Method

Deriving confidence intervals for mutation rates across
a wide range of evolutionary distances using

FracMinHash

Mahmudur Rahman Hera,! N. Tessa Pierce-Ward,? and David Koslicki

1,3,4

"Department of Computer Science and Engineering, The Pennsylvania State University, State College, Pennsylvania 16801, USA;
2Department of Population Health and Reproduction, University of California, Davis, California 95616, USA; 3 Department of Biology,
The Pennsylvania State University, State College, Pennsylvania 16801, USA; *Huck Institutes of the Life Sciences, The Pennsylvania

State University, State College, Pennsylvania 16801, USA

Sketching methods offer computational biologists scalable techniques to analyze data sets that continue to grow in size.
MinHash is one such technique to estimate set similarity that has enjoyed recent broad application. However, traditional
MinHash has previously been shown to perform poorly when applied to sets of very dissimilar sizes. FracMinHash was re-
cently introduced as a modification of MinHash to compensate for this lack of performance when set sizes differ. This ap-
proach has been successfully applied to metagenomic taxonomic profiling in the widely used tool sourmash gather.
Although experimental evidence has been encouraging, FracMinHash has not yet been analyzed from a theoretical perspec-
tive. In this paper, we perform such an analysis to derive various statistics of FracMinHash, and prove that although
FracMinHash is not unbiased (in the sense that its expected value is not equal to the quantity it attempts to estimate),
this bias is easily corrected for both the containment and Jaccard index versions. Next, we show how FracMinHash can
be used to compute point estimates as well as confidence intervals for evolutionary mutation distance between a pair of
sequences by assuming a simple mutation model. We also investigate edge cases in which these analyses may fail to effec-
tively warn the users of FracMinHash indicating the likelihood of such cases. Our analyses show that FracMinHash estimates
the containment of a genome in a large metagenome more accurately and more precisely compared with traditional
MinHash, and the point estimates and confidence intervals perform significantly better in estimating mutation distances.

[Supplemental material is available for this article.]

One strategy scientists use when analyzing large data sets is to cre-
ate a low-dimensional “sketch” or “fingerprint” of their data that
allows fast, but approximate answers to their query of interest.
Such sketching-based approaches in recent years have been
successfully applied to a variety of genomic and metagenomic
analysis tasks, due in large part to such methods incurring low
computational burden when applied to large data sets. For exam-
ple, Mash (Ondov et al. 2016) is a MinHash (Broder 1997)-based
approach that was used to characterize the similarity between all
pairs of RefSeq genomes in <30 CPU h. Such efficiency gains are
due primarily to sketching-based approaches recording a small
subsample (or modification thereof) of the data in such a fashion
that some distance metric or similarity measure is approximately
preserved, a process called a locality sensitive hashing scheme. In
bioinformatics, this has resulted in improvements to error correc-
tion (Miclotte et al. 2015; Sahlin and Medvedev 2021), assembly
(Birol et al. 2009; Chin and Khalak 2019; Ghosh and Kalyanara-
man 2019; Ekim et al. 2021), alignment (Jain et al. 2018; Li
2018), clustering (Zhang et al. 2014; Crusoe et al. 2015; Koslicki
and Zabeti 2019; Pierce et al. 2019), classification (Breitwieser
et al. 2018; LaPierre et al. 2019, 2020), and so on. Importantly,
the accuracy and efficiency of sketching approaches can frequent-
ly be characterized explicitly, allowing practitioners to balance
between efficiency improvements and accuracy. Often, these

Corresponding author: dmk333@psu.edu

Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.277651.123.
Freely available online through the Genome Research Open Access option.

theoretical guarantees dictate that certain sketching approaches
are well suited only to certain kinds of data. For example, Min-
Hash, which is used in many of the aforementioned applications,
has been shown to be particularly well suited to quantify the sim-
ilarity of sets of roughly the same size but falters when sets of very
different sizes are compared (Koslicki and Zabeti 2019). This moti-
vated the introduction of the containment MinHash, which used a
MinHash sketch of the smaller set, with an additional probabilistic
data structure (a Bloom filter) (Bloom 1970) to store the larger set.
Although this improved speed and accuracy, this approach can be-
come quite inconvenient for large sets owing to requiring a bloom
filter to be created for the larger of the two sets.

To ameliorate this, an approach called the FracMinHash was
recently introduced (Irber 2020; Irber et al. 2022) that uses a Min-
Hash hash selection approach but allows sketch size to scale natu-
rally with the size of the underlying data, similar to ModHash
dynamic scaling (Broder 1997). These properties allow both Jac-
card and containment estimation between FracMinHash sketches,
extending the computational advantages of MinHash sketches be-
yond similar-sized genome comparisons to sequencing data sets of
all types. Most notably, FracMinHash enables large-scale metage-
nome analyses, including genomic and metagenomic similarity
assessment, metagenomic taxonomic classification, streaming da-
tabase searches, and outbreak detection via genomic surveillance
(Pierce et al. 2019; Viehweger et al. 2021). FracMinHash sketching

© 2023 Rahman Hera et al. This article, published in Genome Research, is avail-
able under a Creative Commons License (Attribution-NonCommercial 4.0
International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

33:1061-1068 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/23; www.genome.org

Genome Research 1061

www.genome.org

mailto:dmk333@psu.edu
https://www.genome.org/cgi/doi/10.1101/gr.277651.123
https://www.genome.org/cgi/doi/10.1101/gr.277651.123
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml

Rahman Hera et al.

is implemented in a software package called sourmash (Brown and
Irber 2016). Independently, and more recently, the same concept
of FracMinHash was introduced with the name universe minimizer
(Ekim et al. 2021).

Although there is ample computational evidence for the
superiority of FracMinHash compared with the classic MinHash,
particularly when comparing sets of different sizes, no theoretical
characterization about the accuracy and efficiency of the FracMin-
Hash approach has yet been given. In this paper, we address this
missing characterization of accuracy and efficiency by deriving a
number of theoretical guarantees. In particular, we show that the
FracMinHash approach, as originally introduced, requires a slight
modification in order to become an unbiased estimator of the con-
tainment index (in terms of expected value). After this, we charac-
terize the statistics of this unbiased estimator and derive an
asymptotic normality result for FracMinHash. This in turn allows
us to derive confidence intervals and hypothesis tests for this esti-
mator when considering a simple mutation model (which is relat-
ed to the commonly used average nucleotide identity [ANI] score).
We also characterize the likelihood of experiencing an edge case
when analyzing real data, which allows us to provide a level of con-
fidence along with the estimated containment index. Finally, we
support the theoretical results with additional experimental evi-
dence and compare our approach to the frequently used Mash dis-
tance (Ondov et al. 2016). Many of these theoretical findings have
already been implemented into the sourmash (Brown and Irber
2016) computational package (see https://github.com/sourmash-
bio/sourmash/pull/1967 and https://github.com/sourmash-bio/
sourmash/pull/2032).

Methods

In this section, we describe theoretical analyses of the contain-
ment index using FracMinHash. For the sake of continuity from
a reader’s perspective, we have included proofs of all theorems in
the Supplemental Materials (Sec. A.3).

FracMinHash and its statistics

We begin by formally defining a FracMinHash sketch by slightly
modifying the definition of Irber et al. (2022). We aim to compare
two sequences by computing the containment index from their
corresponding FracMinHash sketches.

Definitions and preliminaries

We recall the definition of FracMinHash given by Irber et al.

(2022). Given two arbitrary sets A and B, which are subsets of a

domain 2, the containment index C(A, B) is defined as
ANB

C(A, B) .= ! Al ‘. Let h be a perfect hash function h: Q- [0, H]

for some HeR. For a scale factor s, where 0 <s <1, a FracMinHash

sketch of a set A is defined as follows:

FRACG(A) = {h(a)|la € A and h(a) < Hs}. (1)

The scale factor s is an easily tunable parameter that can modify
the size of the sketch. Using this FracMinHash sketch, we define
the FracMinHash estimate of the containment index Cfrac(A, B)
as follows:

__ |FRAC(A) N FRAC,(B)|

Cirac(A, B) := [FRAGC(A)| . @

Simply speaking, we want to compute Cﬁac(A, B) because the

sketches are considerably smaller than the original sets A and B,
and we want Cﬁ-ac(A, B) to accurately approximate C(4, B).

For notational simplicity, let us define X,:=|[FRAG(A)|. We
observe that if one views h as a uniformly distributed random var-
iable, we have that X, is distributed as a binomial random variable:
Xa ~ Binom(|A], s). In practice, hashing libraries use a large enough
hash value space (i.e., 24 and well-enough hash functions that
the assumptions on h are mostly valid. Furthermore, if
ANB # ¢, where both A and B are nonempty sets and one is
not a subset of the other, then X4,z and X,np are independent
when the probability of success, s, is strictly smaller than one.
Using these notations, the expectation of Crrac(4, B) is given by
Theorem 1, recapitulated from Irber et al. (2022) for completeness.

Theorem 1. For 0<s<1, if A and B are two nonempty sets such that
A\B and A N B are nonempty, the following holds:

AN Bl

EIC . BYLmacay-o] = 3 2 (1= (1= %),

In light of Theorem 1, we note that Chac (A, B) is not an unbi-
ased estimate of C(4, B): The expected value of Cy,c(A, B) is not
equal to C(4, B). This may explain the observations of Irber
(2020) that showed the uncorrected version in Equation 2 leads
to suboptimal performance for short sequences (e.g., viruses).
However, for sufficiently large |A| and s, the bias factor (1—(1—
s)Ml) is sufficiently close to one. Alternatively, if |A| is known (or es-
timated, e.g., by using HyperLogLog or the estimate in Sec. A.6)
(Flajolet et al. 2007), then

|[FRAC,(A) N FRAC,(B)|
IFRAC,(A)|(1 — (1 —)"

Cirac(4, B) := LiFRAC,(4)1>0 3)

is an unbiased estimate of the containment index C(A, B).
Throughout the rest of the paper, we will refer to the debiased
Crac(4, B) as the fractional containment index.

Mean and variance of Co (A, B)

The expectation of Cgac(4, B) is as follows.

Theorem 2. For O<s<1, if A and B are two distinct sets such that
A\B and A N B are nonempty, the expectation of Cp.(A, B) is given by

|A N Bl
|A]

Proof. This follows directly from Equation 3 and Theorem 1.

E[CfﬂlC(Af B)] =

“)

We now turn to determining the variance of Cg,c(4, B).
Ideally, we can do so by using the multivariate probability mass
function of Xsng and X45. However, we found that doing so
does not result in a closed-form formula. Therefore, we use
Taylor expansions to approximate the variance.

Theorem 3. Forn = |A N B| and m = |A\B| where both m and n are
nonzero, a first-order Taylor series approximation gives
mn(l —s)

Var[Cgac(A, B ~ ——— 2
[Crac(4, B s(m+n)3

Using the results of Theorem 3 and Equation (3), we have the
variance of Cgac(A, B) as follows.

Corollary 1. Forn = |A N Bl and m = |A\B|, where both m and n are
nonzero, a first-order Taylor series approximation gives

mn(1 —s)
s(m+n)>(1 = (1 —s)4y>

Var[cfrac(Ar B)] ~

1062 Genome Research
www.genome.org

https://github.com/sourmash-bio/sourmash/pull/1967
https://github.com/sourmash-bio/sourmash/pull/1967
https://github.com/sourmash-bio/sourmash/pull/1967
https://github.com/sourmash-bio/sourmash/pull/1967
https://github.com/sourmash-bio/sourmash/pull/1967
https://github.com/sourmash-bio/sourmash/pull/2032
https://github.com/sourmash-bio/sourmash/pull/2032
https://github.com/sourmash-bio/sourmash/pull/2032
https://github.com/sourmash-bio/sourmash/pull/2032
https://github.com/sourmash-bio/sourmash/pull/2032
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1

Mutation rates using FracMinHash sketches

Proceeding in the same fashion, we can obtain series approx-
imations of arbitrarily high order owing to the binomial distribu-
tion having finite central moments of arbitrary order. However,
we found that the higher-order expansion derivations are tedious
and long, whereas the results obtained using first-order approxi-
mation are both simple and accurate enough in practice.

Asymptotic normality of CgqA, B)

We next prove that Cgac(A, B) is asymptotically normal. We use the
delta method (Agresti 2012) combined with the De Moivre-Laplace
theorem, which guarantees asymptotic normality of X4n and X\,

and because g(x, y) = 3 _T_ " is a function that is twice differentiable,

setting x = Xanp and y = X,\p satisfies all requirements of using the
delta method on g(x, y), which gives us the following result:

Theorem 4. Forg(x, y) = L, n = |A N B| and m = |A\B|, where
both m and n are nonzero, X

m(g(XAﬂB, XA\B) —g(n, m)) ., m_{[:ooe/v(() M)

" (m+ n)3s

We note that additional statistical quantities can easily be de-
rived. For example, in Supplemental Material Section A.5, we pro-
vide concentration inequalities that show theoretically how little
Cerac(A, B) deviates from its expected value. Supplemental
Material Section A.6 provides a simple way to calculate the number
of distinct k-mers from a given sketch. Lastly, Supplemental
Material Section A.7 shows how to compute (and debias) a
Jaccard estimate from FracMinHash sketches.

Statistics of Ci.ad(A, B) under simple mutation model

In the previous section, we introduced Cg,(A, B) and derived its sta-
tistics. In this section, we use these results and connect Cg;,(4, B) to
a biologically meaningful quantity: the average nucleotide identity
(ANI) and mutation rate. We do this by assuming a simple mutation
model, in which each nucleotide of some sequence § is indepen-
dently mutated at a fixed rate, p, resulting in the mutated sequence
§', which has an expected ANI of 1 — p with S. This model was recent-
ly introduced by Blanca et al. (2022), where it was quantified how
this mutation process affects the k-mers in S.

Before mentioning the details of the mutation mode], it is im-
portant to note that there are other models of evolution, for exam-
ple, TK4 and TKS models (Takahata and Kimura 1981), the general
time reversible (GTR) model (Tavaré 1984), and Sueoka’s model
(Sueoka 19935). These vary in the number of parameters used, as
well as the degree of complexity. In this work, we consider the sim-
ple mutation model because (1) the statistics of k-mers under this
model are already well explored, and (2) it allows us to connect
Ciac(A, B) and mutation rate p directly, which would not be the
case if we considered one of these more nuanced models. The mu-
tation model we use, even though simple enough to be mathemat-
ically tractable, is more realistic that the Poisson model assumed by
Mash (Ondov et al. 2016), which assumes that all k-mers are mutat-
ed independently, where in reality, one point mutation can affect
up to k number of k-mers. Our experiments reveal that even in case
of real genomes, where the lengths of two sequences can be widely
dissimilar and clearly the assumptions of the simple mutation
model are violated, our approach can accurately determine the
mutation rate (and ANI) between two real-world sequences.

Preliminaries

Here, we closely follow the exposition contained in the work by
Blanca et al. (2022). Let L>0 be a natural number that denotes

the number of k-mers in some string S. A k-span K; is the range of
integers [i, i+k—1], which denotes the set of indices of the
sequence S where a k-mer resides. Fix a mutation rate p, where 0<
p<1. The simple mutation model considers each position in i=
1, ...,L+k—1 and, with probability p, marks it as mutated. A muta-
tion at location i affects the k-spans Kmax (1,i—k+1) -+, Ki. Let Nyt be
arandom variable defined to be the number of affected/mutated k-
spans. We use q=1— (1 —p)* to express the probability that a k-
span is mutated. Note that 1 —p corresponds precisely to the ex-
pected ANI between a sequence S and its mutated counterpart §'.

Given a nonempty sequence S on the alphabet {4, C, T, G} and
a k-mer size such that each k-mer in § is unique, let A represent the
setof all k-mersin S, and let L =|S| — k + 1. Now, we apply the simple
mutation model to § via the following: If foranyie[l, ..., L+k—1],
this index is marked as mutated, let S; be some nucleotide in
{A, C, T, GI\{Si}; otherwise, let S; = ;. Let B represent the set of k-
mers of §', and we assume that §' does not contain repeated k-
mers either. In summary, A denotes the set of k-mers of a sequence
S, and B denotes the set of k-mers of a sequence §’ derived from §
using the simple mutation model with no spurious matches.
Note that given a sufficiently large k-mer size, these assumptions
will be satisfied in most practical scenarios.

We also recall the definition of a confidence interval. Given a
distribution and a parameter of interest 7, a (1 — @)-Cl is an interval
that contains r with probability 1 —a. Given O<a<1, we define
Zo = @711 — a/2), where @' is the inverse CDF of the standard
Gaussian distribution.

Expectation and variance of CgoA, B)

We notice that |A\B| = |B\A| = Nt and that |[A N B| = L — Nyt
We note that the results in Theorem 3, Corollary 1, and
Theorem 4 above still hold for a fixed Np,,.. However, assuming
a simple mutation model, Ny, is not a fixed quantity but, rather,
a random variable. Therefore, the analyses so far only connect
Crrac(A, B) to a fixed Np,,, as we have only considered the random-
ness from the FracMinHash sketching process so far. To quantify
the impact of the mutation rate p on Cg,ac(4, B), we now consider
the randomness introduced by both the FracMinHash sketching
process and the mutation process simultaneously.

Let P = ({4, F1, P1) and S = ({2, F», P;) be the probability
spaces corresponding to the mutation and FracMinHash sketching
random processes, respectively. Here, (2, F, and P denote the sam-
ple space, the sigma-algebra on the sample space, and the probabil-
ity measure, respectively. We will use the subscript P, S to indicate
the product probability space, for example, Ep s - | and Varps| -].
Hence, we assume that the mutation process and the process of
taking a FracMinHash sketch are independent. Before proceeding
with the analysis, we make a note that the expectation and vari-
ance of Ny, under the simple mutation model with no spurious
matches have been investigated by Blanca et al. (2022). As such,
we already know Ep[Npqt], Varp[Nmut], and Ep [N‘%mt] and will use
these results directly (Table 1; see Blanca et al. 2022).

Theorem 5. For0<s<1, if A and B are respectively distinct sets of k-
mers of a sequence S and a sequence S’ derived from S under the simple
mutation model with mutation probability p such that A N B is non-
empty, then the expectation of Ceac(A, B) in the product space P, S is
given by

Ep,s[Cpac(A, B)] = (1 - p)F,)

where P = ({1, F1, P1)and S = ((L, F», Py) are the probability spac-
es corresponding to the mutation and FracMinHash sketching random
processes, respectively.

Genome Research 1063

www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1

Rahman Hera et al.

Table 1. The percentage of experiments that resulted in the true mutation rate falling within the 95% confidence interval given in Theorem 8
when using various mutation rates across multiple k-mer sizes and L values

L=10,000 L=100,000 L=1 million
P=0.001 P=0.1 P=0.2 P=0.001 P=0.1 P=0.2 P=0.001 P=0.1 P=0.2
k=21 95.7 94.9 95.0 95.2 95.0 95.3 95.0 94.8 95.1
k=51 95.2 94.6 N/A 95.2 95.5 N/A 95.0 94.8 N/A
k=100 95.1 N/A N/A 95.2 N/A N/A 95.1 94.7 N/A

A scale factor of s=0.1 was used. The results show an average over 10,000 simulations for each setting. N/A entries indicate that the parameters are
not particularly meaningful and will not produce interpretable results, either because E[Ny.]~L in these cases (almost all k-mers are mutated) or
because the scale factor is too small to differentiate between the two FracMinHash sketches. These results show that the confidence interval presented
in Theorem 8 is statistically significant for meaningful parameter settings. These results reveal that k-mers are highly sensitive to mutation rates, and
practitioners may need to use shorter k-mer lengths to distinguish highly dissimilar sequences.

To show how the expected value of Cg,(A, B) (considering
both the random processes) reacts to the mutation rate p and the
k-mer size k, we show Ep s[Cgac(4, B)] in a heatmap in Figure 1.
The heatmap shows that the expected value of the containment
index decreases with a larger mutation rate and a larger k-mer
size. This means that in the lighter cells (such as k=20, P=
0.001), a small scale factor would suffice to find shared k-mers in
two sketches, whereas in the darker cells (such as k=100, P=
0.1), even a scale factor of 1.0 may not be sufficient because all k-
mers are mutated. Consequently, a safe and meaningful choice
of the scale factor s depends on the choices of p and k, which we
discuss in more detail later in this section.

Next, we turn to the more challenging task of calculating the
variance of Cgac(4, B) in the product space P, S.

Theorem 6. For 0<s<1, if A and B are, respectively, distinct sets of k-
mers of a sequence S and a sequence S derived from S under the simple
mutation model with mutation probability p such that A N B is nonemp-
ty, then the variance of Cgac(A, B) in the product space P, S is given by

— 029 BN - EpN?)
SL3(1 — (1 —5)Y)

1
L2

YD%I [Cfac(A, B)] =
+ 77 Var o). (6)

where P = ({1, F1, P1) and S = (€2, F2, Py) are the probability spac-

Expected containment
across k-mer sizes and mutation rates

20 0.818 0.668 0.442 _
©
=

08 o5

w O

404 29

< 0.6 £s
= Los §%
[0} x .=
N S Q
@ 60 =2
s 25
[} o3
€ F04 £ &
~ =]

80 [

'E'O
5]
0208
g
100

0.001 0.01 0.02 0.04 0.06 0.08 0.10
Probability of point mutation (p)

Figure 1. Ep s[Ciac(A B =(— p)k across different mutation rates and
k-mer sizes. Darker cells indicate a smaller value. The expected contain-
ment decreases with a larger mutation rate and a larger k-mer size. This
ideal case indicates that even a scale factor of s=1 will be insufficient for
large enough k sizes and P values.

es corresponding to the mutation and FracMinHash sketching random
processes, respectively.

With the results of Theorem 5, we now have a point
estimate of the mutation rate p given Cg,c(A, B), which is simply
p=1-Cga4, B)Y*. We next derive a hypothesis test for
Ctrac(A, B) to capture the variability around the point estimate
and later turn it into a confidence interval.

Hypothesis test and confidence interval
We observe that the marginal of Cg,c(A4, B) with respect to the mu-

lelt

L
(2022), we note that Ny, is asymptotically normally distributed
when the mutation rate p and k-mer length k are independent of
L, and L is sufficiently large. In Theorem 4, we showed that
Crrac(4, B) is normally distributed for a fixed Np,,t. Therefore, con-
sidering the randomness from both the FracMinHash sketching
and the mutation model independently, Cg.c(A, B) is asymptoti-
cally normal when all conditions are met. Using the statistics de-
rived earlier, we obtain the following hypothesis test for Ceac(4, B).

tation process is simply 1 —

. Using the results of Blanca et al.

Theorem 7. Let O<s<1, and let A and B be two distinct sets of k-
mers, respectively, of a sequence S and a sequence S’ derived from S under
the simple mutation model with mutation probability p, such that A N B
is nonempty.

Also, let 0<a <1, and let Cyqy, and Cpgn, be defined as follows:

Clow = (1 *P)k

(1-s)
_Za e —
\/SL3(1 —(1-5)

Chigh=(1 -pf

1
(LEp [Nmut] — Ep [Nmutz]) + L_ZV;?I (Nmut)

_ -9 B o, L
+Za\/SL3(1 - —S)Z) (LEP[Nmut] Ep[Nmut])+L2V[?I(Nmut)~

Then, the following holds as L — co and when p and k are independent of L:
Pr[Ciow < Cfrac(A, B) < Chigh] =l-a

We can turn this hypothesis test into a confidence interval for
the mutation rate p as follows.

Theorem 8. Let A and B be two distinct sets of k-mers, respectively of
a sequence S and a sequence ' derived from S under the simple mutation
model with mutation rate p, such that A N B is nonempty. Let Ep, . [X]
and Varp, , [X] denote the expectation and variance of a given random
variable X under the randomness from the mutation process with fixed

1064 Genome Research
www.genome.org

Mutation rates using FracMinHash sketches

mutation rate prixeq, respectively. Then, for fixed o, s, k, and an observed
Ctrac(A, B), there exists an L large enough such that there exist unique
solutions p = piow and p = ppign to the following equations, respectively,

Crrac(A, B) = (1 — prow)"
. \/ (1-5)
sL3(1 — (1 —s))

Crrac(A, B) = (1 = prign)*

1—y5) 2 1
—Zy |——————— (LE,, . [N, —E N, — Var (N, ,
Z \/5L3(1 - S)L)Z(Poign [Nmut] pmgh[mut 1)+ 1z phg(mut)

such that the following holds:

gg{}o Pr[Plow <p fphigh] =1-oa.

Setting parameters correctly: likelihood of pathological corner
cases

In practice, one disadvantage of sketching techniques is that the size
of the sketch (here controlled via the scale factor s) may be too small
to distinguish between highly similar or dissimilar sequences. For
example, given a small mutation rate p, one may need a very large
scale factor, and so sketch, to be able to distinguish between a se-
quence and the mutated version. Similarly, if the mutation rate p
is high and/or a large k size is used, it is possible that FracMinHash
may report a containment value of zero, even though the true value
is nonzero, yet small. These “corner cases” are precisely the ones in
which the confidence interval given by Theorem 8 will likely fail.
One of these pathological cases shows up when there is nothing
common between the two FracMinHash sketches FRAG(A) and
FRAG(B). We observe that this occurs when Xng = 0. Now Xanp
is distributed as a binomial distribution Binom(rn, s), where
n=]A N B| = L — Ny, so the probability of the intersection being
empty with respect to the sketching process is

PrS[XAﬂB = O] = (1 — S)L*Nmm.

Ideally, we would be able to directly calculate
Ep[Prs[Xansg = 0]], the expected probability of this corner case
happening. The challenge in doing so is that we do not have a
closed-form representation of the probability mass function
(PMF) of Nput- As a workaround, we developed a dynamic pro-
gramming algorithm (presented in Supplemental Material Sec.
A.4) to compute Pr[Np,,«=x] given the parameters L and p.

Using this PMF, we can easily compute Ep[Prs[Xang = 0]],
which is the likelihood of the corner case that we observe nothing
common between two sequences purely by chance. The remaining
pathological case occurs when p# 0 and yet FRAC,(A) = FRACG(B)
(i.e., the sketches are not large enough to distinguish between A
and B). Similar to before, we have

Prs [XA\B =0, XB\A =0] ="Prs [XA\B = 0]Prs [XB\A =0]

= (1=,

and hence, by calculating Ep[(1 — s)ZN"‘“‘] using the PMF of Ny,
we can obtain the likelihood of the latter pathological case. Here,
A\B and B\A are disjoint sets, allowing us to use the independence
of X,\p and Xp\4. We assume both A\B and B\A are nonempty.

It is important to note the importance to characterize these
“corner cases” as without them, a user would be unable to deter-
mine if the observed containment index of, say, zero is owing to
the sequences under consideration being highly diverged or else

1
5 (LEp,,,, [Nmut] — Ep,,,, [N mutz]) + Iz Xoa‘f (Nmut),

the scale factor chosen is much too small. These equations have
been implemented into sourmash (Brown and Irber 2016) for pre-
cisely this purpose: to help practitioners assess if containment es-
timates of zero or one are owing to parameter settings (e.g., scale
value too high/low) or else are biologically meaningful.

Results

FracMinHash accurately estimates containment index
for sets of very different sizes

We first show that FracMinHash can estimate the true contain-
ment index better than MinHash when the sizes of two sets are dis-
similar. For this experiment, we compared FracMinHash with the
popular MinHash implementation tool Mash (Ondov et al.
2016). We took a Staphylococcus genome from the GAGE data set
(Salzberg et al. 2012) and selected a subsequence that covers C%
of the whole genome in terms of number of bases, added this se-
quence to a metagenome, and calculated the containment of
Staphylococcus in this “super metagenome.” The metagenome we
used is a WGS metagenome sample consisting of ~1.3G bases.
We used a scale factor of 0.005 for FracMinHash, and we set the
number of hash functions for Mash at 4000, because Mash works
reasonably well with even only 1000 hash functions to find the
containment of Staphylococcus genome in the unaltered metage-
nome. We picked 0.005 because it generates small enough sketch
sizes to be computationally inexpensive and, at the same time, en-
sures that the likelihoods of the corner cases are minimal.

We repeated this setup for different values of C and compared
the containment index calculated by Mash and FracMinHash in
Figure 2. We show the mean values for multiple runs with different
seeds in the figure and use the error bars to show the standard devi-
ation. Mash primarily reports MinHash Jaccard index, so we con-
verted the Jaccard into containment by counting the number of
distinct k-mers using brute force.

Figure 2 illustrates that although Mash and FracMinHash both
faithfully estimate the true containment index, the FracMinHash
approach more accurately estimates the containment index as this
index increases in value. In addition, the estimate is more precise

e MinHash Containment
e FMH Containment

—

1.0 A

0.8 1

0.6 -

0.4 4

0.2 1

Computed containment index

HH

0.0 0.2 0.4 0.6 0.8 1.0
True containment index

0.0 1

Figure 2. True versus estimated containment index for both the Mash
and FracMinHash approaches for two sets with dissimilar sizes. The con-
tainment index of a Staphylococcus genome is computed when (% of
this genome is inserted into an assembled metagenome. Error bars indi-
cate standard deviation over hash seed values.

Genome Research 1065

www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1

Rahman Hera et al.

as shown by the size of the error bars on the estimates. This is likely
because although Mash and FracMinHash both use a sketch of size
4000 for the Staphylococcus genome, Mash uses the same fixed value
of 4000 when forming a sketch for the metagenome, whereas
FracMinHash selects a sketch size that scales with the size of the
metagenome. This can be seen most starkly when the metagenome
is significantly larger than the query genome.

FracMinHash gives accurate confidence intervals around
mutation rates

Next, we show that the confidence interval from Theorem 8 for the
mutation rate p is statistically sound and works well in practice. To do
so, we performed 10,000 simulations of sequences of length L=
10,000, 100,000, and 1 million that underwent the simple mutation
model with P=0.001, 0.1, and 0.2. We then used a scale factor of s=
0.1 when calculating piow and ppgp, for a 95% confidence interval and
repeated this for k-mer sizes of 21, 51, and 100. Table 1 records the
percentage of experiments that resulted in piow < p < Prign and shows
that the confidence intervals indeed are ~95%. Results with other
scale factors are presented in Supplemental Tables S1 and S2.

In some of these settings (indicated with N/A) shown in Table
1, we skipped the experiment because these do not yield a mean-
ingful result. Mostly, like the darkest cells in Figure 1, these are cas-
es in which all or almost all k-mers are mutated, and consequently,
we observe a zero containment, leading to undefined results. In
the other cases, the number of shared k-mers is too small to use a
scale factor of 0.1 and find a representative number of shared k-
mers in the FracMinHash sketch, again resulting in a zero contain-
ment. To better understand these settings, we listed the expected
number of nonmutated k-mers (studied by Blanca et al. 2022) in
Supplemental Table S3: only a 10% of which is expected to end
up in the sketch, which explains the N/A entries in Table 1.

FracMinHash more accurately estimates mutation distance

On simulated data

We finally compare the Mash estimate and FracMinHash estimate
(given as a confidence interval) of mutation rates. For this experi-

A

1.0 1 Mash Distance

e FracMinHash Distance

0.8 1
(]
[9)
c
2 0.6
2
kel
: T
% 0.4 1 ¥ -
5 o 1o
= e

0.2 1 sl

0.0 ="

0.0 0.1 0.2 0.3 0.4 0.5

True distance (1.0 — ANI)

ment, we simulated point mutations in the aforementioned
Staphylococcus genome at a mutation rate p and then calculated
the distance of the original Staphylococcus genome with this mutat-
ed genome using both Mash and the interval given by Theorem
9. The results are shown in Figure 3A. This plot shows that Mash
overestimates the mutation rate by a noticeable degree, with in-
creasing inaccuracy as the mutation distance increases. This is like-
ly because of the Mash distance assuming a Poisson model for how
mutations affect k-mer occurrences, which has been shown to be
violated when considering a point mutation model. In contrast,
the point estimate given by Theorem 9 is fairly close to the true
mutation rate, and the confidence interval accurately entails the
true mutation rate.

On real data

We next present pairwise mutation distances between a collection
of real genomes using both Mash and the interval in Theorem 8. To
make a meaningful comparison, it is important to compute the
true mutation distance (or equivalently, the ANI) between a pair
of genomes. For this purpose, we used OrthoANI (Lee et al.
2016), a fast ANI calculation tool. From among 199,000 bacterial
genomes downloaded from NCBI, we randomly filtered out pairs
of genomes so that the pairwise ANI ranges from 0.5 to one. For vi-
sual clarity, we kept at most three pairs of genomes for any ANI in-
terval of width 5%. We used 4000 hash functions to run Mash, and
set L =(JA| +|B|)/2 for the confidence intervals in Theorem 9, where
|A] and |B| denote the numbers of distinct k-mers in the two ge-
nomes in a pair. The results are presented in Figure 3B.

Clearly, Mash overestimates the mutation distance, particu-
larly for moderate to high distances. In contrast, the confidence in-
tervals given by Theorem 8 perform significantly better. It is
noticeable that the confidence intervals are not as accurate as in
the case of a simulated genome (presented in Fig. 3A). This is nat-
ural because in this real setup, the sizes of the genomes are very dis-
similar, have repeats, and very easily violate the simplifying
assumptions of the simple mutation model. Nonetheless, these re-
sults show the usefulness of the proposed approach even when the
model assumptions are violated.

B

1.0 1 Mash Distance

e FracMinHash Distance

0.8 1
[0}
(9}
C
©
% 0.6
2
©
g
()
i At
2 5
g !

0.2 A =

‘ £
001
0.0 0.1 0.2 0.3 0.4

True distance (1.0 — ANI)

Figure 3. Mash distances and FracMinHash estimates of evolutionary distance (given in terms of one minus the average nucleotide identity [ANI]) be-
tween an original and a mutated Staphylococcus genome with introduced point mutations at a known rate (A) and between pairs of real bacterial genomes
(B). Error bars indicate the confidence intervals surrounding the FracMinHash estimate calculated using Theorem 8. To obtain the FracMinHash estimates,

k-mer size k=21 and scale factor s=0.1 were used.

1066 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1

Mutation rates using FracMinHash sketches

We conclude this section by computing ANI using
FracMinHash sketches (k=21, s=0.1) and a few other well-known
tools: namely, Mash (Ondov et al. 2016), PYANI (Pritchard et al.
2016), and FastANI (Jain et al. 2018). To build the set of genomes
for this experiment, we first selected representative genomes
from 10 species with the largest number of genomes in GTDB-
15207 (seven bacteria and three archaea) (Parks et al. 2022).
Then, we built an “evolutionary path” for each of these “anchor”
genomes by selecting three nonrepresentative genomes sharing
each taxonomic rank, for example, three genomes in the same ge-
nus but different species, three in the same family but different ge-
nus, etc. We computed pairwise ANI from the “anchor”
representative genome to each of these genomes using all meth-
ods. Using this approach allows the usage of real genomes across
a range of ANI values. The results are shown in Figure 4. Like the
previous set of figures, we again plotted the ANI computed using
OrthoANI (Lee et al. 2016) on the x-axis.

As above, Mash cannot reliably differentiate genomes at ANI
<70%. In addition, as most ANI tools are recommended for use
only at >75%-80% ANI, the lack of meaningful ANI values <75%
for FastANI is expected. In the 80%-100% range, all tools correlate
well with OrthoANI (shown in dashed gray), with least-squares fits
for FracMinHash and PYANI in blue and green, respectively.
However, both PYANI and FracMinHash correlate with OrthoANI
quite well even <80% ANI, with FracMinHash performing slightly
better in this low range. From 60%-80% ANI, FracMinHash had a
Pearson correlation coefficient with OrthoANI of 0.79, whereas
PYANI had a correlation of 0.69 with OrthoANI.

Discussion

In contrast to classic MinHash, which uses a fixed sketch size,
FracMinHash automatically scales the size of the sketch based on
the size of the input data. This has the advantage of facilitating an
accurate comparison of sets of very different sizes, extending
sketch-based comparisons to metagenomic data sets, including
streaming-based analyses and large-scale database searches. Given
that a user has control over what percentage of the data to keep in
the sketch (in terms of s), reasonable estimates can be made about
sketch sizes a priori, and trade-offs can be used to prevent large
sketch sizes while maintaining sufficient resolution for search.
One particularly attractive feature of FracMinHash is its analytical
tractability: As we have shown, it is relatively straightforward to
characterize the performance of FracMinHash, derive its statistics,
and study how it interacts with a simple mutation model. Given
these advantages, it seems reasonable to favor FracMinHash in situ-
ations in which sets of differing sizes are being compared or else
when fast and accurate estimates of mutation rates are desired (par-
ticularly for moderate to high mutation rates). We believe that using
FracMinHash can enable fast metagenomic binning by discarding
genomes irrelevant to a metagenomic sample (based on low con-
tainment scores), let users filter genomes from a reference database
using ANI thresholds, allow practitioners to use the confidence in-
tervals with taxonomic tree and sample bootstrap phylogenies off
of the taxonomy, and realize many other useful applications.

This paper focuses on theoretical analyses using the contain-
ment index, primarily because deriving confidence intervals

OrthoANI compared to different ANI tools

FMH vs FastANI

1.0 T
FracMinHash "
0.8 - 088>
Z 061 %0
I
= 0.4 -
0.2 1
O'O a eI T T T T
0.6 0.7 0.8 0.9 1.0
OrthoANI
1.0 e
PYANI I o
0.8 - M,«-rﬁ”‘/
= 0.6 -
5
0.4
0.2 1
O'O a T T T T T
0.6 0.7 0.8 0.9 1.0
OrthoANI

Figure 4.

1.0 A
FastANI
0.8
Z 0.6 -
<
@
P 0.4 4
0.2 4
00 B T T T T T
0.6 0.7 0.8 0.9 1.0
OrthoANI
1.0 A Y
Mash oo 2
. "
08 7 & «?ﬂ So
Y
eBioe
<Zt 0.6
e
[%]
< 0.4
0.2
0.6 0.7 0.8 0.9 1.0
OrthoANI

Pairwise ANI estimation among a selection of genomes from the GTDB database. The dashed line represents ANI computed using OrthoANI.

The solid blue and green lines show the least-squares fit for the ANI scores computed using FracMinHash and PYANI, respectively. Mash and FastANI both
have many zeroed-out values, and therefore, the least-squares fit is not shown for these two.

Genome Research 1067

www.genome.org

Rahman Hera et al.

around the mutation rate from the Jaccard index proved to be
mathematically intractable. We still showed how to obtain a point
estimate of the mutation rate using an observed Jaccard index.
These analyses are included in the Supplemental Materials: theo-
retical analysis (Sec. A.7), derivation of a point estimate of muta-
tion rate (and ANI) using the Jaccard index (Sec. A.8), and results
on the utility of this point estimate (Supplemental Fig. S1).

Software availability

A Python-based implementation of the algorithms and theorems
we derive is freely available at GitHub (https://github.com/
KoslickiLab/mutation-rate-ci-calculator). The results presented in
this paper can be reproduced using the code at GitHub (https
://github.com/KoslickiLab/FracMinHash-reproducibles). All code
in these GitHub repositories is also available as Supplemental
Material.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

M.R.H. and D.K. were supported by National Science Foundation
(NSF) award no. DMS-2029170 and the National Institutes of
Health grant 1RO1GM146462. N.T.P.-W. was supported by NSF
grants 1711984 and 2018911. We thank Luiz Irber and Paul
Medvedev for their invaluable inputs to this paper.

Author contributions: D.K. and M.R.H. developed the theoreti-
cal results with input from N.T.P.-W. for biological application.
M.R.H. prepared all the results except for the last figure, the results
of which were prepared by N.T.P.-W. D.K. and M.R.H. wrote the
theorems and proofs. M.R.H. prepared all plots and the manu-
script. All authors reviewed and curated the manuscript.

References

Agresti A. 2012. Categorical data analysis, Vol. 792. John Wiley & Sons,
Hoboken, NJ.

Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD,
Zhao Y, Hirst M, Schein JE, et al. 2009. De novo transcriptome assembly
with ABySS. Bioinformatics 25: 2872-2877. doi:10.1093/bioinformatics/
btp367

Blanca A, Harris RS, Koslicki D, Medvedev P. 2022. The statistics of k-mers
from a sequence undergoing a simple mutation process without spuri-
ous matches.] Comput Biol 29: 155-168. doi:10.1089/cmb.2021.0431

Bloom BH. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun ACM 13: 422-426. doi:10.1145/362686.362692

Breitwieser FP, Baker D, Salzberg SL. 2018. KrakenUniq: confident and fast
metagenomics classification using unique k-mer counts. Genome Biol
19: 198. doi:10.1186/s13059-018-1568-0

Broder AZ. 1997. On the resemblance and containment of documents. In
Proceedings: Compression and Complexity of SEQUENCES 1997 (Cat. No.
97TB100171), Salerno, Italy, pp. 21-29.

Brown CT, Irber L. 2016. sourmash: a library for MinHash sketching of DNA.
] Open Source Softw 1: 27. doi:10.21105/joss.00027

Chin C-S, Khalak A. 2019. Human genome assembly in 100 minutes.
bioRxiv do0i:10.1101/705616

Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R,
Charbonneau A, Constantinides B, Edvenson G, Fay S, et al. 2015.
The khmer software package: enabling efficient nucleotide sequence
analysis. FI000Res 4: 900. doi:10.12688/f1000research.6924.1

Ekim B, Berger B, Chikhi R. 2021. Minimizer-space de Bruijn graphs: whole-
genome assembly of long reads in minutes on a personal computer. Cell
Syst 12: 958-968.¢€6. doi:10.1016/j.cels.2021.08.009

Flajolet P, Fusy £, Gandouet O, Meunier F. 2007. Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm. In Discrete mathe-

matics and theoretical computer science, pp. 137-156. DMTCS,
Strasbourg, France.

Ghosh P, Kalyanaraman A. 2019. Fastetch: a fast sketch-based assembler for
genomes. IEEE/ACM Trans Comput Biol Bioinform 16: 1091-1106. doi:10
.1109/TCBB.2017.2737999

Irber LC Jr. 2020. “Decentralizing indices for genomic data.” PhD thesis,
University of California, Davis.

Irber LC, Brooks PT, Reiter TE, Pierce-Ward NT, Hera MR, Koslicki D, Brown
CT. 2022. Lightweight compositional analysis of metagenomes with
FracMinHash and minimum metagenome covers. bioRxiv doi:10
.1101/2022.01.11.475838

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018.
High throughput ANI analysis of 90K prokaryotic genomes reveals clear
species boundaries. Nat Commun 9: 5114. doi:10.1038/s41467-018-
07641-9

Koslicki D, Zabeti H. 2019. Improving MinHash via the containment index
with applications to metagenomic analysis. Appl Math Comput 354:
206-215. doi:10.1016/j.amc.2019.02.018

LaPierre N, Mangul S, Alser M, Mandric I, Wu NC, Koslicki D, Eskin E. 2019.
MiCoP: microbial community profiling method for detecting viral and
fungal organisms in metagenomic samples. BMC Genomics 20: 423.
doi:10.1186/512864-019-5699-9

LaPierre N, Alser M, Eskin E, Koslicki D, Mangul S. 2020. Metalign: efficient
alignment-based metagenomic profiling via containment min hash.
Genome Biol 21: 242. doi:10.1186/s13059-020-02159-0

Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm
and software for calculating average nucleotide identity. Int J Syst Evol
Microbiol 66: 1100-1103. doi:10.1099/ijsem.0.000760

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34: 3094-3100. doi:10.1093/bioinformatics/bty191

Miclotte G, Heydari M, Demeester P, Audenaert P, Fostier J. 2015. Jabba: hy-
brid error correction for long sequencing reads using maximal exact
matches. In International Workshop on Algorithms in Bioinformatics,
Atlanta, GA, pp. 175-188.

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren §,
Phillippy AM. 2016. Mash: fast genome and metagenome distance esti-
mation using MinHash. Genome Biol 17: 132. doi:10.1186/s13059-016-
0997-x

Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P.
2022. GTDB: an ongoing census of bacterial and archaeal diversity
through a phylogenetically consistent, rank normalized and complete
genome-based taxonomy. Nucleic Acids Res 50: D785-D794. doi:10
.1093/nar/gkab776

Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. 2019. Large-scale sequence
comparisons with sourmash. FI000Res 8: 1006. doi:10.12688/f1000re
search.19675.1

Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. 2016.
Genomics and taxonomy in diagnostics for food security: soft-rotting
enterobacterial plant pathogens. Anal Methods 8: 12-24. doi:10.1039/
C5AY02550H

Sahlin K, Medvedev P. 2021. Error correction enables use of Oxford
Nanopore technology for reference-free transcriptome analysis. Nat
Commun 12: 2. doi:10.1038/s41467-020-20340-8

Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen T]J,
Schatz MC, Delcher AL, Roberts M, et al. 2012. GAGE: a critical evalua-
tion of genome assemblies and assembly algorithms. Genome Res 22:
557-567. doi:10.1101/gr.131383.111

Sueoka N. 1995. Intrastrand parity rules of DNA base composition and usage
biases of synonymous codons.] Mol Evol 40: 318-325. doi:10.1007/
BF00163236

Takahata N, Kimura M. 1981. A model of evolutionary base substitutions
and its application with special reference to rapid change of pseudo-
genes. Genetics 98: 641-657. doi:10.1093/genetics/98.3.641

Tavaré S. 1984. Line-of-descent and genealogical processes, and their appli-
cations in population genetics models. Theor Popul Biol 26: 119-164.
doi:10.1016/0040-5809(84)90027-3

Viehweger A, Blumenscheit C, Lippmann N, Wyres KL, Brandt C, Hans JB,
Holzer M, Irber L, Gatermann S, Liibbert C, et al. 2021. Context-aware
genomic surveillance reveals hidden transmission of a carbapene-
mase-producing Klebsiella pneumoniae. Microbial Genomics 7: 12.
doi:10.1099/mgen.0.000741

Zhang Q, Pell], Canino-Koning R, Howe AC, Brown CT. 2014. These are not
the k-mers you are looking for: efficient online k-mer counting using a
probabilistic data structure. PLoS One 9: €101271. doi:10.1371/journal
.pone.0101271

Received January 4, 2023; accepted in revised form June 6, 2023.

1068 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
https://github.com/KoslickiLab/mutation-rate-ci-calculator
https://github.com/KoslickiLab/mutation-rate-ci-calculator
https://github.com/KoslickiLab/mutation-rate-ci-calculator
https://github.com/KoslickiLab/mutation-rate-ci-calculator
https://github.com/KoslickiLab/mutation-rate-ci-calculator
https://github.com/KoslickiLab/FracMinHash-reproducibles
https://github.com/KoslickiLab/FracMinHash-reproducibles
https://github.com/KoslickiLab/FracMinHash-reproducibles
https://github.com/KoslickiLab/FracMinHash-reproducibles
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277651.123/-/DC1

