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Seed design is important for sequence similarity search applications such as read mapping and average nucleotide iden-

tity (ANI) estimation. Although k-mers and spaced k-mers are likely the most well-known and used seeds, sensitivity

suffers at high error rates, particularly when indels are present. Recently, we developed a pseudorandom seeding con-

struct, strobemers, which was empirically shown to have high sensitivity also at high indel rates. However, the study

lacked a deeper understanding of why. In this study, we propose a model to estimate the entropy of a seed and find

that seeds with high entropy, according to our model, in most cases have high match sensitivity. Our discovered seed

randomness–sensitivity relationship explains why some seeds perform better than others, and the relationship pro-

vides a framework for designing even more sensitive seeds. We also present three new strobemer seed constructs: mix-

edstrobes, altstrobes, and multistrobes. We use both simulated and biological data to show that our new seed

constructs improve sequence-matching sensitivity to other strobemers. We show that the three new seed constructs

are useful for read mapping and ANI estimation. For read mapping, we implement strobemers into minimap2 and

observe 30% faster alignment time and 0.2% higher accuracy than using k-mers when mapping reads at high error

rates. As for ANI estimation, we find that higher entropy seeds have a higher rank correlation between estimated and

true ANI.

[Supplemental material is available for this article.]

Introduction

Short k-length substrings of a sequence, often referred to as k-mers,
are widely used for sequence comparison in bioinformatic applica-
tions. A k-mer that is shared by two sequences implies an identical
region of size k, and with appropriate length on k, we may detect
similar but nonidentical regions through shared k-mers. Some of
the reasons that k-mers are often used for sequence similarity
detection is because they are fast to construct and because their
fixed length is easy to represent, store, and query, for example,
with hash tables ormore succinct data structures such as bloom fil-
ters (Bloom 1970), the FM-index (Ferragina and Manzini 2000),
andmanymore (Marchet et al. 2021). As k-mers indicate shared se-
quences, they are often used as markers, or seeds, indicating re-
gions for more extensive similarity comparison, for example,
through pairwise alignment.

With the broad use of k-mers as seeds, several limitations have
also been identified. For example, k-mers are sensitive to muta-
tions. If k is too small, we may obtain many redundant hits (e.g.,
owing to repeats). On the other hand, a too large k may destroy
all matches (low sensitivity) in mutation-dense regions or error-
prone reads. Detailed modeling of k-mers’ sensitivity to substitu-
tions at different rates was performed by Blanca et al. (2022).
Some studies have proposed altering the underlying biological se-
quence to reduce the mutation rates with, for example, homopol-
ymer compression (Au et al. 2012), or modifying the mutation
distribution using more advanced sequence transformations
(Blassel et al. 2022). However, most work has been aimed at in-
creasing seed sensitivity and lower seed repetitiveness of k-mers
by proposing alternative seed constructs.

Other seed constructs

Some approaches aim to alleviate repetitiveness issues in down-
stream analysis by dynamically extending the k-mers to provide
a less redundant set of matching seeds such as maximal exact
matches (MEMs), maximal unique matches (MUMs) (Delcher
et al. 1999), MCAS (Jain et al. 2022), and context-aware seeds
(Xin et al. 2020). These seeding constructs have been referred to
as dynamic seeds (Sahlin et al. 2023) as they are fixed neither in
length nor in the number of CPU cycles for their construction.
There are also seeding constructs known as subsampling methods
that aim to use only a subsample of k-mers as seeds owing to their
redundant nature using, for example, minimizers (Roberts et al.
2004) or later subsampling techniques (DeBlasio et al. 2019;
Ekim et al. 2020; Edgar 2021; Frith et al. 2021; Zheng et al. 2021;
Frith Shawet al. 2023). For an extensive studyof subsampling tech-
niques, see the work by Shaw and Yu (2021).

To overcome the issue of requiring only exact matches,
spaced seeds (or spaced k-mers) (Ma et al. 2002), vector seeds
(Brejová et al. 2005), covering template families (Giladi et al.
2010), insertion/deletion (indel) seeds (Mak et al. 2006), and
SimHash-based constructs (Charikar 2002) such as permutation-
based seeds (Lederman 2013) or BLEND (Firtina et al. 2023) have
been proposed that, particularly, tolerate substitutions. Covering
template families and indel-seeds are also designed to match
over small indels and are based on extracting several fixed-pattern
seeds per query position. For example, in the work by Giladi et al.
(2010), a combination of patterns is chosen to provide a guarantee
that at least one seed matches. The required number of extracted
seeds increases with indel size. Seeds that do not require an identi-
cal sequence to match are often called fuzzy seeds. In applications
in which substitutions are frequent, spaced k-mers have had
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practical success and are used in several state-of-the-art applica-
tions, such as in the general sequence similarity search software
BLAST (Altschul et al. 1990), and for metagenomic classification
(Brǐnda et al. 2015) and long-read mapping (Sovic ́ et al. 2016).

Previous work on seed sensitivity

In spaced seed literature, seed sensitivity has been extensively
studied. Typically, when using seeds, an alignment is triggered
if a certain number of seeds match in a region, for example,
through requiring either multiple hits (seed matches)
(Burkhardt et al. 1999) or a single hit (Keich et al. 2004) in a re-
gion. One drawback of requiring multiple hits is that a threshold
does not distinguish highly overlapping hits from disjoint ones.
For this reason, seed coverage (union of matching positions in a
region) has been proposed (Noé and Martin 2014). As spaced
seeds patterns are fixed, using multiple patterns as opposed to a
single seed pattern can increase sensitivity at low cost in specific-
ity (Sun and Buhler 2005).

The main conclusion in spaced seed literature is that many
highly overlapping matches are redundant, are uninformative,
and can lead to unnecessary computations for sequence-match-
ing applications. Typically, the aim is to select a set of seed pat-
terns consisting of fixed and wildcard positions that overlap or
correlate as little as possible. Related work on minimizing the
overlap of hits has been studied in the form of clump statistics
(Stefanov et al. 2007) or overlap complexity (Ilie and Ilie 2007),
the average distance between successive nonoverlapping hits
(Yang and Zhang 2008). In addition, there are other theoretical
studies of seed sensitivity quantifying the correlation between
seeds (Kong 2007) or using generating functions from analytical
combinatorics (Filion 2018), which have also been used in prac-
tice to select suitably spaced seeds when mapping short reads
(Filion et al. 2020). Finally, if seed sensitivity is defined as the
fraction of hits across a target sequence, merely computing the
sensitivity of a spaced seed pattern analytically is challenging
(Kucherov et al. 2006).

Strobemers and pseudorandomness

Recently, we introduced a new class of fuzzy seed constructs, stro-
bemers (Sahlin 2021), tolerant to substitutions and indels.
Strobemers expand on the ideas of neighboring minimizer pairs
(Chin and Khalak 2019; Sahlin and Medvedev 2021) and k-min-
mers (Ekim et al. 2021). Strobemers are constructed by linking to-
gether a set of smaller k-mers, called strobes, with differentmethods
to link the strobes (minstrobes, randstrobes, hybridstrobes). The
link methods use pseudorandom hash functions to decide the
strobes to sample in a seed. Therefore, strobemers are what we in
this study call pseudorandom seeds.Weuse the termpseudorandom
to refer to the characteristic that the sampling profile of the strobes
may appear random to the eye but is deterministic given the hash
function, similar to random number generators. Deterministic
sampling is necessary to generate matches between homologous
sequences. Figure 1A shows randstrobe seeds where the distance
between the strobes appears random but is deterministic given
the hash function and the underlying sequence. For how the pseu-
dorandom sampling works, see the Methods section. We use the
term pseudorandom seeds to distinguish them from other types of
fuzzy seeds that do not have a pseudorandom sampling process,
for example, SimHash based on locality sensitive hashing tech-
niques (Charikar 2002). It was shown that strobemers could offer
higher sensitivity and lower repetitiveness over k-mers, and they
have been used for short-read mapping (Sahlin 2022), long-read
overlap detection (Firtina et al. 2023), transcriptomic long-read
normalization (Nip et al. 2023), and symbiont classification with
long reads (Xu et al. 2023).

Motivation and aim

Without a clearmetric to optimize, seed design ultimately involves
trial-and-error-based analysis by plugging different seeds in align-
ment algorithms and evaluating the alignment results. Such anal-
ysis takes time and requires substantial computation resources.
More critically, such trial-and-error-based experiments may not

BA

Figure 1. Sampling of k-mers, randstrobes, and altstrobes. Panel A shows two homologous sequences S and T containing four mutations with k-mers,
randstrobes, and altstrobes sampled from T. When the sampled positions in a seed appear more random, it is likelier that at least one of the seeds in the
region will sample only non-mutated positions with respect to S. Such non-mutated seeds are colored gray in the figure, and seeds containing mutated
positions with respect to S are shown in red. Sampling non-mutated seeds in necessary to produce a seed match with seeds from S. Only a subset of five
seeds in the region is shown for clarity. In the example, the seed constructs all sample 30 fixed positions in a window of w=64 nucleotides which is the
maximal span of a randstrobe with parameters (2,15,25,50). The mutations are distributed such that they destroy all shared k-mers in the region, and
most of the randstrobes. Altstrobes have the possibility to sample k-mers of two different lengths at each site, which allow them a higher probability to
match between mutations. Panel B illustrates our modeling of seed entropy for seed construct k-mers and randstrobes. In the case of k-mers, there is
no pseudorandomness and therefore all probabilities are either 0 or 1, leading to an entropy of 0. Under uniform hashing, the randstrobes will have a prob-
ability of 2/3 of sampling position i owing to the three possible sampling positions of the second strobe. Boldfaced squares indicate the positions considered
for the computation of probabilities shown in the figure.
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provide fair feedback. Aligners consist of downstream heuristics to
evaluate candidate mapping sites and have seed-specific parame-
ters carefully tailed for the seed they were initially designed for.
Therefore, a new seed could reach higher accuracy or faster align-
ment time if its implementation was centered around another
seeding construct. This makes trial-and-error-based analysis inhib-
it the development of better seeding techniques andmotivates the
study of performance metrics more directly connected to the seed
itself.

Although the spaced seed literature has identified metrics
that predict high sensitivity for spaced seeds, it has so far not
been studied for pseudorandom seeds such as strobemers. The
aforementioned spaced-seed studies are all based on seeds with a
fixed sampling pattern (e.g., k-mers and spaced k-mers) in which
the sampling decision has no pseudorandom behavior after the
seed pattern has been chosen. Also, although there are spaced
seed studies focusing on optimal seed selection of a single seed pat-
tern (Gotea et al. 2003), most aforementioned spaced seed studies
are centered around selecting a set of spaced seeds with comple-
mentary properties.

Inspired by spaced k-mer literature that has focused on under-
standing themechanics of high sensitivity seeds, we aimed to find
why pseudorandom seeds such as strobemers achieve high sensi-
tivity and whether we could find a metric to predict it. In work
by Sahlin (2021), it was shown that randstrobes and hybridstrobes
had higher sensitivity than k-mers, spaced k-mers, andminstrobes.
These two constructs have, unlike the rest, a pseudorandom com-
ponent in how they select the next strobe, creating a seemingly
more random seed coverage distribution (for an example of randst-
robes and k-mers, see Fig. 1A). Therefore, it stands to reason that
something in the randomness of the sampled positions of a seed
may be positively correlated with seed sensitivity.We set out to in-
vestigate if this was the case.

Results

Main contributions and results overview

We modeled the probability that a pseudorandom seed samples a
position, given that the seed samples c positions in a window of
sizew, called a (c, w)-seed (Methods).We further stated the entropy
formula for the model (Methods). We also designed three new
pseudorandom seed constructs,mixedstrobes, altstrobes, andmul-
tistrobes (Methods) and computed the entropy for the new seed
constructs as well as the previously proposed seed construct
randstrobes. Our main finding is that, among various (c, w)-seeds
with set parameters on c and w, the entropy correlates closely
with seed sensitivity in most scenarios. We verify that our entropy
and sensitivity analysis also selects seeds that produce favorable re-
sults in sequence similarity search scenarios using metrics in work
by Sahlin (2021). Further, we show that our proposed seed con-
structs are fast to construct and implement them in minimap2.
Even though minimap2 is designed for minimizers and performs
subsampling of seeds that distorts the entropy and, thus, our sen-
sitivity predictions, we observe faster alignment time (up to 30%)
and slightly higher sensitivity (0.2%) than using k-mers of the
same size as seeds. We also perform an average nucleotide identity
(ANI)–estimation analysis using our strobemer constructs and
compare it to estimations from k-mers and show that strobemers
achieve higher correlation in ANI estimations than k-mers and
that the highest entropy seeds achieve the best ANI estimations
in terms of ranking sequence similarity.We conclude that entropy

is a useful metric to optimize (maximize) when constructing pseu-
dorandom seeds, and it avoids trial-and-error-based computation-
al evaluations based on plugging in seed constructs in existing
aligners.

Empirically verifying correlation between seed entropy

and sensitivity

We computed the seed entropy for k-mers, randstrobes, altstrobes,
mixedstrobes, and multistrobes for different parameter settings
varying (ks, kl), q. Specifically, we used the same parameters as in
work by Sahlin (2021), namely, k=30 for k-mers and (2, 15, wmin,
50), wmin∈ [16, 25, 35, 45] for randstrobes, which gives valid
(30, 64)-seeds. We consequently set for mixedstrobes (2, 15, wmin,
50, q) with q=0, 0.1, …, 1.0, for altstrobes and multistrobes (2, ks,
kl,wmin, 50) with ks=1, 2,…, 14.We then evaluated the computed
entropy of all seed parametrizations to empirical estimations of
seed sensitivity summed over various mutation rates (for simula-
tion details, see Supplemental Sec. S3). The sensitivity is defined
as the seed producing at least one match in a contiguous stretch
of w samples seeds (details in Methods, subsection “Objectives
for sequence similarity detection”).

Figure 2A shows the relationship between computed entropy
and sensitivity acrossmutation rates.We observe a very strong cor-
relation (0.96 and 0.92) for seeds computed from window sizes 35
and 26 (i.e., with wmin of 16 and 25). The correlation weakens as
windows get narrower, with only a 0.74 correlation coefficient
for very narrow strobe selection window of size 6 (wmin of 45).

We alsowanted to explorewhich parameter combinations for
each seed construct produced the most desired results. Figure 2B
shows entropy estimates (top row) compared with the sensitivity
(bottom row). Overall, we see that our entropy metric predicts
the sensitivity well both between parameters within a seed con-
struct and between seed constructs. Specifically, Figure 2, A and
B, shows that our entropy metric captures four trends. First, it sug-
gests that inmost cases, narrower (wmin,wmax) leads to lower entro-
py and, hence, lower sensitivity. This result may seem obvious in
hindsight, but it was unknown to us at the time of the strobemers
study (Sahlin 2021).

Second, given a fixed wmin, the model typically predicts
which parameter settings of q, ks yield good seed sensitivity for
the constructs individually. The exception are mixedstrobe entro-
py peaks forwmin = 25, 35, and 45, which are slightly shifted to pre-
dict peak sensitivity at a lower q (0.5–0.9) than what is observed
(0.7–0.9). This misprediction is more prevalent with smaller win-
dows such as wmin = 45 and is also the main contributor for weak-
ening the correlation in Figure 2A (blue dots). We are unable to
explain this particular disagreement for mixedstrobes.

Third, we can compare k-mers, randstrobes, mixedstrobes,
altstrobes, and multistrobes to each other. For most wmin, we ob-
serve that multistrobes reach the highest peak entropy, followed
in order by altstrobes, mixedstrobes, randstrobes, and, finally,
k-mers. This trend is also present in the sensitivity curves. The
peak sensitivity across all methods (13.0495) was reached by multi-
strobes with ks=4 closely followed by ks=3 (13.0494) for wmin=25.
After that were multistrobes with ks=7 for wmin =16 (13.048).
Several other ks on the multistrobes curves for wmin =16 and 25
also reached a summed sensitivity above 13. For altstrobes, the
peak sensitivity (12.980) was reached by ks=10 for both wmin=16
and wmin =25. For mixedstrobes, the peak sensitivity (12.848) was
reached by q=0.8 and wmin =25. These values roughly agree with
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the peak entropies of the individual curves. Peakentropy is obtained
by multistrobes with ks=4 (27.98), agreeing with peak sensitivity.

Fourth, the relative increase in entropy correlates well with
the relative increase in sensitivity (Fig. 2A; Supplemental Fig. S1).
For example, compare the relative distances between entropy
and sensitivity peaks for k-mers, randstrobes, altstrobes, mixedst-
robes, and multistrobes. Although the entropy curves are, in gene-
ral, more spread out, the relative distances are relatively well
preserved.

Supplemental Figures S1 and S2 show that our observations
generally hold also for experiments with wmax = 100 and 200
with varyingwmin. For example, seeds constructedwith larger win-
dow sizes have a higher correlation between the entropy metric
and seed sensitivity (Supplemental Fig. S1). Also, smaller window
sizes typically have lower entropy and sensitivity (Supplemental
Fig. S2), and the parametrizations for a given seed construct and
wmin can be ranked similarly as for the wmax = 50 experiments.
However, we see a trend that with larger windows, both the sensi-
tivity and entropy curves flatten out, suggesting that variable
strobe sizes do not matter as much for sensitivity as for smaller
windows. We believe this is because, in a large enough window,
there are more possibilities to find error-free stretches longer
than the strobe length, diminishing the necessity of hashing short
strobes that can fit between mutations.

Lastly, we used the best para-
metrizations (derived from Fig. 2B) and
plotted the sensitivity that the seed con-
structs achieved when inserting a set of
m mutations in a fixed length sequence
(i.e., giving rise to different mutation
rates). The results are shown in Figure
3A. We observe that the sensitivity in-
crease of, for example, multistrobes to
randstrobes and k-mers is relatively uni-
formly distributed across the different
mutation frequencies.

Seed uniqueness

Our entropy metric predicts only the
sensitivity of seeds. In sequence match-
ing, we also want to control the number
of false matches, which is a side effect
of fuzzy seeding constructs that have a
lower resolution representation of the
sequence (i.e., different sequences can
produce the same seed). We plotted the
E-hits metric (expected number of seed
hits) for the seed constructs using the
best parametrizations of each seeding
construct with wmin = 25 (derived from
Fig. 2B). The E-hits metric is a measure
of how repetitive the seeds are, where
lower E-hits is better (for details, see
Methods) We observe that the increase
in sensitivity comes at no cost in unique-
ness (Fig. 3B).

Model limitations

During our study, we learned that entro-
py is not the only feature that predicts
seed sensitivity. An aspect not captured

by our model is the probability that a contiguous segment (e.g.,
strobe or k-mer) is destroyed by mutations. An example of why
modeling of this is needed is the following. Consider the following
two different approaches of sampling mixedstrobes. In approach
1, we sample a k-mer or a strobemer based on the hash value of
the first k nucleotides at the start of the seed. In approach 2, we
sample a k-mer or a strobemer based on the hash value of the first
k/2 nucleotides (the strobe length) at the start of the seed. It is
straightforward to see that for any mutations m> 1, there will be
more shared k/2-mers than k-mers between the sequences.
Hence, the probability of sampling the same seed, and therefore
of generating a match, is higher for approach 2 (which we imple-
ment). The same argument holds for altstrobes and multistrobes,
which is why we decide the strobe length based on the hash of ks.

Ourmodel is agnostic to this probability. This becomes appar-
ent when applying our model to strobemers with very narrow
window sizes. We computed entropies and sensitivity estimates
for mixedstrobes, altstrobes, and multistrobes with window sizes
(wmin, wmax) of (49,50), (99,100), and (199,200) (Supplemental
Fig. S3). In these cases, the seeds roughly act as spaced k-mers
but with randomness over strobe size (altstrobes andmultistrobes)
or strobe fraction (mixedstrobes).Whereas the entropy curves vary
and predict clear optima for these window sizes, the sensitivity
curves are relatively flat but with peaks for k-mers, or near k-mer

A

B

Figure 2. Entropy and Sensitivity relationship of seeds. Panel A shows the relationship between entropy
(x-axis) and sum of sensitivity over different mutation rates (y-axis) for various window sizes indicated by
the coefficient of determination (square of the Pearson correlation coefficient). Panel B shows H(X|Y) (up-
per row) and summed sensitivity over various mutation rates (lower row) for k-mers, randstrobes, altst-
robes for different strobe length parametrizations (x-axis) and window sizes (tick mark shapes).
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constructs (ks= 1 altstrobes and mixedstrobes), which is expected
when comparing k-mers to spaced k-mers when indels occur.
Any indel within the seeds will destroy the seeds and, thus, give
low sensitivity when indels are present at significant fractions.
However, our model still estimates positive and variable entropy
because of the pseudorandom selection of strobe lengths (for altst-
robes andmultistrobes) or seed type (formixedstrobes). Themodel
could therefore be improved by adding a probability distribution
over indels or by estimating a probability that a contiguous region
is error free.

Also, our model assumes that the function for selecting the
position of the downstream strobe has a uniform distribution
over the possible positions, which requires a perfectly uniform
hash function. This is not true in practice, for example, as we
show in Supplemental Figure S4. Also, implementation-specific
limitations to achieve uniform hashing for randstrobes have
been identified (https://github.com/ksahlin/strobemers/issues/
8). Finally, as mentioned, our entropy measure cannot estimate
entropy for pseudorandom seed constructs that are correlated be-
tween neighboring seeds such as minstrobes and hybridstrobes.
However, our results show that the entropy of independent pseu-
dorandom seed constructs as computed by our model overall pre-
dicts well the relative sensitivities of pseudorandom seed
constructs.

Sequence-matching results

Furthermore, we used the sequence match analysis performed by
Sahlin (2021) to evaluate if the best parametrizations from our en-
tropy–sensitivity analysis also performs well in sequence similarity
search scenarios. In the sequence match analysis by Sahlin (2021),
several different aspects of sequence-matching performance were
evaluated, using both the simulations and genomic Oxford
Nanopore Technology (ONT) reads. For details about the data and
simulation setup, see Supplemental Section S4. We evaluated altst-

robes (ks=10), multistrobes (ks=5), and
mixedstrobes (q=0.1, …, 1.0) against
k-mers, and the other strobemers. We
used ks=10 and ks=5 for altstrobes and
multistrobes, respectively, as according
to our entropy and sensitivity analysis,
they should be better performing than
randstrobes for (wmin, wmax) = (25, 50).
First, to verify our results from the sensi-
tivity analysis, we performed an in-depth
analysis of altstrobes for different ks
using the match analysis on simulated
data performed by Sahlin (2021) (see
Supplemental Fig. S5). This analysis con-
firmed that ks=10 was preferable, in con-
cordance with our sensitivity analysis.
We then ran the matching analysis on
all strobemer constructs. For com-
parability with the strobemer study
(Sahlin 2021), we used the same para-
meters (e.g., k=30, and strobemers with
(2, 15, 25, 50)).We included in the results
minstrobes, hybridstrobes, and altstrobes
seeded andmixed with k-mers at different
fractions q=0, 0.1, …, 1.0. We also
computed altstrobes with various k-mer
fractions (i.e., mixed altstrobes) for for-

matting consistency with the other results. Multistrobes were not
seeded and mixed with k-mers and therefore always appear at
only the fraction q=1.0.We included results for strobemersof orders
n=2, 3 and 4, but we focus on evaluating n=2 here.

Both the simulated data (Supplemental Fig. S6, panels with
two strobes) and biological data (Fig. 4; Supplemental Figs. S7,
S8) experiments confirmed our sensitivity analysis. First, mixedst-
robes with a strobemer fraction of ∼70%–80% perform better than
strobemer-only seeding, as well in this sequence-matching analy-
sis. The fraction of matches is higher for mixedstrobes at 80%
than when seeding only randstrobes, whereas at the same time,
the sequence coverage and expected island size were also better.
Similar results can be observed for hybridstrobes and minstrobes.
Second, altstrobes andmultistrobes are outperforming randstrobes
and mixedstrobes, whereby multistrobes have the most desired
performance on both simulated and biological data, agreeing
with our sensitivity analysis. For the biological data, we observe
that adding 20% k-mers to altstrobes further increases the se-
quence coverage over only using altstrobes. We believe this is
because biological errors are less uniform, whichmay be beneficial
for k-mers. As such mixed altstrobes are using 10, 20, and 30 as
sampled strobe lengths, it could indicate that using a nonuniform
distribution of strobe lengths in multistrobes (as discussed in the
sensitivity analysis) could be beneficial.

Variable substitution frequency models

It is well documented that the frequency of nucleotide substitu-
tions and indels is species specific and can vary across functional
components of genomes. Hence, it is important to take these pat-
terns and frequencies into account when benchmarking different
seeding approaches. Previous study of strobemers (Sahlin 2021)
only investigated equally distributed substitutions, insertions,
and deletions at probability 1/3. Here we include an analysis
over various substitutions rates (from 0% to 100%), including

BA

Figure 3. Simulations showing how pseudorandomness in seed construct influences probability of w
consecutive seeds producing at least onematch in a region of length 2w=128 between sequences. Panel
A shows P(Nm(30, 64) > 0) for seed constructs k-mers (k=30), minstrobes, hybridstrobes, and randst-
robes with (2,15,25,50), mixedstrobes (2,15,25,50,0.8), altstrobes (2,10, 20,25,50), and multistrobes
(2,5,25,25,50). Each P(Nm(30, 64) > 0) estimate is derived from 10,000 instances of pairs of strings S
and T. In general, a large gap is observed between non-random constructs (k-mers, minstrobes) to con-
structs with pseudorandomness (hybridstrobes, randstrobes, mixedstrobes, altstrobes) for most muta-
tion frequencies. The total sum of probabilities across m is higher for constructs with more random
appearance. Panel B shows the seed uniqueness as expected number of hits (E-hits) from a seed randomly
drawn fromhumanChromosome 21. Chromosome 21 of the humanGRCh38 assembly was seededwith
k-mers, randstrobes (2, k/2, 25, 50), mixedstrobes (2, k/2, 25, 50, 0.8), altstrobes (2, k/3, 2k/3, 25, 50),
andmultistrobes (2, 5, k−5, 25, 50), whereby the number of extracted nucleotides (k=30) was the same
for all seeding techniques.
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also spaced k-mer seeds constructed as in work by Sahlin (2021).
Our analysis show that although spaced k-mers are the method
of choice when analyzing sequences with low relative fractions
of indels (0%–10%), their performance deteriorates as indels be-
comemore prevalent (>10%) (Fig. 5). In contrast, the performance
of strobemers and k-mers are more stable with varying indel rates.

Strobemers improve ANI estimation

ANI is a metric to estimate pairwise similarity between sequences,
commonly used in microbiology to determine whether genomes,
contigs, or reads belong to the same species (Ondov et al. 2016;
Jain et al. 2018). Although traditional implementations such as
that of Goris et al. (2007) required an alignment step that was usu-
ally performed using BLAST (Altschul et al. 1990), there are some
more recent alignment-free approaches that speed up the estima-
tion greatly without losing significant accuracy (Yoon et al.
2017; Jain et al. 2018). A popular alignment-free metric is the
Mash distance (Methods), as used, for example, in Mash (Ondov
et al. 2016) and FastANI (Jain et al. 2018).

We estimated ANI with k-mers and our new strobemer con-
structs with the Mash distance using both simulated data and our

ONT reads to benchmark the accuracy of
ANI estimations (Methods). We used the
R2metric (the square of the Pearson corre-
lation coefficient) and the total sum of
squares (TSS) to evaluate the approaches.
The R2metricmeasures the ranking corre-
lation between the ANI measure and the
actual error rate, that is, whether a
sequence A with lower ANI B also gets
a lower ANI estimate. This measure is
agnostic to how close the ANI estimate is
to the true ANI. On the other hand, the
TSS measures the actual closeness of the
predicted ANI to the true ANI. We
observed better R2 with the randstrobes,
mixedstrobes, altstrobes, and multi-
strobes, indicating that higher entropy
seeds are also better at estimating the
relative rank of sequences’ various error
rates for both the simulated and ONT
data (Figs. 6, 7, R2). As for estimating the
actual ANI, the TSS indicated that k-mers
performed the best. This is not surpris-
ing as the Mash distance was designed
for k-mers and uses k in its formula (Meth-
ods). However, wemodified theMash dis-
tance formula by applying a correction
term and fitted the best correction term
individually for k-mers, spaced k-mers,
and strobemers (Methods). With the
modified Mash distance, TSS indicated
that strobemer seeds (particularly randst-
robes, altstrobes, and multistrobes) had a
better linear correlation between the esti-
mated and true ANI than k-mers for
both simulated and ONT reads (Figs. 6,
7), albeit the improvement of ANI
estimation on the ONT reads is only mar-
ginally better. For the ONT data, the true
ANI was estimated by the read-to-

genome distance obtained from GGDC 3.0 with default settings
(Meier-Kolthoff et al. 2013, 2022). Note also that the rank correla-
tion metric R2 is not affected by adjusting the Mash distance. The
rank correlation is better for strobemers under both formulations.
In summary, we believe that strobemers seem promising for ANI es-
timation, particularly for ranking sequence similarity.

Time and memory to construct altstrobes, mixedstrobes, and

multistrobes

We implemented altstrobes, mixedstrobes, and multistrobes in
StrobeMap (Sahlin 2021) in C++. K-mers are 3.5 times, 3.5 times,
and2.5 times faster than altstrobes,multistrobes, andmixedstrobes,
respectively (Fig. 8A,B). However, the time difference becomes neg-
ligiblewhen looking at the total indexing time (including, e.g., sort-
ing seeds and adding tohash table), especiallywhen also taking into
account that indexing is not the time-limiting factor in most appli-
cations. The size on the index is nearly identical (Fig. 8A,B).

Strobemers in minimap2

We implemented subsampled randstrobes, mixedstrobes, altst-
robes, and multistrobes in minimap2 (Li 2018) (see Supplemental

Figure 4. Comparison between (mixed-)strobemers (2,15,25,50, q), (mixed-)altstrobes
(2,10,20,25,50, q), multistrobes (2,5,25,25,50), and k-mers (k=30) when mapping genomic Oxford
Nanopore Technology (ONT) reads from E. coli to its reference. The E. coli reads were split up in long dis-
joint segments of 2000 nt. Next, the segments were seeded with strobemer fractions q from 0% (k-mers)
to 100% (strobemers), downstreamwindows set to [25,50] and all strobes combined adding up to equal
length subsequences of size 30 for better comparison. Then for each segment, the collinear solution of
raw hits was computed to subsequently quantify the number ofmatches,match coverage, sequence cov-
erage, and expected island size.
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Sec. S5) to benchmark the speed and accuracy of our seeding tech-
niques and aligned simulated reads at various error rates to CHM13
(for details, see Supplemental Sec. S4). Our results indicate that
altstrobes (2,9,18,25,50), mixedstrobes (2,14,25,50,0.8), and mul-
tistrobes (2,6,22,25,50) have slightly more (0.2%) correctly
mapped reads and slightly faster alignment time (up to 30%) com-
pared with k-mers (k=28) with a similar number of extracted seeds
and peak RAM usage (Supplemental Fig. S9). Altstrobes, mixedst-

robes, and multistrobes also speed up
alignment up to 3.5 times compared
with the default setting (k=15). How-
ever, the number of correctly mapped
reads remains lower than the default set-
ting. This is expected as using much
smaller seeds is beneficial for sensitivity
at the cost of computing time. Also, min-
imap2’s search and extend parameters
are optimized for exact k-mer seeds,
which may give an implementation-spe-
cific advantage to k-mers in the analysis.
Second, minimap2 uses k-mer subsam-
pling through minimizers. Subsampling
(also called thinning) is not something
we modeled in our analysis and distorts
our entropy model, which assumes seeds
are sampled from every position.

Discussion

To our knowledge, we believe that we
have provided the first analysis of seed
sensitivity for seeds that uses a pseudo-
random sampling decision such as
strobemers. We describe a model for
estimating the entropy (randomness) of
a seed, and we discovered a strong posi-
tive correlation between the pseudo-
randomness of a seed construct and
its effect on seed sensitivity (Fig. 2A;
Supplemental Fig. S2).Ourdiscovereden-
tropy–sensitivity correlation may aid re-
searchers in finding more efficient seed
designs. In particular, without a clear
metric to optimize, designing efficient
seedsmay involve trial and error by plug-
ging in a new seed construct in an aligner
such asminimap2 and indirectly evaluat-
ing the seed performance using the out-
put alignment results as a proxy. First
off, this is costly in both time and compu-
tations. More pressing, trial-and-error-
based experiments may be biased. This
is because aligners havemanyparameters
designed and optimized for the seed con-
struct they were developed with, which
may obstruct the potential performance
gain or even prevent the implementation
of a new seed. Our entropy–sensitivity re-
lationship provides a more direct way to
predict seed performance and can save
time and cost in conducting trial-and-er-
ror-based experiments. In some cases,

we observed that ourmetric did not give accurate feedback on sen-
sitivity. We discussed these cases (for very short sampling win-
dows) (Supplemental Fig. S3) and explained future directions for
making our model more complete.

In addition to our discovered entropy–sensitivity correla-
tion, we have also expanded the strobemer family with mixedst-
robes (combining k-mers and strobemers), altstrobes (alternated
strobe lengths), and multistrobes (generalizing altstrobes). We

Figure5. Performance of (spaced) k-mers and strobemerswith various indel/substitutionpatterns in sim-
ulated data. For all the experiments, 1000 random sequences of length 10,000 nt were created and 1%,
5%, and 10% of the nucleotides of the reference string were mutated for the different experimental con-
ditions. Substitutions were hereby added with probabilities from 0% to 100% (substitution frequency),
whereas the other mutation positions were filled with insertions and deletions with equal probability.
Subsequently, the sequences were seeded with (spaced) k-mers of length k=30 as well as strobemers of
order n=2 with all sub-strobes summing up to k=30 and downstream windows set to [25,50].
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experimentally verified that for most parameter settings in which
they have higher entropy than randstrobes (the previously best-
performing strobemer), they also produce higher seed sensitivity.
We further validated the benefit of using mixedstrobes, altstrobes,
and multistrobes as seeds using several metrics (Fig. 4; Supple-
mental Fig. S6; Sahlin 2021) and also showed that altstrobes and
multistrobes have lower repetitiveness than, for example, randst-
robes (Fig. 3B; Supplemental Fig. S10).
Furthermore, we showed that mixedst-
robes, altstrobes, andmultistrobes are fast
to construct (Fig. 8A,B; Supplemental Fig.
S9) and do not constitute a bottleneck
in mapping applications. We imple-
mented randstrobes, mixedstrobes, and
altstrobes in mininmap2 (Li 2018). Mini-
map2 uses subsampling of seeds, which
distorts the relative entropies. Also,mini-
map2 implements chaining and other
search-based cutoffs centered around
minimizers. Nevertheless, we observed
that using subsampled randstrobes and
mixedstrobes within minimap2 for the
most divergent sequence (10% mutation
rates) both reduced runtime compared
with k-mers of the same size with 25%–

30% and resulted in 0.2%more correctly
mapped reads on CHM13 (Supplemental
Fig. S9). Finally, we estimated the ANI
with k-mers and our new strobemer con-
structs. Our analysis indicated that high-
er entropy seeds are also better at
estimating the relative rank of sequence’s
various error rates for both the simulated

and ONT data (Figs. 6, 7, R2). However, as for estimating the actual
ANI, k-mers performed the best, which is likely because the Mash
distance was designed for k-mers. However, a modified Mash
distance formula (Methods) fitted individually for k-mers, spaced
k-mers, and strobemers (Methods) showed that the highest entro-
py strobemers both estimated the ANI best and achieved the best
rank correlation. We believe that strobemers could be used for

Figure 6. ANI-estimates of simulated sequences. ANI estimations on simulated data as estimated by Adjusted Mash distance (Methods) with k-mers,
spaced k-mers, minstrobes, hybridstrobes, randstrobes (2,15,25,50), mixedstrobes (2,15,25,50,0.8), altstrobes (2,10,20,25,50), and multistrobes
(2,5,25,25,50). For each method, the square of the Pearson correlation coefficient (R2, higher is better) and the total sum of squares (TSS; lower is better)
between ANI estimation and true mutation rate is given.

Figure 7. ANI estimation as estimated by AdjustedMash distance (Methods) between E. coliONT reads
and a E. coli genome (assembly GCA 003018575.1 ASM301857v1) with k-mers, spaced k-mers,
minstrobes, hybridstrobes, randstrobes (2,15,25,50), mixedstrobes (2,15,25,50,0.8), altstrobes
(2,10,20,25,50), and multistrobes (2,5,25,25,50). For each method, the square of the Pearson correla-
tion coefficient (R2, lower is better) and the TSS (lower is better) between ANI estimation and true mu-
tation rate is given. The ANI was compared to the reads-to-genome distance (88.6%) obtained from
GGDC 3.0 with default settings (Meier-Kolthoff et al. 2013, 2022) using the TSS.
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ANI estimation, particularly for ranking sequence similarity,
which is used for selecting the best sequence out of multiple can-
didates and may be relevant for metagenomic sequence assign-
ment. However, this requires the design of an ANI formula
tailored for strobemers of various parameter settings.

We believe that our work opens up for future work in several
directions. First, wemayuse ourwork’s insights to produce even bet-
ter seed constructs. For example, our model suggests that finding
seed constructs with higher entropy could improve sensitivity fur-
ther. Another example is that, guided by our results (for ks=1)
(Fig. 2B), it seems viable to investigate multistrobes with different
sampling distributions over sizes, such as only using a subset of
strobe lengths, for example, three, seven, 11, 15, or similar. More
generally, it remains to be explored what the maximal entropy of
H(X|Y) is. We have not found a way to compute a reasonably tight
upper bound as there is a nontrivial dependence between Xi and Yj.
A seedwithhigh entropywill have the c sampled positions scattered
around in the w possible slots. A crude bound on H(X|Y) would be
the entropy of w independent Bernoulli variables with p= c/w. The
entropy for w independent Bernoulli variables, which has no guar-
antee that exactly c positions will be sampled, comes out to 63 for
(30, 64)-seeds, 94 for (30, 114)-seeds, and 125 for (30, 214)-seeds,
which are the parametrizations we investigated. However, we note
that these values overestimate the true maximal value. A (c, w)-
seed is restricted to sample exactly c out of w positions, lowering
the entropy (https://math.stackexchange.com/q/2682723). It also
remains to be exploredwhether such a randomly scattered seed con-
struct can be designed in practice.

Second, we believe that incorporating probabilities of error-
free runs (Blanca et al. 2022) will improve ourmodel, which is cur-
rently only modeling entropy. Third, it is common to subsample
of seeds to reduce memory footprint and processing time. We are
interested in adapting our model to incorporate subsampling. It
is clear that when subsampling, the advantage that pseudorandom
seed constructs (e.g., strobemers) have over k-mers reduces
(Supplemental Table S1; also shown by Sahlin 2021). This is

because the high overlap of k-mers is removed with subsampling.
Nevertheless, it would, for example, be beneficial to understand
which subsampling densities andmethods are suitable for pseudo-
random seeds. Fourth, because the minimap2 implementation is
centered aroundminimizers, it is possible that aligners customized
for, for example, strobemers or other pseudorandom seedsmay en-
joy an even more substantial performance gain, as shown for
short-read alignment (Sahlin 2022). Fifth, strobemers showed
promising initial results for ANI estimation. It would be interesting
to explore how strobemers can be used for ANI estimation in rele-
vant applications. A first step is to find an ANI formula adjusted for
strobemer seeds.

Methods

Formalizing entropy of seed constructs

Notation

We define a subsequence of a string as a set of ordered nucleotides
that can be derived from the string by removing some or no ele-
ments while keeping the order of the remaining elements. If all let-
ters in the subsequence are consecutive,we refer to it as a substring.
We use zero-indexed notation for indexing sequences or strings,
and we write S[i:j], i< j to refer to a substring of a string S starting
at position i and ending at j but not including the character at j.
That is, the start index is inclusive, but the end index is exclusive.
We let the | · | operator denote the length of strings; for example,
|S[i:j] | = j− i. We let the +operator denote string concatenation if
applied to strings. Finally, we use h to denote a hash functionmap-
ping strings to integers.

Strobemers

Strobemers are seeds that consist of n>1 ℓ-mers (strobes) (Sahlin
2021). The first strobe s1 is the ℓ-mer at the position where the
seed should be extracted. The subsequent strobes s2, …sn are cho-
sen from downstream windows defined by a lower (wmin) and

A B

Figure 8. StrobeMap benchmarking. To benchmark our two new seeding techniques, Chromosome 21 of the GRCh38 human genome assembly
(B) and one E. coli genome (assembly GCA 003018575.1 ASM301857v1) (A) were indexed with k-mers (k=30), randstrobes (2, 15, 25, 50), mixedstrobes
(2, 15, 25, 50, 0.8), altstrobes (2, 10, 20, 25, 50), and multistrobes (2, 5, 25, 25, 50) using StrobeMap. All experiments were repeated 10 times and the
average (mean) was computed to account for variance in computer processing speed.
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upper (wmax) offset to its respective previous strobe’s window.
Hence, strobemers are characterized by the number of strobes
(n), the length of the strobes (ℓ), and the window constraints
(wmin and wmax). Three methods to construct downstream strobes
s2, …, sn were given by Sahlin (2021): minstrobes, hybridstrobes,
and randstrobes. For minstrobes, strobe s2 is simply the minimizer
(Roberts et al. 2004) in the window [wmin, wmax] downstream from
the first strobe. Hybridstrobes partition [wmin, wmax] into x sub-
windows and pick as s2 the minimizer in subwindow h(s1)%x (or-
dered 0 to x−1). Randstrobes, the most effective seed by Sahlin
(2021), select as s2 the ℓ-mer s

′
in the window [wmin, wmax] that

minimizes a hash function h(s1 + s
′
) (although there are variations

to string concatenation) (see Sahlin 2021). Further downstream
strobes if n> 2 are sampled analogously to S2. This study will most-
ly consider strobemers with n= 2.

Notation of seeds

For convenience, we use the following general notation for the
construction of seeds. Let c and w be two positive integers with
c ≤w, where c denotes the number of distinct positions sampled
in a substring of length w in a string S. Let f(i, c, w, S, ∗) denote
some function that starts at position i in S and extracts a sub-
sequence of characters at c distinct positions in the substring
S[i:i +w] using only the information in S[i:i+w]. We use the final
argument ∗ to denote any seeding specific parameters that may in-
clude, for example, the sampling pattern for spaced k-mers or the
parameters (n, ℓ, wmin, wmax) for strobemers. We will refer to seeds
constructed by any f with parameters c and w as a (c, w)-seed.

Pseudorandom seeds

For the seed to be a pseudorandom seed, f needs to use a pseudo-
random sampling decision. Seeds such as k-mers and spaced
k-mers have a fixed sampling pattern and are not pseudorandom
seeds. The pseudorandomness in strobemer seeds is enforced
through the hash function h, which decides which strobes to sam-
ple. The selection of subsequent strobes s2, …sn appears random
but is fully deterministic given a hash function and the underlying
sequence from which seeds are sampled.

Modeling entropy of a pseudorandom seed

We define entropy of a seed as follows. Consider a position p on a
string Swith w− 1≤ p≤ |S|−w; that is, p is not close to the bound-
aries. For any given seed, let Yj∈ 0, 1 be the binary variable denot-
ing if position j∈ [0, k− 1] is sampled from p on S (Yj = 1). Let i be
an indexing integer on the reference starting at i = 0 for the posi-
tion immediately downstream from p, and Xi be the binary vari-
able describing the event that position i is sampled by the same
seed (Fig. 1B). Then Xi|Yj describes the event that position i is
sampled on S conditioned on that position p in S has been sam-
pled at position j in the seed, and P(Xi|Yj) denotes the probability
of this event. The conditional entropy of a seed sampling any
downstream position given that p was sampled by the seed,
X|Y, is computed as

H(X|Y) = −
∑k−1

j=0

∑w−2

i=0

P(Yj)P(Xi|Yj) log2 P(Xi|Yj)

= −1
k

∑k−1

j=0

∑w−2

i=0

P(Xi|Yj) log2 P(Xi|Yj). (1)

Here P(Yj) = 1/k by the assumption that any position j on the
seed is equally likely to be sampled from reference position p if we
pick a position p at random. Also, variable i only needs to be

summed up to w− 2 as positions further downstream will have
a probability of zero. The probability P(Xi|Yj) is specific to the
seed construct but can, for strobemers, be structured up into cases
and is relatively straightforward to compute. We provide exam-
ple computations for k-mers, randstrobes, altstrobes, mixedst-
robes, and multistrobes in Supplemental Section S2. All seed
constructs without pseudorandomness such as k-mers and
spaced k-mers have an entropy of zero according to Equation 2,
as P(Xi|Yj) is either zero or one.

Our entropy measure cannot estimate entropy for seed con-
structs that pass information (are correlated) between neighboring
seeds for pseudorandomdecisions. An example of such a seed con-
struct is hybridstrobes, which use minimizers (Roberts et al. 2004)
that can be shared between neighboring windows. Nevertheless,
we will see that the estimate will be a useful predictor for randst-
robes and other pseudorandom seed constructs that we introduce
in this study. Finally, our model is agnostic to the underlying error
pattern, for example, the relative fraction of substitutions to
indels. It is known that some patterns such as spaced k-mers per-
form well when substitutions are more frequent than indels
(Leinonen and Salmela 2022).

Evaluating seed performance

Constraints on f

We impose the following three basic constraints on f to be viable
for sequence matching.

C1. f produces the same (c, w)-seeds for two strings S and T if S=T.
C2. f produces valid (c, w)-seeds ∀S, S [ S∗.
C3. At most one seed is produced per position in a sequence.

C1 and C2 are necessary for sequence matching. An example
of a construct that violates C2 is “sample the position if the letter is
A or C” because there may not be enough A’s and C’s in the win-
dow. C3 limits querying to, atmost, one lookup per position,mak-
ing the constructs efficient. We have intentionally described f in a
general fashion in order to encompass more general construction
techniques. For example, a k-mer would deterministically sample
the first k nucleotides (nt), regardless of the size of w. A randstrobe
(Sahlin 2021) with parameters (2,15,25,50) is a valid (30, 64)-seed
because the maximum span of sampled positions in the randst-
robe is w=50+ 15−1=64, and f would sample 15 nt at S[i:i+15]
as the first strobe and then sample the next strobe starting some-
where in S[i+ 25:i+50].

E-hits of seeds

We will in our assessment of seeds need a notion of seed repeti-
tiveness, and we will use E-hits for this. The definition of E-hits
was given by Sahlin (2022) and is a measure of how repetitive
the seeds in a query sequence are, on average, in a reference
data set. More specifically, E-hits compute the expected number
of hits that a seed matched to the reference will have given that
the seed is error-free and comes from a query uniformly sampled
from the reference. E-hits can be calculated for any seedingmech-
anism and reference data set. For a given reference data set, let N
be the total number of seeds sampled, M the total number of dis-
tinct seeds sampled, and zi be the total number of times the dis-
tinct seed i (1≤ i≤M ) is sampled. Then, E-hits is computed as
follows:

E− hits = 1
N

∑M
i=1

z2i . (2)
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Objectives for sequence similarity detection

Our objective is to maximize the probability that a seed matches
between two homologous sequences, given any number of muta-
tions, while remaining precise enough not to yield spurious
matches to nonhomologous regions. We state the objectives in
precise terms here. Let two strings S and T, each of length 2w,
have an edit distancem≥0 to each other. LetNm(c,w) be the num-
ber of seed matches from the first w consecutive (c, w)-seeds con-
structed from S and T (see Fig. 1A). We desire a function f that
extract (c, w)-seeds such that

O1. P(Nm(c, w) > 0) is as large as possible ∀m ≥ 0.
O2. The E-hits metric (Sahlin 2022) for f is as small as possible.

O1 relates to seed sensitivity, andO2 relates to seed repetitive-
ness. The formulation of Nm(c, w), namely, to only consider the
first w seeds in a region of 2w for short strings, may seem unfair
to k-mers. This is because k-mers can produce additional hits be-
tween S and T from the last w− k seeds at the ends of S and T
(see Fig. 1A). This advantage is present at the end of each sequence
or at the end of every alignment site in the case of split alignments
by large indels or rearrangements. We aim to model a scenario in
which sequences are substantially longer than the extraw− k seeds
in the ends, for example, as for long reads. Therefore, O1 reflects all
regions but the w-long end region of sequences.

Alternative strobemer constructs

Based on our intuition that randomness would improve sensitivity
and our designed model for estimating entropy, we wanted to ex-
plore whether altering various parameters in the original stro-
bemer constructs (proposed by Sahlin 2021) would lead to
higher entropy and, therefore, higher sensitivity.We here propose
three alternative seed constructs to the strobemer seed-family:
mixedstrobes, altstrobes, and multistrobes. We will later show
that these seed constructs, for some parametrizations, can yield
higher sensitivity than randstrobes, which was the most sensitive
seed proposed by Sahlin (2021). Notably, the parametrizations
that receive higher sensitivity than randstrobes also receive higher
entropy in our model, although the reverse is not always true.

Mixedstrobes

Mixedstrobes samples either a k-mer or a strobemer at a specified
fraction. Any strobemermay be sampled, but wewill only consider
randstrobes here. We parameterize mixedstrobes as (n, ℓ, wmin,
wmax, q), where n is the number of strobes, ℓ is the strobe length,
wmin and wmax are the minimum and maximum downstream off-
sets to last window, and q is the strobemer fraction.Whether a stro-
bemer or a k-mer is seeded depends on the hash value of the first
strobe h(S[i:i+ℓ]) and the user-defined strobe fraction q. The strobe
fraction q is represented as numeratorN and a denominatorD (e.g.,
q=0.6 is represented as N= 60 and D=100) so that

f (i, k, w, S, ∗) = Sample strobemer, if h(S[i:i+ ℓ]) % D , N
Sample k−mer, otherwise

{

The full pseudocode to construct mixedstrobes is given in
Algorithm 1 in Supplemental Section S1.

Altstrobes

Altstrobes are modified randstrobes in which the strobe length al-
ternates (hence, altstrobes) between shorter and longer strobes. For
example, instead of having two strobes of length k/2 as imple-
mented in randstrobes of order 2, altstrobes of order 2 consist of
one short strobe ks and one longer strobe kl, with |ks| + |kl| = k. We

parameterize altstrobes as (n, |ks|, |kl|, wmin, wmax). We refer to sam-
pled altstrobes with n=2 as (|ks|, |kl|) or (|kl|, |ks|), depending on if
the short strobe was used first or second, respectively. We decide
the length of the first strobe based on the hash value of the sub-
string of length |ks| (i.e., the potential first strobe). Specifically,

f (i, k, w, S, ∗) =
Sample altstrobe (ks, kl), if h(S[i:i+ |ks|]) % 2 = 0

Sample altstrobe (kl, ks), otherwise

{

The sampled strobe length is decided by the hash value of the
shorter strobe. Otherwise, mutations within the positions [ks, kl]
downstream from the start position may lead to seeds being sam-
pled differently between two sequences, which leads to unneces-
sary seed mismatches. The sampling of the second strobe is
performed identically to randstrobes in a downstream window
specified by wmin and wmax as described by Sahlin (2021).

For fair benchmarking to other strobemer seeds, we imple-
ment two evaluation-specific constraints on altstrobes. First, n
has to be even to guarantee seeds with the same number of sam-
pled positions. Second, to guarantee that all altstrobe seeds are
(c, w)-seeds, we adjust the sampling window offset depending on
if it is the long or short strobe we sample first. Specifically, we let
kl in altstrobe (ks, kl) be sampled from [wmin− (kl− ks)/2, wmax−
(kl− ks)/2] and ks in altstrobe (kl, ks) be sampled from [wmin + (kl−
ks)/2, wmax + (kl− ks)/2]. These constraints are only implemented
for controlled benchmarking. The full pseudocode to construct
altstrobes is given in Algorithm 2 in the Supplemental Section S1.

Multistrobes

Multistrobes are generalized altstrobes in which strobe lengths are
selected in a range of lengths. They are parameterized identically to
altstrobes as (n, |ks|, |kl|, wmin, wmax) with |ks| + |kl| = k. However, un-
like altstrobes, they can sample any length of a strobe in [|ks|, |kl|].
Similar to but more generally expressed than altstrobes, the strobe
length of the first sampled strobe k1 in multistrobes is given by
k1 =.∣∣ ∣∣ks∣∣ ∣∣+ (h(S[i:i+ |ks|])%(|kl| − |ks| + 1)). The second strobe
length is then given the length k2 =. k−∣∣ ∣∣k1∣∣ ∣∣ and is sampled iden-
tically to altstrobes in a downstream window. We use the same
evaluation-specific constraints as described for altstrobes for fair
benchmarking to other strobemers.

For small ks, uniform sampling of lengths is not possible. For
example, for |ks| = 1, only four possible hash values can be pro-
duced,whichmaybe smaller than |kl− ks+1|. Similar but not as ex-
treme effects are present for |ks| 2 and 3, especially if several of the
few possible hash values map to the same lengths. We use some
implementation tricks to keep a high uniformity despite low ks giv-
en in Supplemental Section S1.3. The full pseudocode to construct
multistrobes is given in Algorithm 3 in Supplemental Materials.

ANI estimation

Mash distance

The Mash distance is computed as

I(A, B)/100 = 1+ 1
k
× ln

2 · J(A, B)
1+ J(A, B)

( )
, (3)

where J(A, B) denotes the Jaccard distance between two (seed) sets
A and B.

Modified Mash distance

Using the original Mash distance, we did not observe as good
agreement (TSS) between the estimated ANI (Mash distance) and

Maier and Sahlin

1172 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277645.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277645.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277645.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277645.123/-/DC1


the true ANI as for k-mers. This is expected, as theMash distance is
specifically designed for k-mers. Therefore, we introduced a correc-
tion term cf∗(1− I(A, B)) and fitted the correction factor individual-
ly for k-mers, spaced k-mers, and strobemers with

I(A, B)′ = I(A, B)+ cf ∗(1− I(A, B)). (4)

We selected the best possible correction factor fit for each of
the methods. That is, cf was set to the value that resulted in the
lowest TSS for each of the methods, which were 0.075, 0.165,
0.3, and 0.6 for k-mers, strobemers, and dense- and sparse-spaced
k-mers, respectively. Note, that the correction term does not alter
the rank correlation (R2) metric.

Simulated experiments

For our simulated experiments, we sampled 1000 random refer-
ence sequences of 1000 nt, whereby the probability of each of
the 4ntwas 25% for eachposition.We then simulated correspond-
ing query sequences (reads) for each experimental condition by
introducing mutations to the reference sequence, with the per-
centage of mutated nucleotides ranging from 0.5% to 10% in in-
crements of 0.5%, yielding 20,000 benchmarking sequences.
Insertions, deletions, and substitutions were hereby added with
equal probability of 1/3, which represent typical error profiles in
ONT reads (Sahlin and Medvedev 2021).

Next, we constructed seeds from the sequences with k-mers,
(k=30), spaced k-mers with different two different densities, and
strobemers (2, 15, 25, 50) and subsequently computed the Mash
distance for each sequence. If a method did not yield any matches
for a certain sequence, we did not compute theMash distance of it
and discarded it from the analysis (<0.1% of k-mers and min-
strobes, <0.25% of dense-spaced k-mers, and ∼20% of sparse-
spaced k-mers). No read was discarded for the other strobemer
methods (hybridstrobes, randstrobes, mixedstrobes, altstrobes,
multistrobes). The high number of spaced k-mers discarded is ow-
ing to the high indel rate in the reads with the highest error rate.

ONT experiments

To estimate the ANI for Escherichia coli Oxford Nanopore
Technology reads, we first computed the longest collinear chain
of rawhits for each disjoint segment of 2000 bp to obtain the num-
ber of matches while avoiding overcounting spurious hits (for de-
tails, see Supplemental Sec. 4.4). Based on the number ofmatching
and nonmatching seeds, we computed the adjustedMash distance
provided above.

The adjusted Mash distances of all segments from all reads
were combined (mean) to estimate the ANI. As we do not know
the true mutation rate of the reads, we computed the read-to-ge-
nome distance using the online GGDC 3.0 with default settings
(Meier-Kolthoff et al. 2013, 2022) and compared the ANI estimates
of each segment to theGGDC score using the TSS adjusted to equal
sample size.

Data analysis

Data analysis was conducted in R 4.1.3 (R Core Team 2022) and
Python 3.10 (Van Rossum andDrake 2009). Figures were produced
using the packages ggplot2 3.3.5(Wickham 2016) and ggh4x 0.2.3
(https://github.com/teunbrand/ggh4x, https://teunbrand.github
.io/ggh4x/) in tidyverse 1.3.1 (R) (Wickham et al. 2019) and
Matplotlib 3.5.1 (Hunter 2007) and seaborn 0.11.2 (Python)
(Waskom 2021).

Software availability

All the scripts used for the analysis and evaluation, as well as our
seed implementations in StrobeMap and minimap2, are available
at GitHub (https://github.com/benjamindominikmaier/mixeds
trobes_altstrobes) and as Supplemental Code.
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