
Partial alignment of multislice spatially resolved
transcriptomics data

Xinhao Liu,1 Ron Zeira,2 and Benjamin J. Raphael1
1Department of Computer Science, Princeton University, Princeton, New Jersey 08540, USA; 2Verily Life Sciences,
Tel Aviv 6789141, Israel

Spatially resolved transcriptomics (SRT) technologies measure messenger RNA (mRNA) expression at thousands of locations

in a tissue slice. However, nearly all SRT technologies measure expression in two-dimensional (2D) slices extracted from a 3D

tissue, thus losing information that is shared across multiple slices from the same tissue. Integrating SRT data across multiple

slices can help recover this information and improve downstream expression analyses, but multislice alignment and integration

remains a challenging task. Existing methods for integrating SRT data either do not use spatial information or assume that the

morphology of the tissue is largely preserved across slices, an assumption that is often violated because of biological or tech-

nical reasons. We introduce PASTE2, a method for partial alignment and 3D reconstruction ofmultislice SRT data sets, allowing

only partial overlap between aligned slices and/or slice-specific cell types. PASTE2 formulates a novel partial fused Gromov-

Wasserstein optimal transport problem, which we solve using a conditional gradient algorithm. PASTE2 includes a model se-

lection procedure to estimate the fraction of overlap between slices, and optionally uses information from histological images

that accompany some SRT experiments. We show on both simulated and real data that PASTE2 obtains more accurate align-

ments than existingmethods.We further use PASTE2 to reconstruct a 3Dmap of gene expression in a Drosophila embryo froma

16 slice Stereo-seq data set. PASTE2 produces accurate alignments of multislice data sets from multiple SRT technologies, en-

abling detailed studies of spatial gene expression across a wide range of biological applications.

[Supplemental material is available for this article.]

Spatially resolved transcriptomics (SRT) technologies measure
messenger RNA (mRNA) expression simultaneously at thousands
of locations within a tissue. These technologies include both
sequencing-based approaches, such as 10x Genomics Visium
(https://www.10xgenomics.com/products/spatial-gene-expression)
and Slide-seq (Rodriques et al. 2019; Stickels et al. 2021), as well as
hybridization and fluorescent approaches such as MERFISH (Chen
et al. 2015) and seqFISH (Lubeck et al. 2014). Nearly all of these tech-
nologies measure expression at two-dimensional (2D) locations
within a thin tissue slice (≈10 μm), and we will use the term spatial
transcriptomics (ST) as a generic term to refer to any of these tech-
nologies. ST provides spatial context that is missing from single-
cell RNA sequencing (scRNA-seq) measurement of mRNAs from
disassociated cells, and has been widely used to study both normal
(Baccin et al. 2020; van den Brink et al. 2020) and diseased tissues,
such as cancer (Ståhl et al. 2016; Thrane et al. 2018; Ji et al. 2020)
and Alzheimer’s disease (Chen et al. 2020). However, similar to
scRNA-seq, ST data suffers from high rates of sparsity. Moreover, re-
cording only the x, y coordinates on a 2D tissue slice loses informa-
tion along the z (orthogonal) direction of the 3D tissue, hindering a
comprehensive analysis of the whole tissue (Fig. 1).

Spatial transcriptomics is often applied tomultiple sequential
2D slices from the same tissue (Fig. 1), thus opening the possibility
of performing integrative analysis of all slices. Such joint analysis
of multiple slices not only helps with the data sparsity problem
in individual slices, but also enables innovative downstream tasks
such as 3D spatial expression analysis, 3D cell-cell communica-
tion, and 3D clustering (Lin and Yang 2022; Zeira et al. 2022).
However, aligning multiple slices from the same tissue along the

orthogonal direction to recover spot-spot correspondence across
slices is a challenging task because of morphological differences
across slices as well as technical variability in mRNA capture be-
tween experiments.

Several approaches have been used for alignment of multiple
ST slices. One approach is to apply methods developed for scRNA-
seq and multi-omics data integration, such as Seurat (Stuart et al.
2019), SCOT (Demetci et al. 2022; Demetçi et al. 2022), or
Pamona (Cao et al. 2022). Another approach is to use methods
that align an scRNA-seq data set onto an ST data set, such as
Tangram (Biancalani et al. 2021) or RCTD (Cable et al. 2022).
However, thesemethods are designed for different alignment tasks
and ignore the spatial information within or across slices. Another
method, STUtility (Bergenstråhle et al. 2020) is designed to align a
pair of ST slices, but aligns only the histology images, ignoring
both gene expression and spatial information. Moreover, this
method can only be applied to 10x Genomics Visium data.
Another recent method, GPSA (Jones et al. 2022) integrates multi-
ple ST slices into a common coordinate system, but does not out-
put a mapping between spots that can be used for downstream
analysis, and the common coordinate system it produces is differ-
ent from the 3D coordinates of the tissue.

Another possible solution is to use histological and medical
image registration (Maes et al. 2003) toolkits such as ITK
(McCormick et al. 2014) and SimpleITK (Beare et al. 2018).
However, many image registrationmethods are supervised and of-
ten require manually selected landmarks, creating an extra burden
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on the user. The spatial alignment problem has also been studied
in the context of functional magnetic resonance imaging (fMRI)
data registration (Lancaster et al. 2000; Brett et al. 2001; Klein
et al. 2009), but these methods are not easily extensible to the spa-
tial genomics setting (Jones et al. 2022). Finally, many ST technol-
ogies do not have matching histological images.

Recently, PASTE, a method that performs probabilistic align-
ment of ST slices using both spatial and transcriptional similarities,
was introduced (Zeira et al. 2022). However, PASTE assumes that
the slices overlap over the full 2D assayed region, with a similar
field of view and similar number and proportion of cell types.
Essentially, PASTE assumes the two slices are biological/technical
replicates of a 2D tissue, an assumption that is often violated in
real ST experiments because of technical difficulties in tissue dis-
section and array placement, or differences in tissue morphology
between nearby slices. For example, two slices may only partially
overlap along the z axis because of different placements of the ar-
ray on the tissue, and hence only a part of both slices should be
aligned (Fig. 1). Furthermore, two slicesmayhave different compo-
sitions of cell types, leading to slice-specific cell types and spots
that should not be aligned.

Here, we introduce PASTE2, a method to align multiple adja-
cent ST slices from the same tissue with several substantial im-
provements over existing methods. First, PASTE2 performs partial
pairwise alignment, selecting and aligning only a subset of spots.
PASTE2 thus addresses the important case in which adjacent slices
do not fully overlap in space or have different cell type composi-
tions. To solve the partial alignment problem, we introduce the
partial fused Gromov-Wasserstein (partial-FGW) optimal transport
framework. We derive a conditional gradient (Frank-Wolfe) algo-
rithm (Frank and Wolfe 1956) to optimize the partial-FGW objec-
tive. Partial-FGW is the partial extension (Chapel et al. 2020) of the
fused Gromov-Wasserstein optimal transport (Titouan et al. 2019)
and allows only a fraction of the total mass to be transported be-
tween the two distributions. To the best of our knowledge,
PASTE2 is the first to formulate the partial-FGW problem and pro-

vide an optimization procedure for it. Second, PASTE2 includes a
model selection procedure to estimate the fraction of overlap be-
tween two slices to align, which is in general a very difficult prob-
lem. Third, PASTE2 optionally uses the histological images. Some
ST technologies, such as the 10x Genomics Visium platform, pro-
duce a Hematoxylin and Eosin (H&E) stained image of the same
tissue slice in which gene expression ismeasured. The information
in this image can aid in alignment of slices by identifying
spots with similar histology. Finally, we provide a generalized
Procrustes analysis (Wahba 1965) method for 3D spatial recon-
struction of the tissue from partially aligned 2D slices. We show
PASTE2’s advantages on both simulated and real ST data sets.

Methods

An ST experiment on a 2D tissue slice yields a pair (X,Z), whereX∈
Nn×p is the gene expressionmatrix of the tissue slice, andZ∈R2×n is
the spatial location matrix of each spot on the slice, where the jth
column z·j is the x-y coordinate of spot j on the 2D array3 used
by the ST experiment. Here, n is the number of spots on the slice
and p is the numberof genesmeasured. xij∈N is the transcript count
of gene j in spot i. Each row vector xi· of X is the expression profile of
spot i. Following Zeira et al. (2022), we encode the spatial location of
each spot in a pairwise distancematrixD = [dij] [ Rn×n

+ , where dij is
the Euclidean distance between spot i and spot j on the slice, calcu-
lated from the 2D coordinates z·i and z·j. Thus, we represent an ST
slice of n spots and p genes by a tuple (X, D).

Partial pairwise slice alignment problem

Given a pair (X,D) and (X′,D′) of ST slices, our goal is to compute a
partial pairwise slice alignment, that is, to find a probabilistic spot-
spot correspondence between spots in the two slices while

x

y
z

Figure 1. PASTE2 partial alignment of overlapping slices. Four thin slices (red, green, blue, purple) are dissected from the same tissue and placed on an ST
array. However, these slices only partially overlap in the z-coordinate direction. The inputs to PASTE2 are the four ST slices, including gene expression, spot
locations, and optionally, histology images. PASTE2 computes a partial alignment of each pair of adjacent slices by selecting subsets of spots from each slice
that preserve transcriptional, spatial, and image similarity. PASTE2 uses the partial alignment to create a 3D spatial reconstruction of the tissue.

3We refer here to array-based technologies, but the formulation is the same for
other technologies.

PASTE2 partial spatial alignment
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accounting for the fact that some spots should not bemapped (Fig.
1). The probabilisticmapping is amatrix p = [pij] [ Rn×n′ between
the n spots in one slice and n′ spots in the other slice, where πij de-
scribes the probability (or relative fraction) that a spot i in the first
slice is aligned to a spot j in the second slice.

We begin by describing the solution given in Zeira et al.
(2022) to the pairwise slice alignment problem, implemented in
the PASTE algorithm. PASTE uses a formulation based on optimal
transport to compute the mapping π. Specifically, given probabil-
ity distributions g and g′ over the spots in sliceX andX′, respective-
ly, PASTE finds themap π (also known as the transportmatrix) that
minimizes the following transport cost:

F(p; X, D, X′, D′, c, a) = (1− a)
∑
i,j

c(xi·, x′
j·)pij

+ a
∑
i,j,k,l

(dik − d′ jl)
2pijpkl (1)

subject to the regularity constraint that π has to be a probabilistic
coupling between g and g′:

p [ F (g, g ′) = {p [ Rn×n′ |p ≥ 0, p1n′ = g, pT1n = g ′}. (2)

Here, c:Rp×Rp→R+ is an expression cost function that gives a non-
negative dissimilarity score between the expression profiles of
two spots over the same genes. 1n is an all-one vector of length
n. Typically, g and g′ are chosen to be uniform distributions over
spots in each slice, although other distributions can be used
(Zeira et al. 2022).

The PASTE objective function F is composed of an expression
similarity term (first summand) and a spatial similarity term (sec-
ond summand) weighted by a parameter α. The first term, also
called the Wasserstein distance in the OT literature (Peyré and
Cuturi 2019), represents the cost ofmoving one unit of probability
mass from each spot i to each spot j, with the cost being the gene
expression dissimilarity between spots. The second term, also
called the Gromov-Wasserstein distance (Mémoli 2011; Peyré
et al. 2016), approximately preserves the intraslice spatial distances
between spots. Together, the convex combination of the two
terms in F is known as the FGW optimal transport objective
(Titouan et al. 2019).

The regularity condition (2) forces a rigid structure on π such
that all spots fromboth slicesmust be aligned. However, such con-
straints may not be appropriate for ST slices with considerable dif-
ferences in field of view or cell type composition because of both
biological variation across tissue sections as well as differences
caused by the manual nature of tissue dissection. Therefore, spots
containing cell types or tissue regions that are unique to only one
slicewill be forced to bemapped to somehowarbitrary spots on the
other slice.

Thus, in PASTE2, we propose to solve the partial pairwise slice
alignment problem by minimizing the same objective function as
PASTE (Equation 1), but with a different set of constraints that al-
low for unmapped spots. Specifically, given a parameter s∈ [0, 1]
describing the fraction of mass to transport between g and g′, we
define a set P(g, g ′, s) of s-partial couplings between distributions
g and g′ as

P(g, g ′, s) = {p [ Rn×n′ |p ≥ 0, p1n′ ≤ g, pT1n ≤ g ′, 1T
np1n′ = s}.

(3)

The parameter s∈ [0, 1] is interpreted as the overlap percentage be-
tween the two slices to align. The constraint 1T

np1n′ = s ensures
that only the fraction of s probability mass is transported.

Equivalently, if gi = 1
n
is a point mass for each spot, then roughly

the s fraction of the spots in each slice are aligned. The feasibility
constraints π≥0,

∑
jpij ≤ gi for all spots i in the first slice, and∑

ipij ≤ g ′j for all spots j in the second slice make sure that each
spot only transports probability mass that it already has
according to g and g′, hence ensures π to be a valid transport
plan. In PASTE2 we require that the map π belongs to P(g, g ′, s),
thus replacing the set F (defined in Equation 2) by the set
P(g, g ′, s) (defined in Equation 3). In analogy to sequence align-
ment, PASTE calculates a global alignment, whereas PASTE2 calcu-
lates a local alignment.

The general concept of partial optimal transport (Caffarelli
and McCann 2010) extends optimal transport theory to allow
the transportation of only a specified fraction ofmass between dis-
tributions. Here, we adapt the idea of partial optimal transport to
the fused Gromov-Wasserstein objective, hence the PASTE2 opti-
mization problem is a novel partial fused Gromov-Wasserstein
(partial-FGW) optimal transport problem. Although there are ex-
isting solutions to the partial Wasserstein and partial Gromov-
Wasserstein problem, to the best of our knowledge, PASTE2 is
the first to state and formulate the partial-fused Gromov-
Wasserstein problem and provide an optimization procedure to
solve this problem.

PASTE2 has two parameters: α, the balance between the gene
expression dissimilarity and the spatial dissimilarity, and the over-
lap percentage parameter s indicating the fraction ofmass to trans-
port. Unless otherwise specified, we set α=0.1 following Zeira et al.
(2022).We choose the value of s using amodel selection procedure
described in Supplemental Material S1. The choice of c, the ex-
pression dissimilarity function, is described in Supplemental
Material S2.

An iterative conditional gradient algorithm for optimization

Wederive an optimization algorithm tominimize the objective (1)
subject to the constraint (3). This problem is a large-scale
(each slice contains thousands of spots) nonconvex quadratic pro-
gram with a convex and compact feasible region. Our algorithm is
based on the Frank-Wolfe optimization algorithm (Frank and
Wolfe 1956), also known as the conditional gradient (Levitin
and Polyak 1966) algorithm. This algorithm has been widely
adopted in the optimal transport community (Ferradans et al.
2014; Flamary et al. 2014; Titouan et al. 2019; Chapel et al.
2020) to compute transport plans because of its ability to handle
large-scale quadratic programs (Jaggi 2013). The optimization
problem in PASTE2 is thus particularly suitable for the conditional
gradient algorithm.

The conditional gradient algorithm is an iterative first-order
algorithm for constrained optimization. To fit in the conditional
gradient scheme, we first write Equation 1 in matrix form, follow-
ing Peyré et al. (2016):

F p( ) = 1− a( )〈C,p〉F + a〈L D,D′( )⊗ p,p〉F, (4)

where C [ Rn×n′ encodes the gene expression dissimilarity
cij = c(xi·, x′

j·) between each spot i in the first slice and each spot
j in the second slice, and L(D, D′) [ Rn×n′×n×n′ is a 4D tensor de-
fined by Li,j,k,l(D, D′) = (Dik −D′

jl)
2. ⊗ is the tensor-matrix multi-

plication operator; that is, L⊗ π is an n×n′ matrix whose (i, j)th
element is (

∑
k,lLi,j,k,l · pk,l). <,> denotes the Frobenius dot product

of matrices.
In each iteration, the algorithm moves in the direction that

minimizes a linear approximation of the objective function while
remaining in the feasible region. The mathematical details of the
derivation of each step, as well as the pseudocode, are provided
in Supplemental Material S3.
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Using histological image data in alignment

We further extend the PASTE2 partial-FGW framework to incorpo-
rate image information. Specifically, we replace the gene expres-
sion dissimilarity matrix C [ Rn×n′

in Equation 4 by a sum of

two n ×n′ dissimilarity matrices
1
2
Cgene + 1

2
Cimage, where Cgene is

the gene expression dissimilarity matrix as defined above and
Cimage encodes the dissimilarity between the image information
at each spot. Thus, we seek a map π that minimizes the following
objective function:

F p( ) = 1− a( ) 1
2
Cgene + 1

2
Cimage,p

〈 〉
F
+a〈L D,D′( )⊗ p,p〉F . (5)

Note that to avoid an extra parameter we give equal weight
1
2

to both gene expression and image information, although substi-
tuting other weights is straightforward. Also, because Cgene and
Cimage may not be on the same scale, we scale Cimage such that the
maximum entry of Cimage equals the maximum entry of Cgene.
In our implementation, we define [Cimage]ij to be the Euclidean
distance between the mean RGB values of the spots. See
Supplemental Material S4 for further details.

3D Reconstruction based on the partial alignment matrix

Given a series of consecutive, (partially) overlapping slices from
the same tissue, we aim to reconstruct the spatial expression of
the tissue in 3D by transforming PASTE2 partial pairwise align-
ments into a common coordinate system. Specifically, given a
series of consecutive slices we first find partial alignments be-
tween adjacent slices by solving the partial pairwise slice align-
ment problem as above. To project all slices onto a common
coordinate system, we extend the generalized weighted
Procrustes analysis (Wahba 1965; Kabsch 1976) approach in
Zeira et al. (2022) to sequentially project each pair of adjacent
slices. Whereas Zeira et al. (2022) projects a pair of slices onto
the same coordinate system by centering both slices followed
by calculating a rotation matrix, we derive the centering step
for each slice separately to address the case in which the align-
ment matrix π is partial and the aligned regions of the two slices
have unique barycenters. The details of the projection are in
Supplemental Material S5.

Results

Evaluation on simulated ST data

We first compared PASTE2 and PASTE on a simulated ST data set
based on a human dorsolateral prefrontal cortex (DLPFC) tissue
slice fromMaynard et al. (2021). Specifically, we extracted two par-
tially overlapping subslices from a single DLPFC slice (sample
151674) with varying overlap percentages 90%, 70%, 50%, 30%
(Fig. 2A). To perturb the gene expression, we resample the gene ex-
pression profile of each spot in one of the subslices by sampling
from amultinomial distributionwith added pseudocount δ, which
controls the noise level (Supplemental Material S6). We vary the
pseudocount δ in the range4 from 0.1 to 2 with an increment of
0.1. In total, we generated 4×30=120 pairs of subsliceswith differ-
ent overlap percentages and noise levels δ. For each pair of subsli-
ces, we ran PASTE2 with α=0, 0.1, 1 and using the ground-truth
value for the overlap fraction s (we evaluated model selection sep-
arately in Supplemental Material S9), as well as full PASTE with de-
fault parameters (α=0.1). We evaluated the alignment using Label
Transfer Adjusted Rand Index (LTARI). Given a labeling of cell type/
spatial region of spots, LTARI measures how well the alignment
preserves the label between the aligned spots. LTARI first defines
a new spot labeling for the second slice by assigning to each
aligned spot the label of the most likely corresponding spot in
the first slice, then calculates the ARI between the induced spot la-
beling of the second slice and the ground-truth labeling
(Supplemental Material S7). We used the manual cortical layer an-
notation fromMaynard et al. (2021) as ground-truth spot labeling
(Fig. 2A).

We found that PASTE2 with the default parameter setting of
α =0.1, which uses both gene expression information and spatial
information, outperforms PASTE across most values of the added
noise δ for every overlap percentage (Fig. 2B,C; Supplemental Fig.
S1). Specifically, for all four overlap percentages, PASTE2 (α=0.1)
achieves the highest LTARI when δ<2.0, and achieves almost per-
fect LTARI when δ is small. Note that PASTE obtains constant

B CA

Figure 2. Comparison of PASTE2 and PASTE on simulated partially overlapping subslices. (A) DLPFC slice 151674 with spots colored according to the
manual annotations of cortical layers fromMaynard et al. (2021). Red box and blue box indicate two partially overlapping subslices, with central overlap-
ping region containing some fraction of spots from each slice. (B) Label Transfer ARI of the alignments produced by PASTE2 with α=0 (gene expression
information only), PASTE2 α=1 (spatial information only), PASTE2 α =0.1 (both), and PASTE (full alignment, α=0.1) as a function of the pseudocount (δ)
for overlap percentage 70%. (C) Label Transfer ARI for overlap percentage 50%.

4With the typical sequence coverage and data sparsity in ST data, δ >2.0 (add-
ing >2 counts to each transcript) is a strong perturbation of the data that essen-
tially destroys the signal present in the original data.
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accuracy because it aligns overlapping regions well but nonover-
lapping regions arbitrarily. The gap in accuracy between PASTE2
and PASTE is larger when the overlap is smaller. This indicates
that PASTE, which finds an alignment between all pairs of spots,
is not suitable for the partial alignment task. In contrast, PASTE2
has high accuracy in partial alignment across a wide range of over-
lap percentages and gene expression noise. In particular, PASTE2
achieves near perfect LTARI when the pseudocount δ is in the
range ≈0.1−0.2 that matches the variability in read counts ob-
served in real data (Zeira et al. 2022), although the performance
of PASTE2 does degrade for substantially larger pseudocount val-
ues δ>1.

To investigate the effect of themisspecification of the value of
the overlap percentage parameter s on the result of PASTE2, we ran
PASTE2 with s ranging from 0.1 to 1, with a step size of 0.1, on a
simulated pair in which the ground-truth overlap percentage is
50% and the added pseudocount is 0.1. We found that PASTE2
aligns correctly when s is lower than the ground truth, whereas
the performance degrades for larger values of s (Supplemental
Fig. S2). This is expected because with an overestimation of the
overlap percentage, the PASTE2 alignment becomes more similar
to the PASTE alignment which includes all the spots. Thus, in se-
lecting a value for s, it is preferable to use a model selection proce-
dure that slightly underestimates s rather than overestimates s. We
propose a heuristic for selecting s in Supplemental Material S1.

Because the ground-truth 1-1 spot alignment for these simulat-
ed pairs is known, we also evaluated PASTE2 alignments using an-
other metric, precision, which is defined as the amount of mass
transported between each pair of corresponding spots in the
ground-truth alignment over the totalmass transported. For a given
alignment, the precision measures the percentage of aligned spot
pairs that are ground-truth correspondence, and the result shows
similar trends as LTARI, where PASTE2 achieves the highest perfor-
mance in the reasonable range of δ (Supplemental Fig. S3).

Finally, we emphasize the importance of using both gene ex-
pression and spatial information in computing accurate partial
alignments. PASTE2 (α=1.0) has consistently low LTARI, indicat-

ing that using spatial coordinates alone cannot recover alignment
across slices. The performance of PASTE2 (α= 0), which only uses
gene expression information of each spot for alignment, drops
more quickly than PASTE2 (α= 0.1) with increasing pseudocount
δ indicating more noise in gene expression. Using both gene ex-
pression and spatial information, PASTE2 is able to accurately align
two partially overlapping ST slices. We investigated the effect of
different intermediate values of α on the alignment performance
(Supplemental Fig. S4) and found that α between 0.1 and 0.5 re-
sults in good performance.

Human dorsolateral prefrontal cortex (DLPFC) slices

We next compared PASTE2 to PASTE (Zeira et al. 2022) and two
other transcriptomics alignment methods—Pamona (Cao et al.
2022) and Tangram (Biancalani et al. 2021)—on the full human
DLPFC data set containing 10x Genomics Visium ST data from
three individuals (labeled sample 1, 2, 3) with four slices (labeled
slice A, B, C, D) per individual (Maynard et al. 2021). For each in-
dividual, slice A and B are 10 µm apart, the same as slice C and
D. Slice B and C are further apart at a distance of 300 µm, hence
slice pairs AB and CD are more similar to each other than slice
pair BC. Note that Pamona (Cao et al. 2022), amanifold alignment
algorithm formulti-omics data sets, is also based onpartial optimal
transport; Tangram (Biancalani et al. 2021) is a deep learning–
based method that aligns scRNA-seq data onto ST data. We create
partial ST alignment problems by generating two partially overlap-
ping DLPFC data sets as follows. For each individual, we extracted
the left portions of slice A and C, and the right portions of slice B
and D such that the extracted pairs AB, BC, and CD have ≈70%
overlap in area (Fig. 3A). We also created another set of partially
overlapping data using horizontal slices (Supplemental Fig. S5A).
We ran each of the methods as described in Supplemental
Material S8. We evaluate the accuracy of each method by comput-
ing the label transfer ARI (LTARI) as previously described.

We find that PASTE2 achieves the highest LTARI on all adja-
cent subslices of all individuals, for both vertical partial slices

B

A

C

Figure 3. Comparison of alignment methods on partially overlapping DLPFC slices. (A) Vertical subslices were obtained by cropping subslices (blue dot-
ted boxes) from four adjacent slices fromDLPFC sample 3, with indicated distances between adjacent slices. Each pair of adjacent subslices overlaps in 70%
of their areas. (B) LTARI of pairwise alignments computed by PASTE2, PASTE, Pamona, and Tangram for each pair of adjacent vertical subslices from three
samples. (C) Optimal projection of vertical subslices from slice AB of sample 3 onto the same 2D coordinate system using the PASTE2 partial alignment.
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and horizontal partial slices, with the exception of one pair (Fig.
3B; Supplemental Fig. S5B). About 70%–75% of the spots from
each subslice is aligned in each pair indicating the parameter s cor-
responds well with slice overlap. For most pairs, PASTE2 has more
than twice the LTARI than all other methods, demonstrating
PASTE2’s ability to identify the overlap region of the two ST slices
and align the overlap region reliably. On one pair, Pamona has
slightly higher LTARI than PASTE2 (Supplemental Fig. S5B), but
all methods have very low LTARI (<0.1), suggesting that this pair
has low spatial coherence. PASTE is the second-highest performing
method on most pairs, indicating that even though PASTE does
not model partially overlapping slices, it is still more suitable for
aligning spatial transcriptomics data than methods designed for
different purposes. Although Pamona is designed to align data
sets with both shared and data-set-specific cells (Cao et al. 2022)
—the analog of the partial pairwise slice alignment problem for
single cell data sets—Pamona does not model spatial constraints,
perhaps explaining its lower performance. Tangram assumes the
single-cell gene expression data set and the spatial data set come
from the same anatomical region (Biancalani et al. 2021); hence,
the partial slice alignment task violates the Tangram assumption,
leading to a low alignment accuracy.

For amore intuitive demonstration of PASTE2’s advantage and
accuracy,weprojected the vertical subslices of sample 3pairABonto
the same coordinate system, computed as described in Methods
based on the alignment matrix computed by PASTE2 (Fig. 3C), as
well as the optimal projection of the same pair based on the align-
ment computed by PASTE (Supplemental Fig. S6A). Qualitatively,
the projection of PASTE2 correctly stacks the overlap area of the
two slices, with spots from the same cortical layer stacking on top
of each other, although PASTE fails to find the corresponding layers
in the two slices.Additionally, PASTE2correctly identifies andaligns
theoverlapareaofall fourpartial slicesof an individualwhile leaving
the rest unaligned, leading to a visually correct 3D reconstruction of
the tissue from partial slices (Supplemental Fig. S6B).

We also ran STUtility (Bergenstråhle et al. 2020), a method to
align H&E stained images that are generated as part of the 10x
Genomics Visium STworkflow. STUtility outputs new coordinates
of the aligned slices and does not produce a mapping between
pairs of spots; thus, we visualized the alignment results by plotting
each pair of partial subslices according to the new coordinates out-
put by STUtility (Supplemental Fig. S7). The image masking func-
tion used by STUtility failed for the partial slices of sample 3, so we
only visualized the results for samples 1 and 2. STUtility correctly
identifies that each pair of input slices are partially overlapping,
but it does not align the correct overlapping region, and the output
alignment seems quite arbitrary. These results might be because
STUtility aligns images by identifying and finding correspondenc-
es between edges of the two input tissues, but when two tissues are
partially overlapping, the edges do not provide information about
spot correspondences. On the other hand, PASTE2 correctly aligns
the overlapping region (Fig. 3C). This shows that using transcrip-
tomic similarity, spatial similarity, and image information yields
better partial alignments than H&E images alone.

Finally, we compared PASTE2’s running time with other
methods on the vertical subslices of sample 3. PASTE2 finished
in under 10 min for all subslice pairs on a Macbook Pro with
2.4GHz Intel Core i5 CPU, with most of the running time spent
on the GLM-PCA subroutine (Supplemental Fig. S8). The condi-
tional gradient optimizer in PASTE2 runs in less than half of the
time of Pamona and Tangram, and only runs slightly slower
than PASTE. We also used the DLPFC data sets to evaluate the ac-

curacy of PASTE2’s model selection procedure for estimating the
overlap percentage s (Supplemental Material S9), and found that
PASTE2 correctly estimates the overlap percentage inmany scenar-
ios (Supplemental Figs. S9, S10).

Incorporating histology information improves alignment

We compared PASTE2’s alignment performance when using both
gene expression and histological image (Equation 5) versus using
only gene expression data (Equation 4). Note that spatial informa-
tion is included in both analyses.We ran the twomodes of PASTE2
on pairs of horizontal and vertical subslices from DLPFC sample
3. We found that using the histological image substantially im-
proved the alignment performance for pair CD (Fig. 4A,B), increas-
ing the LTARI from 0.34 to 0.46. Examining the alignment
obtained on this pair using only gene expression information
(Fig. 4C) to the alignment obtained with both gene expression
and the histology image (Fig. 4D), we observe that the alignment
obtained using the images is more spatially contiguous. In partic-
ular, there is a curve of unaligned spots (blue spots in Fig. 4C) in
subsliceD inside the yellow region. This curve corresponds to spots
that are manually annotated as Layer 6 of the DLPFC (Maynard
et al. 2021). Notably, the spots in this layer have lower total UMI
counts than other layers: the mean total UMI counts for spots
from Layer 6 is 2915 compared to total UMI counts ≈4500 in the
other layers. This suggests that the gene expression signal is weaker
in these spots. In contrast, the PASTE2 alignment obtained using
both gene expression and image information (Fig. 4D) does not
have the same curve of unaligned spots, demonstrating the advan-
tages of using the histological image for spots with a weak gene ex-
pression signal.

In the horizontal slices, we see cases in which using the image
information reduces the alignment performance. For example, the
LTARI drops from0.56 (expression) to 0.50 (expression and image)
for horizontal subslices of pair AB (Supplemental Fig. S11A,B). The
aligned part of subslice B in Supplemental Figure S11D shows that
many spots are left unaligned in the actual overlap region, and
there is a clear stripe of unaligned blue spots towards the left part
of the subslice. Looking at the H&E image of subslice B in
Supplemental Figure S11B, we see a clear dark stain on the left of
the subslice that is missing from the image of subslice A, at exactly
the same location of the unaligned stripe. This indicates that the
stain on the H&E image is the cause for the worse alignment
performance.

For the other pairs, the LTARI for PASTE2 alignments with
and without images is approximately the same. This is not too
surprising because the H&E images of DLPFC slices do not display
strong heterogeneity across different layers (Fig. 4B; Supplemental
Fig. S11B). Thus, gene expression appears to be the dominant sig-
nal in computing the alignment in this data set. To evaluate fur-
ther, we ran PASTE2 with only image information on the six
pairs of sample 3, and found that the LTARI is lower than using
only expression or using both expression and image on all pairs
(Supplemental Fig. S12), which shows that, on this data set, histo-
logical images alone cannot provide enough signal for finding an
accurate alignment. However, the fact that utilizing image infor-
mation corrects the alignment of low UMI spots shows the poten-
tial for histological images to guide PASTE2 alignment. The image
information can help overcome the sparsity of gene expression,
and when the histological images have greater variation across
spots, using the images should further improve the alignment
quality by complementing the gene expression signal.
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Spatial transcriptomics of Drosophila embryo

We applied PASTE2 to analyze a Stereo-seq data set from a
Drosophila embryo (Chen et al. 2022). Stereo-seq is a new SRT tech-
nology with 500-nm resolution, two orders of magnitude smaller
than the 10x Visium platform, but with lower UMIs per spot.
Wang et al. (2022) applied Stereo-seq to two late-stage Drosophila
embryos 14–16 h and 16–18 h after egg laying (labeled E14–16
and E16–18) and three stages of larvae (labeled L1–L3). Each slice
has ≈1000 spots with median UMI per spot of ≈2000, compared
to ≈4000 spots and ≈5000 median UMI per spot in the 10x
Visium DLPFC data set. They derived the cell type of each spot
by unsupervised clustering of gene expression followed by annota-
tion based on marker genes. The publication used PASTE to align
all slices from the same stage andobtain a 3Dmapof spatial expres-
sion of each stage. However, slices from the same stage vary in
size and cell type compositions and do not fully overlap in space.
For example, inspection of annotated cell types shows that

adjacent slices from the E14–16 sample do not fully overlap
(Supplemental Fig. S13). Therefore, it is appropriate to use
PASTE2 to realign the adjacent slices respecting the different com-
positionof cell types across slices, and to obtain amore accurate 3D
reconstruction of the Drosophila embryo.

We applied PASTE2 to compute a partial alignment for each
pair of 16 adjacent slices from the E14–16 sample, estimating the
overlap percentage using the PASTE2 model-selection heuristic
(Supplemental Material S1). Slices 7 and 8 have clear differences
in the composition of cell types annotated by Wang et al.
(2022), with the carcass cells showing the largest difference in pro-
portion (Fig. 5A). PASTE2 addresses this imbalance by aligning a
similar proportion of carcass cells across slices, leaving the excess
cells in slice 8 unaligned. The spots from the two slices included
in the PASTE2 partial alignment show similar spatial organization
(Fig. 5B) and cell type composition (Supplemental Fig. S14B). For
example, the proportions of carcass cells in slices 7 and 8 differ
by 10% before alignment (Supplemental Fig. S14A), but after

A B

C D

Figure 4. Evaluating the benefit of using histological image information in PASTE2 alignment. (A) The label transfer ARI (LTARI) of PASTE2 partial align-
ments of pairs of vertical subslices extracted from DLPFC sample 3 using only gene expression (blue) and using both gene expression and image informa-
tion (orange). (B) Histological images of sample 3 slice C and slice D. The red boxes bound the vertical subslices extracted for partial alignment. The right
part of subslice C should be aligned to the left part of subslice D. (C) Visualization of PASTE2 alignment of the subslice pair CD using gene expression and
spatial information. Yellow spots are aligned by PASTE2,whereas blue spots are unaligned. Thin black lines connect pairs of spots that are aligned by PASTE2
with high weight. (D) Visualization of PASTE2 alignment of the same subslice pair when gene expression, histological image, and spatial information are all
used.

B C DA

Figure 5. PASTE2 alignment of Stereo-seq data from an E14–16 Drosophila embryo from Wang et al. (2022). (A) Stereo-seq slices 7 and 8 with spots
labeled by cell types annotated in Wang et al. (2022). (B) Spots from slices 7 and 8 that are included in the partial alignment computed by PASTE2.
Spots selected by PASTE2 have similar proportions of cell types and spatial locations. (C) Optimal projection of slices 7 and 8 onto the same 2D coordinate
system using the PASTE2 partial alignment. (D) PASTE2 3D reconstruction using all 16 slices from the Drosophila embryo.
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alignment the difference is <3% (Supplemental Fig. S14B). The dif-
ferences in proportions shrink for salivary gland cells as well, indi-
cating PASTE2 correctly identifies and aligns the overlapping parts.
PASTE2 optimal projection of the two slices to the same coordinate
system puts slice 8 slightly higher in y coordinates than slice 7,
consistent with the observation that slice 8 has unaligned carcass
cells at the top (Fig. 5C). The LTARI obtained by PASTE2 for this
pair is 0.49, compared to an LTARI of 0.39 for PASTE, again show-
ing the advantages of partial alignment. Examination of pair of ad-
jacent slices 14 and 15 shows a similar advantage of partial
alignment. Slice 15 has a stripe of carcass cells that is absent in slice
14 (Supplemental Fig. S15A). PASTE2 leaves the stripe unaligned
across slices (Supplemental Fig. S15B,C), increasing the LTARI
from 0.29 for PASTE to 0.52 for PASTE2. Because PASTE computes
an alignment for all spots, the extra carcass cells in slice 15 are
mapped somewhere on slice 14, creating false correspondences be-
tween spots (Supplemental Fig. S16).

We compared the LTARI of the PASTE2 alignment with the
LTARI scores of PASTE, Pamona, and Tangram on every pair of ad-
jacent slices. PASTE2 achieves the highest LTARI for most pairs,
with the largest gain in pairs in which the two slices have different
compositions of cell types, such as slice 14 and 15 (Supplemental
Fig. S17). Pairs in which PASTE2 does not obtain the highest
LTARI, such as slice 2 and 3, have relative similar sizes and cell
types, and PASTE2 still achieves comparable LTARI with the high-
est performingmethod. This indicates that PASTE2 not only aligns
partially overlapping slices correctly, but also performs well on
pairs of similar slices.

We used PASTE2 to generate a 3D reconstruction of all 16 slic-
es of the E14–16 Drosophila embryo, in which adjacent slices have
on average 70% of overlapping spots (Fig. 5D). The PASTE2 3D re-
construction will be useful for refining the analyses presented in
Wang et al. (2022) who showed that the PASTE-generated 3D ex-
pression helped detect functional subregions and uncover the dy-
namics of cell state changes and tissue-specific gene regulation.

Discussion

We present PASTE2, a method to perform pairwise alignment and
3D reconstruction of multislice spatial transcriptomics data.
PASTE2 addresses the important situation in which slices partially
overlap in space or have different cell type compositions, which is
the case formost real data sets.We formulate the STpartial pairwise
alignment problemusing a partial fusedGromov-Wasserstein opti-
mal transport framework and derive an optimization algorithm to
solve this problem.We further design a model selection procedure
to determine the overlap between slices, and extend the framework
to incorporate both gene expression and imaging information.

We show on simulated data that PASTE2 achieves accurate
alignment and outperforms PASTE when slices do not fully
overlap. We found that PASTE2 outperforms multiple other meth-
ods for alignment of spatial transcriptomics or single cell data in-
cluding PASTE, Pamona, Tangram, and STUtility on ST data set
from the human DLPFC (Maynard et al. 2021). We show that
PASTE2’s use of histology images can further improve alignments,
although the results are variable depending on the quality of the
images.We expect that PASTE2will achievemuch higher accuracy
incorporating image information in data sets in which histological
images display stronger signal across spots—in preliminary results
on unpublished cancer data sets with high-quality H&E images we
observed even larger gains. Finally, we show PASTE2’s capabilities
on larger data sets from another SRT technology by generating a

3D reconstruction of a Drosophila embryo from 16 slices of
Stereo-seq data.

There are multiple directions for future work. First, is to ex-
tend the partial alignment framework to integrate multiple slices
into a single consensus slice to address the data sparsity issue by
pooling counts from corresponding spots (Zeira et al. 2022).
Second, one could stitch together multiple partially overlapping
slices into a larger 2D slice. This stitchingwould be helpful in cases
in which adjacent tissue slices are close in the z-coordinate which
is often the case with thin tissue slices (≈10 μm). In addition, one
could incorporate additional spatial regularization terms to en-
force more contiguous overlapping regions. Third, it would be in-
teresting to apply PASTE2 to integrated spatial transcriptomics and
imaging data from other platforms such as Slide-seq (Rodriques
et al. 2019; Stickels et al. 2021), or combined Stereo-seq and imag-
ing data whichWang et al. (2022) noted as a future technology de-
velopment. Finally, it would be interesting to examine the
effectiveness of other optimal transport frameworks such as unbal-
anced OT (Séjourné et al. 2021) that impose soft constraints rather
than hard constraints on partial alignments.

We anticipate that PASTE2will be a useful tool for integrating
transcriptomic information across multislice ST data sets and for
building 3D tissue atlas across both normal and diseased tissues,
such as in the Human Tumor Atlas Network and related projects.

Software availability

PASTE2 has been implemented in an open-source, publicly avail-
able Python package that is available at GitHub (https://github
.com/raphael-group/paste2). All the code to reproduce the analysis
can be found in Supplemental Code.
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