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ABSTRACT

Multiple Arabidopsis thaliana clones from an experi-
mental series of cDNA microarrays are evaluated in
order to identify essential sources of noise in the
spotting and hybridization process. Theoretical and
experimental strategies for an improved quantitative
evaluation of cDNA microarrays are proposed and
tested on a series of differently diluted control
clones. Several sources of noise are identified from
the data. Systematic and stochastic fluctuations in
the spotting process are reduced by control spots
and statistical techniques. The reliability of slide to
slide comparison is critically assessed within the
statistical framework of pattern matching and classi-
fication.

INTRODUCTION

Large areas of medical research and biotechnological develop-
ment will be transformed by the evolution of high throughput
techniques (1-3). Miniaturization and automatization enables
the concurrent performance of many thousands or even
millions of small-scale experiments on oligonucleotide chips
(4,5) or spotted microarrays (6—8). Manufacturing processes
and labeling techniques will lead to different performances
(9,10) and detection ranges (11), but questions of statistical
significance (12,13) and quality control (T.Beissbarth,
K.Fellenberg, B.Brors, A.Arribas-Prat, M.J.Boer, V.N.Hauser,
M.Scheideler, D.J.Hoheisel, G.Schuetz, A.Poustka and
M.Vingron, submitted for publication; 14) are quite similar for
the different technologies.

Down-scaling of an experiment makes it generally sensitive
to external and internal fluctuations (7). Since reliability of
interaction patterns extracted from array data is essential for
their interpretation (15,16), a reduction in these fluctuations by
proper averaging and normalization procedures is of great
practical interest (17). We will address this issue in the context
of cDNA microarrays, spotted on glass slides and hybridized
with a radioactively labeled probe.

According to the experimental steps listed in Materials and
Methods we will now give a list of the major sources of fluctu-
ations to be expected in this type of microarray experiment.
The list addresses fluctuations in probe, target and array

preparation, in the hybridization process, background and

overshining effects and effects resulting from image processing.

* mRNA preparation: depending on tissue and sensitivity to
RNA degradation probes may look very different from
sample to sample.

 Transcription: reverse transcription to cDNA will result in
DNA species of varying lengths.

* Labeling: radioactive labeling may fluctuate randomly and
systematically depending on nucleotide composition.

e Amplification: clones are subject to PCR amplification,
which is difficult to quantify and may fail completely.

» Systematic variations in pin geometry: pins have different
characteristics and surface properties and therefore transport
different amounts of target cDNA.

¢ Random fluctuations in target volume: the amount of trans-
ported target fluctuates stochastically even for the same pin.

» Target fixation: the fraction of target cDNA that is chemically
linked to the slide surface from the droplet is unknown.

* Hybridization parameters: efficiency of the hybridization
reaction is influenced by a number of experimental parameters,
notably temperature, time, buffering conditions and the
overall amount of probe molecules used for hybridization.

 Slide inhomogeneities: for different reasons the probe may
be distributed unequally over the slide or the hybridization
reaction may perform differently in different parts of the
slide.

* Non-specific hybridization: a typical source of error that
cannot be completely excluded.

* Non-specific background and overshining: non-specific
radiation and signals from neighboring spots.

* Image analysis: non-linear transmission characteristics and
saturation effects and variations in spot shape.

Different types of experiments are required for assessing
different types of fluctuations. If possible, sources of noise
should be selectively excluded allowing for a precise estimation
of their influence. In this work we exclude variations in probe
preparation by focusing on the normalization and classification
of Arabidopsis control clones. Even within this simplified
setting analysis remains complex: the signal collected from
several different pins will include superimposed fluctuations,
e.g. from random fluctuations in target volume, slide inhomo-
geneities and overshining effects. In the following, systematic
and random fluctuations inherent to spotting and hybridization
are estimated directly from the data; a substantial part of the
systematic error can be removed by a refined normalization
procedure.
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Figure 1. Segment from a 96 x 144 spot image of a cDNA microarray. The
enlarged area (left) shows the spotting pattern (6 X 6 spots) produced by a single
pin. Besides the different mouse clones (two spots each) the pattern contains four
empty or background spots (diamonds), two spots from the constant Arabidopsis
control (circles) and two spots belonging to the Arabidopsis dilution control
series (squares). The dilution series consists of six steps, each corresponding to a
2-fold dilution. The gray levels in both graphics are presented on a logarithmic
scale in order to give a better impression of the fuzzy boundaries of individual
spots.

MATERIALS AND METHODS

Array preparation

A complex probe from several mouse tissues was purified and
reverse transcribed with radioactively labeled cDNA.
Arabidopsis  thaliana c¢cDNA (GenBank accession nos
AF104328 and U29785) was spiked in a fixed amount for
normalization purposes (18). Clones were amplified by PCR
reaction, 5’-amino-modified for attachment to glass slides, and
purified (19). Prior to spotting, glass slides were cleaned and
derivatized for covalent attachment of cDNA. A 384 pin
gridding head (X5251; Genetix, Christchurch, UK) was used
for spotting a grid of 384 blocks, each containing 36 spots. All
clones were spotted twice within a block (double spotting).

Details of the spotting pattern of library and control clones
are explained in Figure 1. Altogether nine slides with an
identical spotting pattern were produced.

The radioactively labeled probe was hybridized on the
cDNA array for 10 h at 42°C. For details on spotting technique
and hybridization procedures see Eickhoff ef al. (20).

Scanning and image processing

Arrays were exposed for 16 h to a Fuji BAS-SR 2025 intensifying
screen (Raytest, Germany) and scanned at 25 pm resolution
with a Fuji BAS 5000 phosphorimager (Raytest). The image
was converted into a table of signal intensities using proprietary
software.

Data processing

Intensity data were ordered in a table, each column corre-

sponding to a slide and each row to a spot on the slide. The

following normalization procedures were tested for their

efficiency:

* no normalization, averaging over k slides;

* normalization by average intensity of control spots (slide-
wise normalization) and averaging over k slides;

ii

0.15

o
—
o

0.05

background spot intensity

0.0 0.2 0.4 0.6 0.8 1.0
mean intensity of neighboring spots

Figure 2. Intensity measured on background spots versus the mean intensity of
the four neighboring spots. The slope of the linear interpolation is 0.051 with
an axis intercept at 0.021. The corresponding correlation coefficient is C = 0.48.

e division by the intensity of the two constant spots and
averaging over k slides (pin-wise normalization);

* slide-wise normalization of the diluted and constant signals,
averaging of the dilution and control signals over several
slides, then quotient formation (average pin-wise normalization).

RESULTS

Non-specific background and overshining

The level of background noise and the influence of neighboring
signal intensities is illustrated in Figure 2. The intensity of
background spots is plotted versus the average signal intensity
of the four next neighbor spots.

The y-axis intercept of the linear regression gives an estimation
of the non-specific background. The small background intensity
indicates that there are only weak overshining effects for the
6 % 6 spotting pattern. The regression can be used for correction of
the systematic part of these errors. The radius used to quantify
spots was varied systematically: for the given spotting density
only weak changes are observed if the scanning radius is kept
in a reasonable range of about half the spotting distance (data
not shown). The magnitude of the background and overshining
effects is substantially smaller than fluctuations induced by
spotting variabilities quantified below.

Assessment of spotting variabilities

In order to facilitate interpretation of the experimental data we
neglect all non-linearities from image processing and assume
that hybridization reactions reach mass action equilibrium.
Due to the fact that different spots of a dilution series compete
for the same probe the amount of probe bound in each spot is
proportional to the amount of target cDNA present in the spot.
The observed signal intensity then reflects the amount of
spotted cDNA. Fluctuations in spot size and in the hybridization
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Figure 3. Scatter plots of the signal intensities obtained from a six step dilution series. (a) Points represent double spotted pairs from the same block of one slide.
(b) Comparison of signal intensities from two different slides. (¢) Comparison of signal intensities from nine slides after slide-wise normalization and averaging
over the nine slides. (d) Subset of signal intensities from (c) corresponding to the second dilution level.

process can now be inferred from fluctuations in the signal
gained from control spots. Scatter plots for typical experiments
are presented in Figure 3 and give insight into the magnitude of
fluctuations and correlations between double spotted signals.

In Figure 3a signal intensities of the dilution series are
shown. The 384 points represent double spotted pairs from the
same block of one slide. Ideally the spots would form a straight
line along the diagonal. Deviations from this ideal behavior
essentially reflect random fluctuations in target volume (item 6
listed in the Introduction). Points are increasingly dense close
to the origin owing to the construction of the dilution series:
dilution is stepwise increased by a factor of two, resulting in an
exponentially growing number of points in the region of low
signal intensities. The correlation value of C = 0.90 gives an
impression of the signal reproducibility within one block.

In Figure 3b intensity values of two slides are compared. The
correlation is substantially smaller (C = 0.76) and the slope of
0.6 is significantly different from 1. The smaller correlation

value indicates that additional sources of noise complicate the
comparison of different slides. According to our reasoning above,
the main sources of additional noise will be inhomogeneities in
hybridization (items 8 and 9) as well as non-linear transmission
and saturation effects in scanning and image processing (item
12). The fact that the cumulative intensity of all spots of the
dilution series should be the same in all nine slides implies a
simple normalization procedure: divide the signal intensity of
each spot by the average intensity of all control spots on the
slide. This intuitive normalization procedure will be referred to
as ‘slide-wise normalization’. Applying slide-wise normalization
to the example given in Figure 3b would result in a corrected
slope close to 1. The values from different slides are now
directly comparable, which is an obvious advantage of this
normalization procedure.

Due to the stochastic character of the above-mentioned
fluctuations, averaging is a sensible method to reduce the noise
level. We demonstrate this by normalizing nine slides as

il
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Figure 4. Intensity of diluted control signal versus intensity of the constant control
signal. Values are obtained by averaging over eight slides after normalization by
slide average. The six different dilution classes are marked by six different
symbols. Classes are separable to a fair degree in two dimensions, owing to
correlations between the constant and diluted signals. Class boundaries as
defined by the nearest mean classifier are indicated by lines.

described above and plotting the averaged normalized intensities
(Fig. 3c). Scattering of the signal is considerably reduced, as
reflected in the substantially higher correlation coefficient of C
= 0.99. Despite the small deviations of the averaged signal
from the diagonal, the six classes of the dilution series cannot
be distinguished in the scatter plot in Figure 3c. This hints at
the presence of another source of noise not reduced by this
averaging procedure.

This variability stems from systematic variations in pin
geometry, as clearly shown in Figure 3d. Here, only the points
belonging to the second dilution level are plotted. If only
stochastic sources of noise were present in the signal, a narrow
circular distribution would be expected. In contrast, a correlation
coefficient of C = 0.97 and a wide signal distribution indicate
correlated variations in the signal that are present despite
averaging over different slides. On the other hand, the strong
correlations can be exploited for correction of the systematic
deviations induced by different pin characteristics.

Figure 4 illustrates how the presence of a constant control
signal can help to distinguish the different classes of the dilution
series. The intensity of the averaged diluted control signal is
plotted versus the intensity of the averaged constant control
signal. Each dilution level is represented by 64 spots corre-
sponding to 64 different pins (see Materials and Methods). If
only the dilution signal is known the different classes will
strongly overlap, as seen from projecting the points to the y-axis.
In two dimensions, however, the six classes are reasonably
well separated. Basically this is due to the fact that the reference
signal helps to decide whether an observed strong signal intensity
is due to high concentration in the target clone or rather a
consequence of systematically excessive volume spotted by the
corresponding pin. The most direct way to achieve normalization
by the constant control signal is by calculating the ratio of the
dilution signal and the constant control signal. In geometrical

v

terms this corresponds to a projection of the data point along a
ray from the origin onto the vertical axis. In the next section we
investigate how suitable ways of averaging and normalization
improve the separability of the dilution classes.

Classification of the dilution levels

Separation of the dilution levels based on signal strengths can
be regarded as a classification task: given a randomly chosen
position on the slide, infer the correct dilution class from the
signal intensity observed at that point. Classification is perfect
when all spots are assigned to the correct class. Of more practical
importance than reassignment is prediction of signal intensity
patterns of unknown class. This problem is comparable to the
task of inferring an mRNA level from the signal intensity
observed in a spot, where the probe rather than the target
dilution is of interest. Classification and prediction are done
with a nearest mean classifier (21). This classifier is represented
by a number of center vectors, each vector defined as the center
of one class. Any pattern classified by this method is associated
with the class defined by the closest center. Two issues will be
investigated:
* improvement of classification and prediction performance
by averaging multiple experiments;
* improvement of classification and prediction performance
by suitable normalization.

Improvement by averaging is assessed by dividing a set of
eight slides into training and test sets of varying size. In four
steps an increasing number of slides (k =1, 2, 4 or 8) is used to
infer the dilution class in a given position of the slide. For k = 1
the classification task is to recover the correct dilution class of
a given spot using the nearest mean classifier trained on the
same slide. The prediction task is to predict the correct dilution
class of a given spot using the nearest mean classifier trained
on a different slide. The quality of classification is measured by
the percentage of correct assignments. For k = 2 or 4 (averaging
over two or four slides) the whole procedure remains the same
with the only difference that the classifier is now constructed
by averaging signals from two or four slides and the prediction
is done for two or four other slides. For eight slides only the
classification task can be performed. The results for the four
normalization procedures described in Materials and Methods
are presented in Table 1. As seen from the first two rows,
classification is little improved by slide-wise normalization.
However, prediction of the test set is considerably better for
the normalized data. The reason for this lies in the reduced
signal variability in the normalized data. Averaging reduces
random fluctuations and makes both the task of classification and
that of prediction easier. Substantial improvement is possible by
including the constant control spots in the normalization and
thereby applying systematic corrections to variations in pin
geometry.

DISCUSSION

The evaluation performed for multi-spotted A.thaliana control
clones allowed the identification of essential sources of noise
resulting from the spotting and hybridization processes.
Systematic signal fluctuations in target transmission during the
spotting process can be reduced by monitoring control spots.
Stochastic fluctuations can be reduced by averaging intensity
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Table 1. Percentage of correct classification and prediction for the nearest mean classifier using different normalization strategies

Normalization Average of
One slide Two slides Four slides Eight slides
Training Test Training  Test Training  Test Training
(A) None 50 32 53 30 60 57 62
(B) Slide-wise 50 49 54 52 61 60 63
(C) Pin-wise 62 55 64 59 68 65 71
(D) Average pin-wise 63 58 70 69 75 74 78

The classifier is constructed by calculating centers of six classes from a set of training data. Then it is applied to reclassification of
the same data (training) and to prediction of classes for data not in the training set (test). Increasingly large sets of data are averaged from
the left column to the right column. Different normalization procedures explained in the text are applied in each line.

values for the same target clone over multiple slides after suitable
normalization.

More generally, normalization enables the combination of
multiple measurements performed on different slides to an
intensity vector. Any type of classification tool, like refined
statistical indicators or neural networks, can be used to classify
these vectors. A direct application of this strategy is demonstrated
by the reduction in stochastic signal fluctuations in diluted
control clones, leading to improved reclassifaction of the dilution
classes. Since the correct classification is known in advance,
an assessment of performance is possible (see Table 1). This
allows judgement of the number of slides necessary for a
desired signal resolution.

Comparing the four normalization schemes proposed, for
our experiment the average pin-wise strategy (D) seems most
appropriate. Training and test performance are persistently
higher than in all other procedures. An explanation for this fact
is given by the following consideration. By first calculating an
average over several slides and then calculating the ratio of the
averaged quantities, this strategy tends to avoid a strongly
fluctuating denominator. This makes strategy (D) superior to
strategy (C), where first the ratio of individual quantities is
calculated and than an average is taken. Of course, the optimal
strategy will depend on the relative amount of noise contributed
by different sources and will very much depend on the array
and labeling technique employed.

We envisage that the inclusion of control clones in every
spotted array and spiking of these clones into the hybridization
solution could be the initial step towards an enhanced
comparability of microarray data, irrespective of where the
array is produced. Normalization may be less important for the
two-color labeling strategy, since ratios should be independent
of the actual spot size. Generally, the comparison of different
experiments (slides) will require some kind of normalization:
either explicit by a defined set of normalization clones or
implicit by a reference probe. The unavoidable use of a reference
probe in the two-color labeling strategy may be a disadvantage
if results from different laboratories are to be compared.

Although our considerations have concentrated on cDNA
arrays using glass slides and radioactively marked probes, the

principal sources of systematic and stochastic signal variability
are expected to be similar in other microarray technologies
involving spotting techniques. A proper normalization of array
data will be a prerequisite to successfully meet future challenges
like identification of SNPs, identification of expression profiles
and reverse engineering of regulatory genetic networks.
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