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Abstract

Background

The Child Health and Mortality Prevention Surveillance Network (CHAMPS) identifies

causes of under-5 mortality in high mortality countries.

Objective

To address challenges in postmortem nutritional assessment, we evaluated the impact of

anthropometry training and the feasibility of 3D imaging on data quality within the CHAMPS

Kenya site.

Design

Staff were trained using World Health Organization (WHO)-recommended manual anthro-

pometry equipment and novel 3D imaging methods to collect postmortem measurements.

Following training, 76 deceased children were measured in duplicate and were compared to

measurements of 75 pre-training deceased children. Outcomes included measures of data

quality (standard deviations of anthropometric indices and digit preference scores (DPS)),

precision (absolute and relative technical errors of measurement, TEMs or rTEMs), and

accuracy (Bland-Altman plots). WHO growth standards were used to produce anthropomet-

ric indices. Post-training surveys and in-depth interviews collected qualitative feedback on

measurer experience with performing manual anthropometry and ease of using 3D imaging

software.
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Results

Manual anthropometry data quality improved after training, as indicated by DPS. Standard

deviations of anthropometric indices exceeded limits for high data quality when using the

WHO growth standards. Reliability of measurements post-training was high as indicated by

rTEMs below 1.5%. 3D imaging was highly correlated with manual measurements; how-

ever, on average 3D scans overestimated length and head circumference by 1.61 cm and

2.27 cm, respectively. Site staff preferred manual anthropometry to 3D imaging, as the

imaging technology required adequate lighting and additional considerations when perform-

ing the measurements.

Conclusions

Manual anthropometry was feasible and reliable postmortem in the presence of rigor mortis.

3D imaging may be an accurate alternative to manual anthropometry, but technology adjust-

ments are needed to ensure accuracy and usability.

Introduction

Malnutrition is estimated to contribute to approximately half of under-5-mortality (U5M) [1–

3]. Malnutrition is also a major cause of morbidity as malnutrition plays a critical role in child

neurodevelopment and health across the life course [2–4]. Reliable assessment tools for malnu-

trition are essential to reflect individual status, measure biological function, and predict health

outcomes [5–7]. In children, inadequate growth is defined according to anthropometric mea-

surements (length, weight, head and mid-upper arm circumference) that fall below 2 standard

deviations of the normal sex-specific weight-for-length (wasting), length-for-age (stunting),

and weight-for-age (underweight) [7]. Despite the importance of accurate anthropometry to

detect early signs of malnutrition and monitor child growth, health facilities routinely use

non-standardized anthropometric equipment, and as a result, measurements are often inaccu-

rate [8]. Inaccurate measurements can lead to spurious classification of malnutrition in both

individuals and populations [9].

In addition to the challenges of procuring and using standard anthropometric measure-

ment tools, anthropometric measurements are subject to human error and are particularly dif-

ficult to collect among young children as children are easily distressed, have difficulty staying

still, and may be unable to meet the requirements (i.e. ability to lie down or stand up) for man-

ual anthropometry [10–12]. Anthropometric measurements are particularly challenging in

hospitalized settings or in medically complex patients due to medical equipment that may

impede taking measurements (e.g., intravenous lines or feeding tubes), severe illness, or limita-

tions in mobility. These children are also at highest risk of malnutrition [8, 13]. Additionally,

qualitative findings from a quality improvement study in a children’s hospital found that,

wooden height-length measuring boards (ShorrBoard1, Weigh and Measure, LLC, Maryland

USA) were considered to be “heavy, cumbersome to assemble, frightening to patients, and
required pre-planning and coordination between clinical staff with busy schedules and competing
priorities” [8]. Lastly, in field settings, the weight of the board may impede transportation and

movement within the field and lack of standardization and maintenance of anthropometric

equipment across study sites may contribute to poor data quality and misclassification [10,

11]. The post-mortem setting is another environment in which manual anthropometry may be

challenging. Morgue capacity, rigor mortis, and edema can impact the quality and accuracy of
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measurements [14]. To our knowledge, no research has been conducted on the feasibility of

using gold-standard anthropometric assessment in the postmortem setting.

The Child Health and Mortality Prevention Surveillance (CHAMPS) network is a multi-

site surveillance system which strives to identify and understand the causes of under-5-mortal-

ity (U5M) in seven surveillance sites in sub-Saharan Africa and South Asia through detailed

cause of death attribution with the use of high-quality postmortem anthropometrics, tissue

samples, clinical abstraction, verbal autopsy, and the ability to integrate data from site-specific

health and demographic surveillance systems (HDSS) [15, 16]. A recent analysis of the post-

mortem anthropometric data in CHAMPS suggested that nearly 90% of cases 1–59 months

had evidence of undernutrition (stunting, wasting, or underweight) [17]. Given these data, it is

possible that malnutrition is directly or indirectly associated with child mortality. However,

our understanding of the relationship between malnutrition and mortality may also be hin-

dered by poor anthropometric measurement data quality, including digit preference (e.g. mea-

surement rounding), high percentage of biologically implausible values, and standard

deviations for anthropometric indices that exceed acceptable limits, which may lead to mis-

classification of malnutrition [18–20]. These data quality and precision outcomes may be a

result of shortages of standard equipment in CHAMPS sites, lack of training on manual

anthropometry, or difficulty in conducting manual anthropometry in the postmortem setting

(rigor mortis, poor lighting in morgue facilities).

Our primary objectives were to determine whether manual anthropometry is feasible in the

postmortem setting and to quantify the impact of training and standard equipment on data

quality. Given the practical challenges of performing manual anthropometry in field and hos-

pital-based settings, various 3D imaging approaches have also been developed to obtain

anthropometric measurements. An efficacy study conducted at Emory University found that a

3D imaging software was as accurate as gold-standard manual anthropometry among under-5

children in Atlanta-area daycare centers [10]. However, data are also needed to assess 3D

imaging in challenging hospital- or field-based settings. Therefore, our secondary objective

was to assess the validity and acceptability of 3D imaging for anthropometric assessment com-

pared to gold-standard manual anthropometry.

Materials and methods

Study site and data collection

This longitudinal quality improvement study adopted a mixed-methods approach utilizing

quantitative and qualitative research on the experience conducting manual anthropometry

and 3D imaging in the postmortem setting. The study took place from October 2018 to Sep-

tember 2019 in the CHAMPS Manyatta, Kenya site located at the Jaramogi Oginga Odinga

Teaching and Referral Hospital (JOOTRH). Prior to the training, site staff performed manual

anthropometry on 75 deceased children as a routine part of the minimally invasive tissue sam-

pling (MITS) portion of CHAMPS data collection. The MITS procedure is an abridged post-

mortem examination technique that has been validated for cause of death investigation in low-

resource settings, described in detail in an earlier study [21]. Written informed consent was

obtained from families as part of the CHAMPS enrollment procedures. The CHAMPS proto-

col was approved by ethics committees in Kenya and at Emory University, Atlanta, GA, USA.

Additional information regarding the ethical, cultural, and scientific considerations specific to

inclusivity in global research is included in the Supporting Information.

Upon conclusion of pre-training data collection, a senior nutritionist, pediatrician, and

anthropometry expert led and conducted an on-site 1-week training on manual anthropome-

try and the 3D imaging scanner for 6 staff. Using materials developed by the CDC, WHO and
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UNICEF, the training on manual anthropometry emphasized best practices for accurate man-

ual measures of length, weight, head circumference (HC) and mid-upper arm circumference

(MUAC) measurements using two trained anthropometrists and standard operating proce-

dures [22]. Standard equipment in both sites, including wooden height-length measuring

boards (ShorrBoard1, Weigh and Measure, LLC, Maryland USA), digital scales (Rice Lake

Weighing Systems, Inc., Rice Lake, WI), and standard tape measures (Weigh and Measure

LLC, Maryland USA), were used to ensure accurate measurement of recumbent length,

weight, HC and MUAC, respectively. Staff completed an anthropometry standardization exer-

cise using live children to ensure competence in conducting manual anthropometry. Staff

were also trained on proper use the 3D imaging software using dolls and live children; details

on the imaging software are provided in earlier studies [10, 23, 24]. Briefly, the AutoAnthro

system uses an iPad™ tablet, and a Structure Sensor™ camera attached to the tablet to capture

non-personally identifiable anthropometric scan images of the deceased child. Following the

training, two trained anthropometrists manually collected anthropometric measurements for

76 cases, with two separate measurements collected per case by different anthropometrists.

Additionally, 3D scans were completed in duplicate for each anthropometrist, for a total of 4

scans per case. During data processing, after the completion of data collection, it was identified

that the AutoAnthro software settings had been inadvertently altered for a significant number

of cases, resulting in a final sample size of 23 cases.

Outcomes of interest

Key outcomes of interest included measures of data quality, precision, and accuracy. Data qual-

ity outcomes indicators included digit preference and standard deviations (SD) of anthropomet-

ric indices. Digit preference is the examination of a uniform distribution of terminal digits. We

also calculated a digit preference score (DPS) to evaluate digit preference [25]. The DPS ranges

from 0 to 100. Scores are low in instances of high agreement with the ideal of non-preference of

the terminal digits, whereas DPS rises as the measures deviate from a uniform distribution

across the terminal digits 0 through 9. In previous studies, a DPS cutoff above 20 was used to

define the presence of digit preference [10, 26]. We thus used DPS<20 as acceptable, and

DPS�20 to indicate digit preference was problematic. Previous studies have suggested accept-

able standard deviation ranges specifically for data quality among living children [27]. These

include 1.10–1.30, 1.00–1.20, 0.85–1.10 for length-for-age (HAZ), weight-for-age (WAZ), and

weight-for-length (WLZ) z-scores, respectively. Z-scores for anthropometric indices were pro-

duced using the WHO Multicentre Growth Reference Study anthro R package [28].

Technical errors of measurement (TEM) were used to assess measurement precision. Fol-

lowing the training, the site staff performed manual anthropometry in duplicate. It is impor-

tant to note that this differs from the data collection strategy pre-training in which a single set

of measures were taken. As a result, we were only able to calculate TEMs for the data post-

training in both sites. TEM express the error margin in anthropometry; they are unitless and

allow comparison of errors across measures (e.g., weight, height etc.). Absolute TEMs were cal-

culated using the formula outlined in Equation 1 (Table 4). Absolute TEMs can also be trans-

formed into relative TEMs, which express the error as a percentage corresponding to the total

average. Relative TEMs (rTEM) were calculated using the formula outlined in Equation 2

(Table 4). We used a cutoff of<1.5% rTEM to indicate a skillful anthropometrist [25].

Finally, Bland Altman plots were used to assess the accuracy of the 3D imaging software rel-

ative to manual anthropometry following the training and were quantified in the unit of the

measure (cm or kg). Spearman correlation coefficients examined the strength of the relation-

ship between scans and manual measures.
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Following the study, a short survey was sent to the 6 study participants. The survey collected

information on whether the participants believed training on manual anthropometry

improved the accuracy of the measurements, whether 3D imaging reduced the time to mea-

sure, and asked about the participants preference in measuring using manual anthropometry

or the 3D imaging technology. We also conducted a 60-minute in-depth interview with the

single lead site technician to collect qualitative feedback on the team’s experience with per-

forming manual anthropometry and ease of using the 3D imaging software. All analyses were

conducted in R statistical software [29]. Statistical tests were two-sided and evaluated using an

alpha level equal to 0.05. Pearson’s Chi-Square tests (categorical variables) or t-tests (continu-

ous variables) were used to evaluate differences between pre-intervention and post-interven-

tions groups. The qualitative data were analyzed using simple frequencies and applying

manual thematic analysis; findings informed the implementation of manual anthropometric

measurements across the CHAMPS Network.

We also conducted a small study in collaboration with the Pediatrics and Pathology depart-

ments at Children’s Healthcare of Atlanta, Egleston Hospital (CHOA). The goal was to evalu-

ate whether manual anthropometry and 3D imaging performed consistently in a high-

resource setting with adequate lighting and internet. The same training, detailed above, was

used, and pathology staff notified the anthropometrists upon arrival of a case at the morgue.

Manual anthropometry was to be performed prior to the start of the diagnostic autopsy. Signif-

icant challenges arose during data collection, including identification of eligible cases and tim-

ing to conduct anthropometry before the start of the diagnostic autopsy. Despite best efforts to

coordinate between the study team and CHOA team, the study resulted in a limited sample

size of 3 cases; thus, our results will focus on the Kenya site.

Results

Sample characteristics are summarized in Table 1. Most children were under 2 years of age

and were evenly distributed by sex. There were no significant differences in demographic char-

acteristics or anthropometric measurements between the pre- and post- training groups. The

prevalence of stunting, wasting, and underweight were overall high, with a higher prevalence

of stunting noted in the post-training group (p = 0.02).

Evaluation of quality- digit preference

In Table 2, prior to training, there was a clear tendency to round to the nearest 0.0 or 0.5 deci-

mals for length, HC, and MUAC. There were no obvious signs of digit preference for weight

measurement. The distribution of terminal digits post-training was evenly distributed for all

measures. Similar patterns exist when examining the DPS. The DPS for length, HC and

MUAC prior to the training exceeded the acceptable limit, while the DPS post-training were

below the acceptable cutoff of 20.

Evaluation of quality- means and standard deviations of anthropometric

indices

Table 3 summarizes the means and standard deviations for length-for-age (LAZ), weight-for-

age (WAZ), and weight-for-length (WLZ), expressed as z scores. There was a substantial loss

in sample size when examining WLZ using WHO growth standards with 12% data loss (n = 9)

in the pre- and 22% loss (n = 17) in the post-training group. Except for WLZ of children <1

month of age, the standard deviations of all indices exceeded acceptable values both pre- and

post-training. There were no differences in WAZ and WLZ pre- and post-training, but there

was a statistically significant increase in LAZ post-training (p<0.01). There were no significant
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Table 1. Sample characteristics among pre- and post-intervention groups, Manyatta, Kenya.

Pre-intervention, n = 75 Post-intervention, n = 76 p-value4

Age category, n (%)

<1 day 15 (20.0) 21 (27.6) 0.4821

1 day– 5 months 28 (37.3) 20 (26.3)

6–23 months 23 (30.7) 25 (32.89)

24–59 months 9 (12.0) 10 (13.1)

Sex, n (%)

Female 31 (41.3) 35 (46.1) 0.5589

Anthropometric measurements, mean (SD)

Weight, kg 5.0 (3.8) 4.8 (3.5) 0.7543

Length, cm 62.0 (18.0) 60.0 (17.6) 0.4899

Head circumference (HC), cm 39.0 (6.9) 37.9 (7.4) 0.3509

Mid-Upper Arm Circumference (MUAC), cm 11.0 (3.0) 10.2 (3.0) 0.1064

Nutritional status, n (%)

Stunting (LAZ1<-2SD) 24 (32.0) 38 (50.0) 0.0246

Wasting (WLZ2<-2SD) 58 (77.3) 54 (71.2) 0.3780

Underweight (WAZ3<-2) 40 (53.3) 50 (65.8) 0.1188

1 LAZ: Length-for-age z-score
2 WLZ: Length-for-weight z-score
3 WAZ: Weight-for-age z-score
4 p-values calculated using Chi Sq tests (age, sex, nutritional status) or t-tests (anthropometric measurements)

https://doi.org/10.1371/journal.pone.0292046.t001

Table 2. Manual anthropometry digit preference scores1 pre- and post-intervention, Manyatta, Kenya.

Pre- intervention, (N = 75) n(%) Post- intervention, (N = 76) n(%)

Length Weight HC MUAC Length Weight HC MUAC

0.0 65 (86.7) 15 (20.0) 57 (77.3) 54 (72.0) 3 (4.0) 10 (13.2) 5 (6.6) 2 (2.6)

0.1 - 2 (2.7) - - 12 (15.6) 8 (10.5) 11 (14.5) 18 (23.7)

0.2 - 6 (8.0) - - 7 (9.2) 9 (11.8) 9 (11.8) 10 (13.2)

0.3 - 9 (12.0) - - 13 (17.1) 4 (5.3) 3 (3.9) 9 (11.8)

0.4 - 6 (8.0) - - 5 (6.6) 9 (11.8) 9 (11.8) 5 (6.6)

0.5 10 (13.3) 6 (8.0) 17 (22.7) 21 (28.0) 6 (7.9) 9 (11.8) 8 (10.5) 9 (11.8)

0.6 - 11 (14.7) - - 7 (9.2) 10 (13.2) 13 (17.1) 5 (6.6)

0.7 - 9 (12.0) - - 8 (10.5) 4 (5.3) 1 (1.3) 5 (6.6)

0.8 - 5 (6.7) - - 8 (10.5) 6 (7.9) 12 (15.8) 8 (10.5)

0.9 - 6 (8.0) - - 7 (9.2) 7 (9.2) 5 (6.6) 5 (6.6)

Digit preference score 1 86.2 15.3 78.1 74.3 10.4 9.5 16.6 18.4

1 Digit preference scores computed using Mark Myatt and Ernest Guevarra (2022).

nipnTK: National Information Platforms for Nutrition

Anthropometric Data Toolkit. https://nutriverse.io/nipnTK/,

https://github.com/nutriverse/nipnTK

DPS<20 is acceptable;�20 indicates digit preference is problematic

https://doi.org/10.1371/journal.pone.0292046.t002
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changes between the SDs for LAZ and WAZ pre- and post-training overall, and when stratified

by age (<1 month vs 1–59 months as well as<6 months vs 6–59 months).

Evaluation of precision-technical errors of measurement

Table 4 presents the TEMs and rTEMs specific to the post-training measures.

The TEMs for length, weight, HC, and MUAC were, 0.32, 0.01, 0.18, and 0.13 respectively.

The rTEMs for length, weight, HC, and MUAC were 0.53%, 0.29%, 0.48%, and 1.24%, respec-

tively. All TEMs and rTEMs were within the acceptable range.

Table 3. Means and standard deviations for manual anthropometric indices, Manyatta, Kenya.

Pre-training, (N = 75) Post-training, (N = 76) p-value1 Expected SD for high data quality [27]

n Mean (SD) n Mean (SD)

LAZ2 overall 75 -1.1 (2.6) 76 -2.5 (2.9) 0.0018 1.1–1.3

< 1 months 35 -0.8 (2.8) 31 -3.0 (3.2)

1–59 months 40 -1.4 (2.3) 45 -2.2 (2.7)

WAZ3 overall 75 -2.6 (2.3) 76 -3.2 (2.4) 0.0962 1.0–1.2

< 1 months 35 -2.0 (2.2) 31 -2.9 (2.2)

1–59 m months 40 -3.1 (2.3) 45 -3.5 (2.5)

WLZ4 overall 66 -3.1 (1.8) 59 -2.9 (2.2) 0.4777 0.85–1.1

< 1 months 28 -2.6 (1.1) 15 -1.5 (1.3)

1–59 months 38 -3.5 (2.1) 44 -3.3 (2.3)

1 p-values comparing overall pre- and post-training mean z-scores calculated using t-tests
2 LAZ: Length-for-age z-score
3 WLZ: Length-for-weight z-score
4 WAZ: Weight-for-age z-score

https://doi.org/10.1371/journal.pone.0292046.t003

Table 4. Manual anthropometry technical errors of measurement for post-intervention measures, Manyatta, Kenya.

Length (cm) Weight (kg) Mid-Upper Arm Circumference (cm) Head Circumference (cm)

TEMA 0.32 0.01 0.13 0.18

Acceptable TEM [32] 0.35 0.17 0.26 -

VAV 60.00 4.84 10.22 37.88

Relative TEM (% TEM)c 0.53% 0.29% 1.24% 0.48%

The technical error of measurement (TEM) is defined as the standard deviation of differences between repeated measures in the unit of the measurement, using the

following equation

A Equation 1: absolute technical errors of measurement TEMð Þ ¼

ffiffiffiffiffiffi
Sdi2

2n

q

Where:

Sdi
2 = Squared summation of deviations, n = number of individuals measured, and i = number of deviations

C Equation 2: relative TEM ¼ 100 x TEM
VAV

Where TEM = technical error of measurement expressed as %, VAV = variable average value, the relative TEM (%TEM), and the coefficient of reliability (R) were the

statistical tests used to assess intra- and inter-observer reliability. The TEM was defined as the standard deviation of differences between repeated measures in the unit of

the measurement (e.g., TEM for height measured in centimeters is cm), using the following equation:

Skillful anthropometrists relative technical errors of measurement (%TEM) cutoff� 1.5% [25]

https://doi.org/10.1371/journal.pone.0292046.t004
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Accuracy- spearman correlation and Bland Altman Plots

Spearman correlation coefficients (Fig 1) comparing the manual measures to the 3D scans for

length, MUAC, and HC were 0.99, 0.91, and 0.93, respectively. While the manual measures

were highly correlated with the scans, the mean differences between scans and manual mea-

sures for length, MUAC, and HC were 1.61 cm, -0.20 cm, and 2.27 cm, respectively. These

results suggest that the scans overestimate length by 1.61 cm, underestimate MUAC by 0.20

cm, and overestimate HC by 2.27 cm.

While there were challenges in securing data at the CHOA site, findings were complemen-

tary to those in the Kenya site. Among the 3 cases, standard anthropometry measurements

were feasible and showed high precision (rTEMs for manual length, MUAC, and HC were

0.62%, 0.96%, and 1.80% respectively). For 3D scans, precision for duplicate scans was within

acceptable limits when measuring length (rTEM = 1.05%), but the software had more difficulty

capturing precise measurements for MUAC (rTEM = 4.71%) and HC (rTEM = 1.62%).

Qualitative findings

The post-intervention survey revealed that all participants felt that training in manual anthro-

pometry improved the accuracy of their measurements. Additionally, all participants reported

feeling confident in their ability to perform manual anthropometry. While most participants

(66.7%) believed that 3D imaging reduced measurement time in comparison to manual

anthropometry, all participants overall preferred the use of manual anthropometry.

The qualitative findings from the in-depth interviews revealed that the team had a clear

preference for manual anthropometry over the 3D imaging software as they felt the 3D imag-

ing software required more time, better lighting, improved morgue environment, and training

to ensure an accurate scan.

“We would take manual anthropometric measurements more seriously and would choose it
well over 3D scanning. . .A lot of movement and manipulation of the camera to capture the
entire body. And many times for 3D imaging, you have to repeat the process over and over
and over again for you to be able to get the entire body into the screen. So it takes quite a bit
more time. . .The boards work really well for us. It’s a stable board. . . it’s something we opt for
over any other methods.”

Additionally, study investigators cited challenges in using the software when lighting was

insufficient or when morgue environments varied.

“For what we experienced on the 3D, we had a few issues . . . our autopsy table had a fixed
length and was not adjustable, so it was hard to get the complete image as you scan. Many
times, we had issues with lighting systems. This made us end up with cut images—images with
some parts of the body missing. So that called for checking and re-checking of images for quite
a long period of time.”

Lastly, study investigators noted postmortem-specific challenges to manual anthropometry

and understood the implications of taking careful measurement and attention to details to

ensure data quality and minimize measurement.

“With rigor mortis, you will find that children stiffening, even the legs stiffening in some spe-
cific direction. If you are not able to manipulate them properly, one will end up with increased
length as opposed to getting the accurate length. So that also required a lot of keenness.”
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Fig 1. Bland Altman Plots comparing manual anthropometry and 3D imaging, Manyatta, Kenya. Y-axis: the

difference between the scan measurements and manual measurements; X-axis: the average of the scan and manual

measures; Dotted lines: represent the mean difference ± 3 standard deviations; Dashed lines: represent the mean

difference ± 2 SD; Solid line: across the plot is the no difference line. Black points on the chart represent the 23 cases for

which we had viable 3D scan data. Spearman correlation coefficients were examined to measure the strength of the

relationship between scans and manual measures. AC: Arm Circumference, HC: Head Circumference.

https://doi.org/10.1371/journal.pone.0292046.g001
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“The challenge in checking MUAC with tape measure comes when the subject you are measur-
ing has reduced skin turgor. That is the skin of the arm becomes floppy. So that one might give
you a lesser MUAC.”

Discussion

Following training on manual anthropometry and use of standard equipment for post-mortem

assessment of nutritional status, data quality and precision improved; however, standard devi-

ations of anthropometric indices pre- and post-training exceeded acceptable values. 3D imag-

ing scans overestimated length by approximately 1.6 cm, underestimated MUAC by 0.2 cm,

and overestimated HC by 2.3 cm. The presence of rigor mortis did not impede the collection

or quality of manual anthropometry measurements; however, additional care and pressure are

critical to ensuring high quality data.

Digit preference improved for length, HC and MUAC following the training. There was no

evidence of digit preference for weight pre- or post-training, which is likely due to how the

measurements were taken. Weight was read from a digital scale, while length and circumfer-

ence measurements were reliant on the anthropometrist’s ability to read a tape measure accu-

rately. Previous studies among living children have shown that the SD of anthropometric z-

scores are reasonably consistent across populations, irrespective of nutritional status, and thus

can be used to assess the quality of anthropometric data [27]. The SD for all anthropometric

indices exceeded acceptable limits both pre- and post-training, and sensitivity analyses

revealed that high SDs for LAZ and WAZ were unlikely to be explained by age. If we continue

with the conclusion that the intervention may have improved data quality and precision, then

the persistently high SDs may be explained by capturing anthropometric measurements of

small, severely ill children.

We also noted a decrease in sample size when examining WLZ scores. This is because

nearly one-fourth of children in this sample fell below 45 cm, or the smallest length captured

by the WHO growth standards when calculating WLZ [30]. The WHO growth standards were

based on a healthy population of children, receiving optimal nutrition, raised in optimal envi-

ronments, and receiving optimal healthcare—unlike the cases captured in CHAMPS. Many of

the CHAMPS cases, at the end of life, had severe malnutrition and had body sizes not compati-

ble with postnatal life and survival based on their chronologic age. Future research might con-

sider application of the INTERGROWTH-21 (IG21-GS) standards [31] to classify nutritional

status of children that fall outside of the WHO growth standards, such as in the case of severely

ill cohorts of young children in CHAMPS.

This study has multiple strengths. First, to our knowledge, no research has been conducted

on the feasibility of using gold-standard anthropometric assessment in the postmortem setting.

Assessment of malnutrition and standardization of growth within the field of nutrition is typi-

cally based on z-scores derived from the 2006 WHO’s Multicentre Growth Reference Study

(MGRS). These standards are based on healthy, living children. Utilizing anthropometric data

from CHAMPS, a large, multi-site surveillance system designed to elucidate the causes of

U5M in high mortality regions of the world, may help inform the possible ranges of anthropo-

metric deficits in severely ill populations. Second, our project captured staff reflections of con-

ducting manual anthropometry of young children in field-based and clinical-morgue post-

mortem settings. These qualitative findings may prove useful in informing strategies to

improve the accuracy of post-mortem anthropometry.

This project was also subject to several limitations. First, in the CHOA site, we encountered

unexpected obstacles in reaching our goal sample size due to limited time to perform the
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manual and 3D imaging anthropometric measurements before autopsies were performed. Fur-

ther, the added data collection steps placed a significant burden on clinical staff and led to dis-

ruption of their workflow. Second, in Kenya, challenges arose with the 3D imaging software.

The software settings were subject to user error and were altered during data collection, which

resulted in a compromised final sample size. Among the viable scans, our results suggest that

the scans overestimated both length and HC. These findings are aligned with a recent study

[24] and further suggest that before 3D imaging can be considered a viable, accurate alternative

to manual anthropometry, adjustment of the technology and additional user testing is war-

ranted to ensure reliable anthropometric measures.

Conclusions

Collection of quality anthropometric data following implementation of standardized training

and equipment is feasible and reliable in postmortem field studies. While 3D imaging may be

an accurate alternative to manual anthropometry, technology adjustments are needed to

ensure accuracy and usability. Future research on the appropriate use of standards to define

malnutrition among severely ill populations, including those in the post-mortem setting, are

needed to elucidate our understanding of the role of malnutrition in U5M.
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