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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Research data is accumulating rapidly and with it the challenge of fully reproducible science.

As a consequence, implementation of high-quality management of scientific data has

become a global priority. The FAIR (Findable, Accesible, Interoperable and Reusable) prin-

ciples provide practical guidelines for maximizing the value of research data; however, pro-

cessing data using workflows—systematic executions of a series of computational tools—is

equally important for good data management. The FAIR principles have recently been

adapted to Research Software (FAIR4RS Principles) to promote the reproducibility and

reusability of any type of research software. Here, we propose a set of 10 quick tips, drafted

by experienced workflow developers that will help researchers to apply FAIR4RS principles

to workflows. The tips have been arranged according to the FAIR acronym, clarifying the

purpose of each tip with respect to the FAIR4RS principles. Altogether, these tips can be

seen as practical guidelines for workflow developers who aim to contribute to more repro-

ducible and sustainable computational science, aiming to positively impact the open science

and FAIR community.

This is a PLOS Computational Biology Software paper.

Introduction

Technological advancements in data-driven research disciplines come with larger data vol-

umes and complexity. The significant increase in amounts of data has a negative impact on the

already existing reproducibility crisis [1,2]. These developments call for the use of repeatable

and reviewable workflows. Workflows are systemic executions of multiple computational

methods to analyze datasets, thereby fitting solutions to gain meaningful insights from raw,

heterogeneous data [3].
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Previously, the FAIR (Findable, Accessible, Interoperable, Reusable) principles have been

introduced to serve as guidelines for good scientific data management [4]. These principles

have been adapted to the FAIR for Research Software (FAIR4RS) principles [5,6], which are

designed to improve portability, reusability, and sustainability of research software. Thus,

applying the FAIR4RS principles on research workflows (FAIR workflows) will enhance over-

all reproducibility and reuse in research, supporting maturation of the open science and FAIR

communities. It is important to realize that these FAIR workflows are not to be confused with

data FAIRification workflows, which can be used to make FAIR data. For the FAIRification of

(research) data, we refer to the original FAIR guiding principles [4].

Practical guidelines have previously been described that reflect specific use cases imple-

menting the FAIR/FAIR4RS principles. For example, recommendations have been introduced

regarding research data discovery [7], reproducible computational research [8], and the inter-

operability of individual computational tools [9]. However—to the best of our knowledge—no

guidelines are available that focus specifically on FAIR workflows.

In this article, we propose 10 quick tips (Fig 1) for researchers working on computational

workflows in any discipline. These tips should assist researchers in the development of FAIR

workflows. The tips are following the FAIR4RS principles and have been developed and dis-

cussed with a group of experienced workflow developers in the context of the Netherlands X-

omics initiative [10], a large-scale research infrastructure for the generation, analysis, integra-

tion, and stewardship of molecular omics data (genomics, proteomics, metabolomics, etc.).

We aimed for a set of tips that are applicable to any computational environment and are rele-

vant for any research discipline. However, we are aware that not every technical solution can

be applied to every type of research workflow, as workflow designs can be highly diverse across

different research fields. Hence, we present multiple technical solutions for each tip and

encourage researchers to keep track of novel future workflow/software technologies that could

further improve FAIR workflow development.

Findability

Tip 1: Register the workflow

FAIR workflow development starts by making it findable. Registering the workflow to any

public record, preferably one that is also indexed by popular search engines, will increase find-

ability. While general software repositories such as Maven and Dockerhub have value, ideally,

we recommend registries that enable systematic scientific annotations and are catering for

workflows written in different languages. Examples of these registries are WorkflowHub [11]

and Dockstore [12].

WorkflowHub, sponsored by the European RI Cluster EOSC-Life [13] and the European

Research Infrastructure ELIXIR [14], enables researchers to publish their workflows and there-

upon can be discovered and reused by others. Currently, WorkflowHub supports multiple

widely used workflow languages, such as the Common Workflow Language (CWL) [15], Sna-

kemake [16], Nextflow [17], and Galaxy [18], through which many workflows can be collected

into one place. WorkflowHub can assign a unique and persistent identifier—digital object

identifier (DOI)—to the workflow, making it easily citable. Whenever a new workflow version

is published, another DOI is automatically minted, making all workflow versions findable and

citable. Workflow DOIs are registered with DataCite [19], and workflow metadata (see Tip 2)

are automatically added to the knowledge graphs DataCite Commons PID Graph [20] and

OpenAIRE Research Graph [21]. These can be used as platforms to explore research data, soft-

ware, publications, etc., in a number of records.
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Fig 1. Ten quick tips for building FAIR workflows.

https://doi.org/10.1371/journal.pcbi.1011369.g001
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Dockstore—made in collaboration with the Global Alliance for Genomics and Health

(GA4GH) [22]—supports workflow languages CWL [15], Workflow Description Language

(WDL) [23], Nextflow, and Galaxy. With Zenodo as DOI provider [24], unique identifiers can

be minted for specific workflow snapshots (versions) in Dockstore.

On the other hand, there are workflow language-specific registries, for example, nf-core

(which contains only curated Nextflow workflows) [25], Galaxy [18], the Snakemake workflow

catalog [26], and KNIMEhub [27]. Although such workflow registries do not offer the possibil-

ity to generate DOIs, the workflow’s source code can be made citable with Zenodo by linking

the respective code repository.

Tip 2: Describe the workflow with rich metadata

Describing the workflow with rich metadata enables both humans and machines to under-

stand what the workflow does and supports its findability by search engines. The metadata

should cover information on all data entities that are present in the workflow, such as work-

flow language files, scripts, configuration files, example input data, as well as characterization

of the purpose, scope, and limitation of the workflow to facilitate workflow discovery.

Most workflow languages that are mentioned in this paper enable researchers to add

generic metadata (e.g., authors, organization, project title), which can already help end-users

to understand the workflow. CWL offers the possibility to add domain-specific metadata (pro-

gramming languages, file formats, tools used, versions, etc.) as well, so that all workflow ele-

ments are formally described with ontology terms—preferably from the EDAM ontology,

which focuses on data analysis and management [28].

Furthermore, research data can be packaged along with the associated metadata using the

RO-Crate (Research Object Crate) specification [29]. A workflow RO-Crate should follow the

community curated Bioschemas [30] specification for a computational workflow, which

defines the workflow properties that are mandatory or recommended to be described [31].

The metadata is captured in a JSON-LD file, using the Linked Data principles [32]. Following

these principles, the metadata file describes all data and contextual entities (researchers, orga-

nizations, etc.) of the workflow with uniform resource identifiers (URIs). This ensures that all

entities in the RO-Crate are described unambiguously and can be easily searched for. More-

over, workflow RO-Crate objects can be directly uploaded to WorkflowHub to register the

workflow. Altogether, the RO-Crate method offers a good trade-off between usability (human

readable formats) and richness (sufficient metadata).

An example how metadata aids discovery is showcased by Bio.tools [33,34]. a registry devel-

oped by ELIXIR, the European Infrastructure for Biological Information. Bio.tools has a

broader scope not only registering workflows but also other tool artifacts such as databases

and software tools. It is of particular interest for the community as it demonstrates how rich

metadata has added value for discovering relevant workflows: Ontology annotations can be

used to tag the workflow’s purpose and scope, thereby enhancing findability.

Accessibility

Tip 3: Make source code available in a public code repository

With the workflow’s source code available on a public code repository, anyone can access the

software using commonly used communication protocols (HTTPS or SSH). Multiple conven-

tional repository services for software development are available such as GitHub, GitLab, and

Bitbucket, allowing code sharing via the Git protocol (which uses either HTTPS or SSH).

Because the Git protocol to retrieve software is free of charge and implementable on any sys-

tem [35], it is a recommended solution for making a workflow accessible.
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Source code should be written following widely used style conventions, e.g., PEP 8 for

Python [36] and the Google Style Guide for a variety of programming languages [37]. Code

analysis tools that can assist workflow developers in adhering to these style conventions are

available [38–41]. These tools can be integrated in the workflow development routine, for

example, through automatic testing protocols (see Rule 4) that check if the code follows prede-

fined style schemas. By doing so, this ensures that each modification will be written in readable

and concise code.

Complete accessibility is more than providing the workflow’s source code on a code reposi-

tory: The workflow’s source code should be accompanied with clear open source licensing.

Licenses are meant to protect software owners and users, by specifying the permissions and

limitations of the user, as well as the conditions that have to be met when reusing software. As

there are many different open licences available, we can refer to choosealicense.com [42],

which helps workflow developers to find a suitable license.

Code repositories offer other useful features. For example, version control using standard-

ized protocols on the pipeline’s code will increase both findability and accessibility. As men-

tioned above, WorkflowHub and Dockstore provide an option to keep track of different

workflow versions. Hence, combining the Git protocol and one of these workflow registries

will enable the end-user to both find and access a specific version of the workflow. This will

make it possible to reproduce any results generated by the workflow and not limit the end-

user to the most recent version.

Tip 4: Provide example input data and results along with the workflow

Accessibility of the workflow’s input data and associated results will help the end-user to

understand how the workflow should function and improves reproducibility. Example data

can be provided along with the workflow, for example, when using RO-Crate to package the

workflow. Alternatively, the workflow documentation should give guidance on how to retrieve

the data, preferably from a FAIR data repository. When the input data are privacy-sensitive,

names/patient IDs should be pseudonymized to ensure privacy protection. If the data are too

sensitive to be shared in any manner, synthetic data can be generated that mimics the original

data, for example, by random sampling of the original data’s distribution.

Moreover, example data can be used to verify the users’ configuration. Running a pipeline

in another computational environment can require adjustments to the configuration file (see

Tip 8). The example data with results can be used to verify that the workflow runs correctly

with this new configuration profile.

All workflow results are best collected through comprehensive rendered reports. Workflow

managers like Nextflow and Snakemake support automated report generation. The readability

and accessibility of these reports is particularly useful for non-computational researchers. The

configuration profile that was used to run the workflow should be included in the report in

order to properly document the parameters used and steps that were taken to produce the

results.

Additionally, test functions can be incorporated in the workflow to guarantee a proper

workflow execution and, if not executed correctly, reveal quickly where the execution halts.

An interesting tool for workflow sustainability and reusability is the LifeMonitor project from

EOSC-Life [13]. This service, available as both API and web application, facilitates automatic

testing of workflows with given example data. Being interoperable with GitHub and Workflo-

wHub/RO-Crate, the LifeMonitor can be easily used for the FAIR workflow. Furthermore,

whole workflow testing frameworks, such as pytest-workflow [43], enable researchers to write

test configurations (YAML files) for any workflow type. These configurations check whether
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the workflow components produce the correct files (file paths, MD5 checksums, lists of strings

present in the file) or exit according to the predefined command exit code.

Unit tests are small tests that can be implemented in a workflow to test the execution of sin-

gle scripts or even functions within a script. For popular programming languages, there are

libraries available that are designed to implement unit tests, for example, the built-in unittest
library [44] for Python and testthat [45] for R. Notably, some of the current workflow manag-

ers are able to automatically generate unit tests (Snakemake). Others offer workflow language-

specific testing frameworks (KNIME, Galaxy). Ideally, these tests are automated such that they

continuously verify if latest versions of the workflow still function as expected, a practice

known in software engineering as “Continuous Integration and Continuous Delivery (CI/

CD)” [46]. CI refers to the automatic builds, tests, and integration of new code features, where

CD means the automatic release of new software (versions), with the main developer’s

approval [47]. Multiple public code repositories offer the possibility of automatic workflow

testing via CI/CD. All things considered, automatic testing of the workflow’s source code can

increase time efficiency of workflow development and secure workflow quality.

Interoperability

Tip 5: The tools integrated in a workflow should adhere to file format

standards

Adopting standardized file formats increases interoperability. Not only workflow in- and out-

put files, but also intermediate files that are exchanged by processes within the workflow

should be written in standardized formats where possible. This facilitates the reuse of individ-

ual workflow components (see Tip 9) in other workflows.

Data format standards can be highly diverse. For workflows, we can distinguish between

unprocessed input files and intermediate files. For example, regarding unprocessed input data

in the bioinformatics field, many different file formats are considered to be standard. Nucleo-

tide sequencing data are commonly saved as SAM files or derivatives (BAM, UBAM, CRAM,

VCF) and metabolomics/proteomics as mzML or MAF files [48]. These formats are useful

when data-specific tools are used within workflows, as these tools are written and optimized

for these standards. For more general data analysis components of the workflow, it is recom-

mended to use file formats that are commonly used to read and write data frames in popular

programming languages like R and Python, such as CSV and TSV. For more complex data, file

formats can be used that are more uncommon, but allow embedding of different data types,

such as JSON, XML, or RDF.

Large datasets might require large amount of disk space, limiting reusability. In such

instances, it is worth to consider compressed file formats that can be easily read in, for exam-

ple, Python, R, and command line tools. Additionally, there are tools available [49,50] that

allow researchers to read and write indexed compressed files, reducing memory consumption

even further and enhancing data retrieval speed. Alternatively, there are binary compressed

file formats, such as HDF5 [51] and ZARR [52]. These do not only offer high efficiency, but

also facilitate interoperability, by enabling the annotation of column data types.

It is important to realize that current data standards might not be persistent over time.

Using data standards does not mean being blind to emerging data standards that possibly offer

more advantages. In the long run, it is a community effort to determine which domain-specific

standards should be retained or replaced by better alternatives. Therefore, we recommend

closely keeping track of the latest developments in the respective field that a researcher is work-

ing in. Resources are available to assist researchers in staying updated with the latest data stan-

dards, such as FAIRsharing [53] and the FAIR cookbook [54]. Meanwhile, using formats that
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also can be parsed as raw text files (as compared to proprietary binary formats) reduce the

chance that data cannot be accessed.

Tip 6: Make the workflow portable

By utilizing workflow managers, workflows can achieve higher portability, allowing them to

operate seamlessly across different types of computational environments. Workflow managers

are designed to streamline workflow development and can simplify the implementation of the

technical solutions that increase portability (software containers, workflow configuration,

workflow modularization, etc.).

It is recommended to use one of the actively used workflow managers that are portable,

scalable, and have sufficient documentation, such as Nextflow, Snakemake, and Galaxy [55].

WorkflowHub is compatible with multiple workflow languages, which all have their pros and

cons. An extensive review on workflow managers [55] provides a comprehensive analysis of

workflow systems in various characteristics, including portability, reusability, ease of use, and

scalability, among others. However, it is important to realize that workflow managers are

evolving rapidly and that these reviews can become outdated quickly. Nonetheless, the work-

flow management system of choice depends on the specific use case, for which recommenda-

tions have previously been described [56].

Using one of the aforementioned workflow managers will strongly ease the development of

a FAIR workflow. On the downside, while still usable through a command line interface, the

workflow would not necessarily be interoperable with workflows written in different workflow

languages or built with future workflow managers. However, some workflow languages can be

run with different workflow engines. For example, workflows written in CWL can be run with

Cromwell [57] and Galaxy, whereas workflows written in WDL can be run with Cromwell and

miniWDL [58]. Alternatively, when using non-interoperable workflow managers, a CWL

description on top of the workflow language can be added in order to achieve higher

portability.

Reusability

Tip 7: Provide a reproducible computational environment to run the

workflow

Irreproducible research results can be caused by small differences in computational environ-

ments, which can be simply differences in Python/R versions, library versions, or operating

systems. Computational environments provide users with the capability to execute the entire

workflow on the same system that was used by the workflow developers, requiring substan-

tially less effort compared to installing all workflow dependencies from scratch. With this in

mind, it is important that reproducible computational environments are provided for the end-

user.

Available tools that are specifically designed for this include frameworks for building (scien-

tific) software such as EasyBuild [59], which automates the building of software on HPC plat-

forms. For Python and R, package managers Conda [60] and renv (only for R) [61] can be

used to create computational environments with installations of specific library versions.

These environments can be transferred as YML files, which define the library versions. Many

workflow management systems can integrate conda and/or renv environments, through which

these installations are facilitated.

Alternatively, software containers can be used. Software containers are lightweight compu-

tational environments containing all necessary elements (code, dependencies, data,
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configuration, etc.) to execute a certain process [62]. For example, a software container used

for research can be a simple Linux environment containing only a specific Python version

installed together with analysis packages such as Tensorflow [63].

A popular technology for software containers is Docker [64]. Docker container images are

built following recipes—so-called Dockerfiles—which can be used as both human and

machine-readable documentation of the container. Therefore, it is crucial to write understand-

able Dockerfiles [65]. Most Dockerfiles start with a parent image, on which new installations

are made. In the previous example, the “simple Linux environment” can be a parent image,

which is exemplary for the ease-of-use of Docker containers. Various workflow managers can

directly pull software containers from container registries such as Docker Hub, so that

researchers do not need to build the software containers manually. Note that inactive con-

tainer images are not perpetually retained in services such as Docker Hub, which should be

prevented with FAIR workflows. Docker containers are currently most frequently used,

because of their ease-in-use, platform in-dependency, and the high number of base images

available on Docker Hub.

Alternative container engines are Podman [66], Charliecloud [67], Shifter [68], and Apptai-

ner—formerly known as Singularity [69]. These software container platforms are interoperable

with Docker: it is possible to run Docker containers and pull base images from Docker regis-

tries with these engines.

Tip 8: Add a configuration file with defaults

Possibility to parameterize the workflow to different use cases greatly enhances reusability. In

our experience, we prefer parameterization using config(uration) files over other forms of

parameterization (such as command-line parameters) because the files themselves improve

FAIRness of the workflow use.

A config file can be used to fine-tune the workflow execution on different levels (software/

hardware), through which it can be run in different computational environments without the

need to modify the workflow implementation. For example, file paths of both input and output

data can be specified in the configuration file. To put it another way: hardcoded paths/settings

should never be present in a research workflow, but stored in the configuration file. Moreover,

storing all intermediate results may require large storage space, more than is required to store

input and output files together. Workflows should therefore provide configuration options to

manage intermediate files (i.e., keep or delete it) to avoid data explosion during workflow exe-

cution. Equally important for workflow reproducibility are hardware specifications in the con-

fig file. When large amounts of data are to be processed, hardware settings such as GPU/CPU

numbers and RAM amounts can be specified to scale the workflow execution to the respective

computing environment.

As discussed in Tip 7, different tools are available to provide reproducible computational

environments. Ideally, the end-user can select any preferred tool to build such an environ-

ment, which could be specified in the config file as well. A good example are the curated nf-

core pipelines, which can be run with several software container engines (Docker, Apptainer,

Podman, Shifter, and Charliecloud) and Anaconda. Evidently, this increases both workflow

interoperability and reusability. To simplify the development of workflows that can be exe-

cuted with both Conda and containers, researchers might consider Snakemake’s capability to

containerize a workflow originally built using pure conda environments.

We encourage workflow developers to add default values in the config file, saving time and

effort for the use cases that do not require extra workflow customization. For the use cases that

need specific workflow configurations, sufficient documentation on both the workflow and
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the configuration options should be provided along with the workflow (see Tip 10). Workflow

managers mostly include their own config files, making it easier for both workflow developers

and end-users to implement configuration files.

Tip 9: Modularize the workflow

To enhance reusability, we recommend building workflows in a modular structure.

Firstly, alternative workflow designs are facilitated with modular workflows. If researchers

are interested in reusing only a specific part of the workflow, this part can be easily imported.

If a specific software container is assigned to every module—these can be part of the import—

higher workflow reproducibility is obtained. Good examples of readily deployable workflow

modules are the nf-core-modules and snakemake-wrappers (and meta-wrappers).

Secondly, modular workflows are simpler to understand and can be maintained more effi-

ciently. For example, when creating a code repository that contains all the reusable modules,

which are imported by other workflows, only this module repository needs to be in active

development. Besides saving time and effort, this ensures that the exact same modules are

reused in all different workflows. And logically, simpler maintenance will result in less code

writing and thus fewer bugs.

Another approach for workflow modularization is creating a software package that can be

used outside of the workflow. Although this requires additional effort, it opens up opportuni-

ties for uses other than just running or adapting the workflow.

Tip 10: Provide clear and concise workflow documentation

Since end-users initially get familiar with the workflow through its documentation, it is essen-

tial for reusability. Documentation can be provided in multiple forms: code repositories

(README files), workflow registries (HTML web page), or workflows themselves (––help
parameter) can all be included in the user documentation. We recommend adding documen-

tation in as many forms as possible, while preserving uniformity to prevent any confusion for

users. Therefore, it is advisable to use one as leading documentation, which is to be trans-

formed into the other documentations, saving time and effort as well. Alternatively, different

workflow documentation sources can link to another. For example, the workflow’s help

parameter provides the most basic information on workflow usage to end-users and links to

the workflow registry page with more extensive documentation.

In addition, we recommend equipping the documentation with a flowchart that gives a

schematic overview of the different workflow components and how these are connected. On

top of that, a text document/table can provide more detailed information. This would include

every workflow process, script, input/output files, and workflow parameters used. With every

pipeline step documented, reuse and re-implementation of the workflow is made easier.

Finally, the source code of the workflow can also function as documentation. As highlighted

in Tip 3, source code should be written following widely adopted style conventions in order to

make the code more readable. With the source code being more self-explanatory, readers can

easily discover the purpose of each code segment, thereby understanding how the workflow

operates on a more detailed level. Also, writing the source code in a modular fashion can

greatly enhance its overall readability.

Conclusion

Increasing data volumes and complexity in research are both an opportunity and a challenge

that require more creative and resourceful workflow designs. To structure this diverse land-

scape of different workflows, the FAIR4RS principles can play a significant role. Here, we have
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introduced a set of 10 quick tips that can help to navigate through these principles when devel-

oping a scientific computational workflow, irrespective of the research field. For each tip, we

propose multiple technical implementations that can be used, because we are aware that not

every technical solution can be applied to every workflow at any time. Inevitably, future tech-

nological developments will lead to additional useful tools for workflow FAIRification. We

believe in the added value of these tips to build a stronger and sustainable workflow commu-

nity, where reusable, trustworthy, and validated workflows are the standard in any data-driven

research field.
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