
quence-specific variation using batch-correction-style techniques
(Supplemental Methods). Reducing sequence-specific effects
with batch correction overall improves alignment quality
(Supplemental Fig. 1D). Specifically, between pairs of sequences,
batch correction improves the quality of RBHs, particularly for
pairs of sequences with cosine similarity less than 0.95
(Supplemental Fig. 1E). Accordingly, by default, we use batch cor-
rection to remove sequence-specific offsets. In some cases, even
with correction for sequence-specific offsets, alignment quality is
poor. For example, batch correction improves the total column
score of neuraminidases from 0.5 to 36.9. However, aligning neur-
aminidases from Influenza A and B separately and then combining
subalignments allows a total column score of 64.7. Functional
divergence in response to selective pressure in these two neur-
aminidases likely decreases the similarity of amino acid embed-
dings. Further research is needed to understand how to recognize

and reduce sequence-specific effects when comparing amino
acid embeddings across sequences.

Overall, we find that alignment quality and speed of con-
struction is related to the quality of the RBHs between amino
acid embeddings. To improve this network, we use MNCM to re-
move false-positive RBHs (Supplemental Fig. 2). However, it is like-
ly that the RBH network could be improved in multiple ways,
including through fine-tuning embeddings, use of other protein
language models, and choice of embedding layers. On the other
hand, because finding and filtering RBHs is largely effective for re-
moving low similarity spurious matches, our approach is robust to
changes in the similarity cutoffs for identifying amino acids to
align. We find that alignments improve when merging neighbor-
ing columns in the alignment that contain amino acids from mu-
tually exclusive sequences and whose amino acids have aminimal
cosine similarity to each other.

As our implementation is a prototype, we have not substan-
tially optimized our scripts for speed and memory usage, with
much room for improvement in these areas. To identify similar
amino acid positions at-scale between larger numbers of sequenc-
es, we can use tools developed for ultrafast nearest neighbor
searches of millions and billions of vectors (Johnson et al. 2021).
Additionally, our algorithm’s runtime is greatly dependent on
the number of iterations required to place all amino acids, which
is related to the number of clustering errors (when an amino acid
is sorted into a cluster that conflicts with the order of amino acids
in the sequence). Currently, we use the very basic approach of find-
ing connected components and choosing them to be clusters; we
believe that slightly more sophisticated approaches (e.g., those re-
quiring a higher edge density within clusters) would reduce errors
in clustering and decrease runtimes.

Our prototype implementation of the vcMSA algorithm out-
performs existing alignment algorithms at aligning a benchmark
of sets of proteins. It is particularly successful at aligning groups
of low similarity sequences, filling a gap in the capabilities of other
algorithms. Another advantage of using amino acid embeddings is
that we can additionally score the confidence of each column in
the alignment bymeasuring the average cosine similarity of amino
acid embeddings from the same column. This confidence score
will allow filtering of alignments to only confidently aligned posi-
tions in downstream tasks such as phylogenetic tree building.

Here, we show both the utility of protein language embed-
dings in MSA and a new MSA algorithm fully orthogonal to exist-
ing approaches. We expect accuracy to only improve with optimal
choice of amino acid representations and the development of larg-
er language models that will more richly capture the identity of
each amino acid. Overall, we anticipate that protein language
models will play an important role in the next generation ofmeth-
ods for determining MSAs.

Software availability

Our modified version of the nf-benchmark (Garriga et al. 2019)
is available at GitHub (https://github.com/clairemcwhite/nf-
benchmark-vcmsa). A demonstration colab notebook is available
at GitHub (https://github.com/clairemcwhite/vcmsa). Source code
is distributed as a Python package vcmsa under anMIT free software
license. We recommend obtaining vcmsa and associated files from
the GitHub repository (https://github.com/clairemcwhite/vcmsa);
however, it is also made available here as Supplemental Code. A
demonstration Google colab notebook is additionally available at
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