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Abstract

Out-of-hospital cardiac arrest (OHCA) is linked to a poor prognosis and remains a public

health concern. Several studies have predicted good neurological outcomes of OHCA. In

this study, we used the Bayesian network to identify variables closely associated with good

neurological survival outcomes in patients with OHCA. This was a retrospective observa-

tional study using the Japan Association for Acute Medicine OHCA registry. Fifteen explana-

tory variables were used, and the outcome was one-month survival with Glasgow–

Pittsburgh cerebral performance category (CPC) 1–2. The 2014–2018 dataset was used as

training data. The variables selected were identified and a sensitivity analysis was per-

formed. The 2019 dataset was used for the validation analysis. Four variables were identi-

fied, including the motor response component of the Glasgow Coma Scale (GCS M), initial

rhythm, age, and absence of epinephrine. Estimated probabilities were increased in the fol-

lowing order: GCS M score: 2–6; epinephrine: non-administered; initial rhythm: spontane-

ous rhythm and shockable; and age: <58 and 59–70 years. The validation showed a

sensitivity of 75.4% and a specificity of 95.4%. We identified GCS M score of 2–6, initial

rhythm (spontaneous rhythm and shockable), younger age, and absence of epinephrine as

variables associated with one-month survival with CPC 1–2. These variables may help clini-

cians in the decision-making process while treating patients with OHCA.

Introduction

Out-of-hospital cardiac arrest (OHCA) is a public health concern and a condition with poor

prognosis [1, 2]. Accurate prognostic prediction of OHCA is important for appropriate

resource allocation for emergency medicine and for providing appropriate information to

families [1, 3]. Various prediction models have been attempted for a variety of situations [4],

including survival prediction [5–9] and good neurological prognosis [10, 11] for patients in

whom return of spontaneous circulation (ROSC) has been achieved or target temperature

management therapy has been initiated. In recent years, machine learning models have been

developed and validated [12–15], further improving the accuracy of OHCA prognosis

prediction.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0291258 September 28, 2023 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shinada K, Matsuoka A, Koami H,

Sakamoto Y (2023) Bayesian network predicted

variables for good neurological outcomes in

patients with out-of-hospital cardiac arrest. PLoS

ONE 18(9): e0291258. https://doi.org/10.1371/

journal.pone.0291258

Editor: Gaetano Santulli, Albert Einstein College of

Medicine, UNITED STATES

Received: February 6, 2023

Accepted: August 24, 2023

Published: September 28, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0291258

Copyright: © 2023 Shinada et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data are owned

by a third party. Data are available from the JAAM-

OHCA registry committee (contact via http://www.

https://orcid.org/0000-0002-9718-0890
https://orcid.org/0000-0001-6268-4602
https://doi.org/10.1371/journal.pone.0291258
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291258&domain=pdf&date_stamp=2023-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291258&domain=pdf&date_stamp=2023-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291258&domain=pdf&date_stamp=2023-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291258&domain=pdf&date_stamp=2023-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291258&domain=pdf&date_stamp=2023-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291258&domain=pdf&date_stamp=2023-09-28
https://doi.org/10.1371/journal.pone.0291258
https://doi.org/10.1371/journal.pone.0291258
https://doi.org/10.1371/journal.pone.0291258
http://creativecommons.org/licenses/by/4.0/
http://www.jaamohca-web.com/


Concomitantly, the risks of making clinical decisions based solely on prognostic models to

determine the course of treatment for patients with OHCA have been discussed. Clinical deci-

sions made according to prognostic models are not always accurate, and there is a risk of with-

holding treatment in potentially life-saving situations if incorrect decisions are made [16].

Furthermore, to use a predictive model, all components included in the model must be in

place at the time the predictive model is used. In other words, if even one of the components

of the predictive model is not present, the model may not be usable. Variables that are associ-

ated with a favorable prognosis have been reported [17]. However, which variables more

directly predict a good prognosis has not been clarified. Bayesian networks build graphical

models of causal relationships between events based on uncertain information and calculate

the probability that the event they wish to estimate will occur from the given information [18,

19]. Compared with other deep learning methods, Bayesian network allows visualization of the

relationships among factors and offers high explanatory potential [20]. This method has been

widely applied in medicine, primarily in the fields of cardiac, cancer, psychiatric, and pulmo-

nary diseases [21]. In our facility, we employ BayoLinkS (NTT DATA Mathematical Systems

Inc., Tokyo, Japan) to estimate the prognosis of emergency patients and for clinical

applications.

In this study, we used a Bayesian network to search for variables associated with the event

of good neurological prognosis in adult patients with OHCA who had achieved ROSC.

Materials and methods

Study design and participants

This was a retrospective observational study using the Japan Association for Acute Medicine

(JAAM) OHCA registry, a prospective observational data registry kept by JAAM, with partici-

pating facilities across Japan. The registry was launched on June 1, 2014 and is still accumulat-

ing data. As of January 2023, 99 hospitals from 37 of the 47 prefectures in Japan are included

in the registry. JAAM OHCA registry collects data following a patient’s arrival at the hospital

(available Japanese item from: http://www.jaamohca-web.com/download/. Accessed 1st

August 2022). The data individually entered by the hospital is checked by the JAAM OHCA

registry committee of experts in emergency medicine and clinical epidemiology, who also per-

form data cleansing. Moreover, the data were combined with the pre-hospital data from the

All-Japan Utstein Registry of the Fire and Disaster Management Agency [22–24].

Patients not resuscitated in the hospital, not linked to pre-hospital records, exogenous car-

diac arrest cases, patients who had not achieved ROSC, and patients aged <18 years were

excluded. Moreover, cases with missing appropriate data regarding no flow and low flow time

(positive value and <400 minutes, respectively), epinephrine administration, GCS M score,

blood gas test, and biochemistry test results were also excluded. One-month survival data is

routinely collected in both the Fire and Disaster Management Agency Utstein Registry and

Japan Association for Acute Medicine OHCA Registry, and there were no cases with missing

information.

This study was approved by the Ethics Committee of the Saga University Hospital

(Approval no. 2021-04-R-08) and conforms to the tenets of the Declaration of Helsinki. The

need for informed consent was waived owing to the retrospective nature of the study.

Variables and outcome

Fifteen variables were used based on previous studies [11, 25–32]: cause of cardiac arrest, age,

sex, presence of bystander CPR, presence of witnesses/no flow time, initial emergency medical

services (EMS) rhythm, presence of epinephrine administration, low flow time, motor
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response in the Glasgow coma scale (GCS M), blood gas test results (pH, lactate, glucose)

taken after ROSC from the emergency room to admission to the intensive care unit (ICU),

and biochemical test results (creatinine, albumin, potassium) taken after the first hospital

arrival. The outcome was one-month survival with Glasgow–Pittsburgh cerebral performance

category (CPC) 1–2.

Identification of variables closely associated with one-month survival with

CPC1-2

The 2014–2018 and 2019 datasets were used as training and validation data, respectively. The

following data were used in the analysis in a non-regressive order: cause of cardiac arrest, age

and sex, presence of bystander CPR, presence of witnesses/no flow time (time from witnessing

to start of CPR), EMS initial rhythm, presence of epinephrine administration, low flow time

(time from start of CPR to ROSC), GCS M, and blood gas test and biochemical test results.

Variables involved in one-month survival with CPC 1–2 were selected based on the training

data, which were subsequently used in the sensitivity analysis.

Statistical analysis

Patient characteristics were analyzed using JMP Pro version 14 (SAS Inc., Cary, NC, USA).

Blood test results were divided into three groups using reference values: below reference val-

ues, within reference values, and below reference values. The reference values for glucose, cre-

atinine, albumin, and potassium were taken from https://www.jslm.org/books/guideline/2021/

GL2021_04.pdf, whereas those for pH and lactate were taken from https://www.acute-care.jp/

ja-jp/learning/glossary/bloodgas (both accessed on July 1st, 2023). Except for blood tests, con-

tinuous variables were transformed into categorical variables using quartiles. All variables are

presented as counts, followed by percentages in parentheses. The comparisons between the

training data and the test one were made using the chi-square test. P<0.05 was considered sig-

nificant. BayoLinkS was used to build and validate the Bayesian network model as well as for

the sensitivity analysis.

Results

Of the 57,754 cases enrolled in the study period, 5,340 were included in the analysis; of these,

4,286 and 1,054 cases were used as training and validation sets, respectively (Fig 1). The base-

line characteristics and cardiac arrest details are described in Table 1. The training data

showed significantly higher levels of low flow time (>39 minutes), lactate (>12.1 mg/dL), cre-

atinine (<0.48 and 0.49–1.08 mg/dL), and albumin (<4.0 g/dL) and significantly lower levels

of lactate (5.0–12.0 mg/dL), creatinine (>1.09 mg/dL), and albumin (4.1–5.1 g/dL) than those

from the validation data. No significant differences were found for the other items.

Four variables, including GCS M, initial rhythm, age, and absence of epinephrine were cho-

sen for one-month survival with CPC 1–2 in the training model (Fig 2). The estimated proba-

bilities for each combination are presented in S1 Table.

The results of the sensitivity analysis are shown in Table 2. The estimated probabilities

increased in the following order: GCS M score: 2–6; epinephrine: non-administered; initial

rhythm: spontaneous rhythm and shockable; and age:<58 and 59–70. In contrast, they

decreased in the following order: initial rhythm: asystole; age: 71–80 and >81; epinephrine:

administered; initial rhythm: pulseless electrical activity; and GCS M score: 1. The validation

analysis showed a sensitivity of 75.4% and a specificity of 95.4% (Table 3).
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Discussion

We used a Bayesian network to identify variables associated with good neurological prognosis

in adult patients with OHCA who had achieved ROSC and visualize the relationships among

the variables. The variables included GCS M score after ROSC, initial rhythm, age, and absence

of epinephrine, all of which have been used as components of previous OHCA prognostic vari-

able exploration studies and predictive models (S2 Table).

Some of the predictive models that have been developed and studied to date are highly

accurate and have been tested for practicality [4]. For example, the NULL-PLEASE score

reported in 2017 [9] has been frequently validated as a prognostic model for OHCA, suggest-

ing that it may perform better than other models [4, 33]. Modifications of the NULL-PLEASE

have also been attempted to create models with fewer components [34]. However, the results

do not always indicate a good prognosis. Previously, Kjetil et al. argued that a high degree of

accuracy is required when considering predictive models for OHCA; however, clinical deci-

sions based solely on predictive models also carry the risk of overlooking potentially life-saving

situations [16]. Therefore, we believe that it is important to encourage clinicians to make com-

prehensive judgments by specifying the priority of variables. This study identified four vari-

ables that can be adapted to patients after ROSC and lead to a good neurological prognosis.

Factors leading to the four variables were also identified from the Bayesian network model.

Knowledge of these favorable prognostic variables may help clinicians to decide which tests

and treatments to offer to patients and effectively communicate with their families.

Fig 1. Flow diagram of the patient selection procedure. GSC M, motor response in the Glasgow coma scale; JAAM,

Japan association for acute medicine; OHCA, out-of-hospital cardiac arrest; ROSC, return of spontaneous circulation.

https://doi.org/10.1371/journal.pone.0291258.g001
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Table 1. Characteristics of the study population.

Variable All (n = 5,340) Training data (n = 4,286) Test data (n = 1,054) P value

Cause

Cardiac 3,553 (66.5%) 2,835 (66.2%) 718 (68.1%) 0.2294

Noncardiac 1,787 (33.5%) 1,451 (33.9%) 336 (31.9%) 0.2294

Age

<58 years 1,297 (24.3%) 1,039 (24.2%) 258 (24.5%) 0.8727

59–70 years 1,315 (24.6%) 1,078 (25.2%) 237 (22.5%) 0.0727

71–80 years 1,354 (25.4%) 1,078 (25.2%) 276 (26.2%) 0.5018

>81 years 1,374 (25.7%) 1,091 (25.5%) 283 (26.9%) 0.3657

Sex (Female) 1,770 (33.1%) 1,427 (33.3%) 343 (32.5%) 0.6613

Bystander CPR 2,580 (48.3%) 2,068 (48.3%) 512 (48.6%) 0.8635

Bystander defibrillation 376 (7.0%) 308 (7.2%) 68 (6.5%) 0.4209

No flow time / Unwitnessed

0 minutes 1,340 (25.1%) 1,071 (25.0%) 269 (25.5%) 0.7213

1–2 minutes 630 (11.8%) 496 (11.6%) 134 (12.7%) 0.3113

3–7 minutes 877 (16.4%) 703 (16.4%) 174 (16.5%) 0.9261

>8 minutes 937 (17.5%) 767 (17.9%) 170 (16.1%) 0.1899

Unwitnessed 1,556 (29.1%) 1,249 (29.1%) 307 (29.1%) 1.0000

Initial rhythm

Shockable 1,548 (29.0%) 1,260 (29.4%) 288 (27.3%) 0.1976

Pulseless electrical activity 1,632 (30.6%) 1,304 (30.4%) 328 (31.1%) 0.6815

Asystole 1,577 (29.5%) 1,261 (29.4%) 316 (30.0%) 0.7345

Spontaneous rhythm 583 (10.9%) 461 (10.8%) 122 (11.6%) 0.4406

Epinephrine 4,047 (75.8%) 3,251 (75.9%) 796 (75.5%) 0.8410

Physician-staffed EMS 973 (18.2%) 808 (18.9%) 165 (15.7%) 0.0161

Extracorporeal CPR 850 (15.9%) 680 (15.9%) 170 (16.1%) 0.8509

IABP 875 (16.4%) 714 (16.7%) 161 (15.3%) 0.2857

CAG 1,896 (35.5%) 1,519 (35.4%) 377 (35.8%) 0.8575

PCI 926 (17.3%) 752 (17.6%) 174 (16.5%) 0.4404

TTM 1,545 (28.9%) 1,251 (29.2%) 294 (27.9%) 0.4260

Low flow time

<13 minutes 1,255 (23.5%) 984 (23.0%) 271 (25.7%) 0.0622

14–24 minutes 1,312 (24.6%) 1,040 (24.3%) 272 (25.8%) 0.2993

25–38 minutes 1,431 (26.8%) 1,156 (27.0%) 275 (26.1%) 0.5869

>39 minutes 1,342 (25.1%) 1,106 (25.8%) 236 (22.4%) 0.0238

GCS M score

1 4,720 (88.4%) 3,791 (88.5%) 929 (88.1%) 0.7885

2–6 620 (11.6%) 495 (11.6%) 125 (11.9%) 0.7885

pH

<7.349 4,812 (90.1%) 3,874 (90.4%) 938 (89.0%) 0.1851

7.350–7.450 432 (8.1%) 342 (8.0%) 90 (8.5%) 0.5704

>7.451 96 (1.8%) 70 (1.6%) 26 (2.5%) 0.0708

Lactate

<4.9 mg/dL 37 (0.7%) 25 (0.6%) 12 (1.1%) 0.0613

5.0–12.0 mg/dL 117 (2.2%) 73 (1.7%) 44 (4.2%) <0.0001

>12.1 mg/dL 5,186 (97.1%) 4,188 (97.7%) 998 (94.7%) <0.0001

Glucose

<72 mg/dL 271 (5.1%) 224 (5.2%) 47 (4.5%) 0.3472

(Continued)
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Several reports have suggested that epinephrine increases the likelihood of ROSC; however,

it does not affect survival in the long term and it may also worsen neurological prognosis [35,

36]. In this study, the absence of epinephrine was linked to survival with a good neurological

prognosis. The first choice of treatment for shockable rhythm is defibrillation, and if ROSC is

achieved immediately upon defibrillation, epinephrine is not administered. The prognosis is

more favorable in patients with good responsiveness to defibrillation and short time to ROSC.

There are several limitations to this study. First, the Bayesian network analysis is a method

unsuitable for continuous variables and the fact that only nominal variables were associated

with a good prognosis in this study may be owing to the choice of analysis. Although the vari-

ables in this study were chosen from the existing literature, bias may be present in the selection

of variables. Important underlying variables in addition to the variables used in the analysis

are possible. Furthermore, the researchers specified the order of the nodes, which may have

restricted the causal relationship [37]. Second, a total of 8,464 cases were excluded owing to

missing data, and thus, the results may not be conclusive for the general population. Possible

treatments and treatment protocols may differ depending on the participating facilities. The

timing of the GCS M observation and blood sampling may differ among the patients, and the

individual variables were not observed at a consistent time. In addition, the blood test mea-

surements used in this study were a mixture of those taken immediately after ROSC and those

taken on admission to the ICU after undergoing various treatments. Blood test results can

change significantly before and after the treatment of cardiac arrest. Therefore, it may be desir-

able to standardize the timing of blood tests in all patients. Making comparisons with previ-

ously reported prognostic models was also difficult owing to the differences in collectible

variables. Last, the interval between CRP initiation and ROSC was relatively short in some

patients, making it difficult to evaluate whether these patients had a cardiac arrest. The possi-

bility that some patients were erroneously diagnosed as patients with OHCA cannot be

completely ruled out.

Table 1. (Continued)

Variable All (n = 5,340) Training data (n = 4,286) Test data (n = 1,054) P value

73–109 mg/dL 259 (4.9%) 207 (4.8%) 52 (4.9%) 0.8730

>110 mg/dL 4,810 (90.1%) 3,855 (89.9%) 955 (90.6%) 0.5653

Creatinine

<0.48 mg/dL 57 (1.1%) 53 (1.2%) 4 (0.4%) 0.0116

0.49–1.08 mg/dL 2,153 (40.3%) 1,764 (41.2%) 389 (36.9%) 0.0117

>1.09 mg/dL 3,130 (58.6%) 2,469 (57.6%) 661 (62.7%) 0.0027

Albumin

<4.0 g/dL 4,797 (89.8%) 3,869 (90.3%) 928 (88.1%) 0.0353

4.1–5.1 g/dL 540 (10.1%) 414 (9.7%) 126 (12.0%) 0.0301

>5.2 g/dL 3 (0.1%) 3 (0.1%) 0 (0.0%) 1.0000

Potassium

<3.5 mmol/L 1,077 (20.2%) 860 (20.1%) 217 (20.6%) 0.7000

3.6–4.8 mmol/L 2,205 (41.3%) 1,795 (41.9%) 410 (38.9%) 0.0809

>4.9 mmol/L 2,058 (38.5%) 1,631 (38.1%) 427 (40.5%) 0.1476

1-month survival with CPC 1–2 1,128 (21.1%) 917 (21.4%) 211 (20.0%) 0.3331

Characteristics of the study population including fifteen predictor variables and an outcome were described. All categorical variables are shown as n (%). CAG, coronary

angiography; CPC, cerebral performance category; CPR, cardiopulmonary resuscitation; EMS, emergency medical services; GCS M, motor response in the Glasgow

coma scale; IABP, intra-aortic balloon pumping; PCI, percutaneous coronary intervention; TTM, target temperature management

https://doi.org/10.1371/journal.pone.0291258.t001
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Fig 2. Bayesian network by training set (2014–2018). CPC, cerebral performance category; GCS M, motor response

in the Glasgow coma scale.

https://doi.org/10.1371/journal.pone.0291258.g002

Table 2. Probability analysis.

Rank Age Initial rhythm Epinephrine GCS M Probability value Gap of probability values

1 2–6 0.72 0.53

2 Non-administered 0.62 0.43

3 Spontaneous rhythm 0.48 0.29

4 Shockable 0.45 0.26

5 <58 0.37 0.19

6 59–70 0.25 0.06

7 0.19 0.00

8 71–80 0.15 -0.03

9 1 0.13 -0.06

10 Pulseless electrical activity 0.10 -0.09

11 Administered 0.07 -0.11

12 >81 0.07 -0.12

13 Asystole 0.03 -0.16

GCS M, motor response in the Glasgow coma scale

https://doi.org/10.1371/journal.pone.0291258.t002
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Conclusions

Using a Bayesian network, four variables, GCS M score of 2–6 after ROSC, initial rhythm

(spontaneous rhythm and shockable), younger age, and absence of epinephrine were shown to

be potentially closely associated with good neurological survival. These variables may help cli-

nicians in their overall decision-making.
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