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Abstract
Somenon-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, 
which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution 
was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs 
(quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced 
hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by 
adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs 
(cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, 
ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. 
Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the 
antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have 
identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo 
assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.
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Introduction

Adenosine acts as an autocrine or paracrine signal by 
activating four G protein-coupled receptors (adenosine 
receptors, ARs) that have been the focus of extensive 
medicinal chemical and drug development efforts [1–7]. 
Generally, extracellular adenosine elicits protective 
actions to restore the stability of an organism in response 
to challenges or stresses. The ARs are distributed 
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widely throughout the body and mediate local, often 
tissue-specific, effects [1, 2]. There is a rich history and 
experience in the development of selective synthetic AR 
agonists [2, 3, 5, 7].

In addition to drugs developed for their agonism 
or antagonism at the four ARs, some drugs designed 
for other actions coincidentally act as AR antagonists 
[8]. One example of off-target binding of an approved 
drug is the antimalarial mefloquine, which is an  A2A 
receptor antagonist [9]. In fact, most ligand chemotypes 
found fortuitously or by computational approaches 
to bind to ARs do so as antagonists [10–12]. Other 
drugs with coincidental AR antagonism include 
experimental Alzheimer’s drug etazolate, dopamine 
agonist (3,4-dihydroxy-phenylamino)-2-imidazoline 
(DPI) [10, 13], anxiogenic β-carbolines (e.g. methyl 
6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate) [14], 
flavonoid derivatives hispidol and galangin [15], and 
1,4-dihydropyridines such as nicardipine [16]. Drugs 
listed in databases as binding to the  A2AAR include 
tamoxifen, imiquimod, and sildenafil [17] (Table S1).

Other drugs enhance AR signaling indirectly, by 
increasing adenosine availability to the ARs. This can 
occur by inhibiting adenosine’s cellular uptake, metabolism, 
and/or degradation, raising extracellular adenosine levels 
[18–20]. For example, diverse compounds inhibit nucleoside 
uptake through the equilibrative transporters (ENT1–3) or 
concentrative (CNTs) transporters of the SLC29 family. The 
antithrombotic  P2Y12 receptor antagonist ticagrelor and 
ethanol and cannabidiol are all reported to raise adenosine 
levels by inhibiting its transport [21–24]. In a screen of 
1625 diverse molecules, more than half bound to ENT1 
with a  Ki value < 10 µM [25], suggesting that additional 
drugs may share this property. Other compounds inhibit 
intracellular adenosine kinase, thereby reducing cellular 
uptake of adenosine via equilibrative transporters. The 
antimetabolite methotrexate increases intracellular 
adenosine levels (and thus indirectly extracellular levels) 
by increasing levels of 5-aminoimidazole-4-carboxamide 
ribonucleoside (AICAR), and this is proposed to contribute 
to methotrexate’s therapeutic benefit in rheumatoid arthritis 
[26]. For still other compounds, the mechanism of action 
(MoA) leading to activation of one or more AR subtypes 
is unknown [8].

Pharmacological modulation of ARs can be evaluated 
in vivo using mouse models in which specific components 
of the signaling pathways are genetically deleted [27, 28]. 
Mice with one or more of the ARs genetically knocked out 
(KO mice), either globally or in a tissue-specific manner, are 
important tools for exploring the interaction of drugs with 
pathways [27–31]. They are particularly useful for the ARs, 
since adenosine often acts locally so the relevant primary 
site of systemic adenosinergic drug action can be difficult 

to determine. A mouse line in which all four ARs have been 
globally deleted is useful for investigating adenosine physi-
ology [27]. At baseline these mice resemble wild type mice 
by most criteria examined, including body temperature regu-
lation (diurnal variation, response to stress, and torpor), sug-
gesting that the ARs are more important in allostatic rather 
than homeostatic functions.

Adenosine can cause hypothermia (and hypoactivity) in 
mice by individual activation of each of the four AR [29, 30, 
32], and the quadruple AR knockout mice (QKOs) no longer 
respond to adenosine administration [27]. Here we evalu-
ated compounds that have previously been reported to have 
adenosinergic actions, using mouse hypothermia as a sensi-
tive, standardized assay, with a goal of identifying drugs that 
might be repurposed for altering adenosinergic signaling.

Methods

Chemicals and mice

Chemicals were of reagent grade and obtained from 
Sigma-Aldrich (St. Louis, MO), unless noted. All 
compounds were administered intraperitoneally (i.p., 
10  ml/g body weight). Cannabidiol (CBD, stored at 
–80 °C) was dissolved freshly in 1:1:18 dimethyl sulfoxide 
(DMSO):Tween 80:saline prior to the injection (10 mg/
kg). Cilostazol (10 mg/kg), dipyridamole (10 and 30 mg/
kg), nimodipine (10, 20, and 30 mg/kg), and nifedipine 
(10 and 20 mg/kg, Tocris), sildefanil citrate (1, 3, 10, and 
30 mg/kg), cyclosporine (30 mg/kg, Tocris) were dissolved 
in 15:15:70 DMSO: Kolliphor EL: saline. Canrenoate (0.3, 
1 and 3 mg/kg),  ZnCl2 (1, 3, 10 and 30 mg/kg), ethanol (1, 
2, and 3 g/kg), and ketamine (Zetamine, VetOne, 1, 3, 10, 
and 30 mg/kg) were dissolved in saline, ranolazine (25 and 
50 mg/kg) in PBS, and amitriptyline (20 mg/kg) in 10% 
DMSO. The animal protocol for the in vivo studies was 
approved by the NIDDK Animal Care and Use Committee. 
All experiments were performed on male mice. QKO mice 
on a mixed genetic background were generated as reported 
and compared to male wild type C57BL/6 J mice (Jackson 
Laboratories, Bar Harbor, ME) as controls [27]. Mice 
were kept at ~ 21–22 °C in a 12:12-h light–dark cycle, and 
chow (NIH-07, Envigo Inc., Madison, WI) and water were 
provided ad libitum.

Body temperature

Surgical operations to implant G2 E-mitters intraperitoneally 
were performed on the mice at least seven days prior to 
experimentation. Core body temperature (Tb) and locomotor 
activity were measured continuously by telemetry (ER4000 
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energizer/receivers, and VitalView software, Starr Life 
Sciences, Oakmont, PA) with data collection intervals of 
1 min. The Tb response was followed for up to 24 h after 
drug injection. The indicated drug was injected 20–25 min 
before adenosine (100 mg/kg, i.p.). Two standard analysis 
intervals were used to calculate mean Tb. Using 0–60 min 
after injection (timing from the second injection when two 
injections were done) includes the increase in Tb and physical 
activity due to handling and is a sensitive measure, able to 
detect transient or small hypothermic effects. The mean Tb 
and time below 34 °C measured 0–300 min after injection 
better discriminate larger, longer duration effects.

Statistics

All data are expressed as the mean ± SEM. Data were 
tested for statistical significance.

by two-tailed, unpaired Student’s t test, or two-way 
ANOVA followed by post hoc Holm-Sidak multiple 
comparison tests as appropriate. A P value of less than 0.05 
was considered significant.

Results

To assess in vivo action of putative adenosinergic drugs, we 
used mouse hypothermia. Single doses of test compounds 
were administered i.p., and the effect on Tb and locomotor 
activity were monitored by telemetry in C57BL/6 J (WT) 
mice. An AR contribution was identified when a drug 
caused hypothermia in WT mice that was diminished 
in mice lacking all four AR receptors (QKO mice). In 
addition, we also tested the ability of drugs to potentiate 
adenosine-induced hypothermia in WT mice. The properties 
of the tested compounds and the proposed interaction with 
adenosine system are shown in Table 1; the summary of the 
results is in Table 2.

Drugs inhibiting adenosine transport

Inhibition of adenosine transport (Table 1) increases extra-
cellular adenosine concentrations [2]. We reported previ-
ously that the benchmark ENT1 inhibitor 6-S-[(4-nitrophe-
nyl)methyl]-6-thioinosine (NBMPR, 1 mg/kg i.p.) induced 
a slight hypothermia in mice and profoundly increased 

Table 1  Compounds examined for effects on adenosinergic signaling

a All except ethanol are approved by the United States FDA
b ND, not determined
* Guieu et al. [34]
** Lee et al. [43]
*** Table S1

Compound Use or  indicationa Main mechanism Proposed Interaction with 
adenosine system

Human ENT1, 
 Ki or  KD (nM)

Reference 
for adenosine 
interaction

Dipyridamole Vasodilator PDE3 inhibitor, ENT1 
inhibitor

ENT1 inhibition 2.6 [21]

Nimodipine Subarachnoid hemorrhage Ca+2 channel blocker ENT1 inhibition 52 [33]
Cilostazol Anti-claudication PDE3 inhibitor NDb 10,000 [25]
Cyclosporine A Immuno-suppressant Calcineurin inhibitor Inhibition of adenosine 

uptake
ND *

Cannabidiol Antiepileptic unclear ENT1 inhibition 200 [23, 36–38]
Canrenoate Diuretic Mineralocorticoid antagonist ND ND [40]
Nifedipine Anti-hypertensive Ca+2 channel blocker ND 13,700 [43]
Ranolazine Anti-angina Sodium current inhibition Increased cardiac adenosine ND [44]
Ketamine Antidepressant NMDA receptor antagonist Stimulation of presynaptic 

 A1AR
ND [46]

Ethanol Psychoactive drug Ion channel modulator Multiple 200,000,000 [47–49]
Zinc chloride Zinc deficiency Unclear ND ND [50]
Amitriptyline Antidepressant Serotonin/norepi-nephrine 

reuptake inhibitor
ND ND [51]

Sildenafil Erectile dysfunction, vaso-
dilator

PDE5 inhibitor ND ND **, ***
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Table 2  Summary of drugs screened for adenosinergic effects using 
mouse hypothermia. aAll drugs given i.p. b100 mg/kg adenosine, 
i.p. cIndicates significant drug × adenosine interaction by two-way 
ANOVA. dIndicates additive drug and adenosine effects without sig-
nificant interaction by two-way ANOVA. eND, not determined. fQKO 

has more hypothermia. Color key: Green indicates significant reduc-
tion. Orange indicates the effect in QKO is different from wild type 
mice. Blue indicates that drug + adenosine has a different effect than 
either alone. Gray indicates that results demonstrate the drug has an 
adenosinergic effect

Compound Fig-
ure

Dose 
(mg/kg)a Tb effect in WT mice Ac�vity effect 

in WT mice Effect in QKO
Pretreatment effect on 
adenosine-induced 
hypothermiab

Evidence of 
adenosinergic 
ac�ons?

Mechanis�c
interpreta�on 

dipyridamole 1 10 no effect no effect same as WT (Tb 
and ac�vity)

poten�ated hypothermia and 
ac�vity decrease (interac�onc) yes ENT1 

inhibi�on

nimodipine 2

10

ini�al reduc�on 
(possible later 
increase associated 
with physical ac�vity)

ini�al 
reduc�on 
followed by 
later increase

hypothermia
reduced 
(interac�on)

greater hypothermia and 
ac�vity decrease (addi�ved)

yes

consistent with 
ENT1 
inhibi�on and 
non-adenosine 
effect20 reduc�on reduc�on

hypothermia 
reduced 
(interac�on)

NDe

cilostazol 3 10 no effect (non-
significant decrease) reduc�on ND greater hypothermia and 

ac�vity decrease (addi�ve) yes

cyclosporine 
A 4 30 reduc�on reduc�on similar to WT 

(Tb and ac�vity)
greater hypothermia and 
ac�vity decrease (interac�on) yes

consistent with 
transporter 
inhibi�on and 
non-adenosine 
effect

cannabidiol S1 10 no effect no effect ND no effect no

canrenoate S2 0.3, 1, 3 no effect no effect ND ND no

sildenafil S3 1, 3, 10, 
30 no effect no effect ND ND no

nifedipine 5
10 reduc�on no effect same as WT

addi�ve hypothermia and 
ac�vity decrease (have 
different kine�cs) no

20 reduc�on no effect ND ND

ranolazine 6 12.5, 25 no effect no effect ND ND
no

50 reduc�on reduc�on same as WT (Tb 
and ac�vity) no effect

ketamine S4 1, 3, 10, 
30

reduc�on at 30 
mg/kg no effect same as WT (Tb 

and ac�vity) ND no

ethanol S5

1000 no effect no effect ND ND

no2000 slight reduc�on no effect ND no effect

3000 reduc�on no effect same as WT (Tb 
and ac�vity) ND

zinc chloride 7 1, 3, 10, 
30

dose-dependent 
reduc�on, significant 
at ≥10 mg/kg

dose-
dependent 
reduc�on, 
significant at 
≥10 mg/kg

10 mg/kg: same 
decreased Tb; 
slightly less 
decrease in 
ac�vity 
(interac�on) as 
WT control 

ND yes

amitriptyline 8 20 reduc�on reduc�on

greater Tb 
decrease 
(interac�on); 
greater ac�vity 
decrease 
(interac�on)

ND yes

AR 
contribu�on 
appears to 
lessen the 
hypothermia 
(QKO has more 
hypothermia)
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the hypothermic effect of a subsequent dose of adenosine 
(100 mg/kg i.p.) [27].

The vasodilator dipyridamole inhibits both PDE3 and 
ENT1 [21]. Dipyridamole (10 mg/kg i.p.) itself produced 
no hypothermia but increased the hypothermia caused by 
subsequent adenosine (100 mg/kg i.p.), with a significant 
adenosine × dipyridamole interaction (Fig. 1, Table S1). The 
likely explanation for dipyridamole’s adenosinergic effects 
is inhibition of ENT1. However, a higher dipyridamole 
dose (30 mg/kg i.p.) increased activity (Fig. 1c, f) with a 

nonsignificant rise of Tb (Fig. 1a, b, d). This dose has not 
been tested in QKO mice or studied further.

The  Ca2+ channel blocker nimodipine is coincidentally 
an ENT1 inhibitor [33]. Nimodipine (10, 20 mg/kg i.p.) 
caused hypothermia and hypoactivity that were diminished 
in QKO mice (Fig.  2a–l). Nimodipine treatment also 
augmented adenosine-induced hypothermia (Fig. 2m–r). 
Thus, nimodipine has both adenosinergic (such as via 
ENT1 inhibition) and non-adenosinergic (not lost in the 
QKO mice) actions.

Fig. 1  Effects of dipyridamole. a Vehicle or dipyridamole (10 or 
30 mg/kg) treatment of WT mice. b Mean Tb at 0–60 min, c mean 
activity at 0–60 min, d mean Tb at 0–300 min, e time below 34 °C, 
and f mean activity at 0–300  min; n = 7–8/group. g Treatment of 
QKO and control mice with dipyridamole (10 mg/kg). h Mean Tb at 
0–60 min, i mean activity at 0–60 min, j mean Tb at 0–300 min, k 

time below 34 °C, and l mean activity at 0–300 min; n = 4–6/group. 
m Effect of dipyridamole (10  mg/kg) pretreatment on adenosine 
(100 mg/kg) induced hypothermia. n Mean Tb at 0–60 min, o mean 
activity at 0–60 min, p mean Tb at 0–300 min, q time below 34 °C, 
and r mean activity at 0–300 min; n = 5–6/group. Statistical analyses 
are in Table S2
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The quinolinone PDE3 inhibitor cilostazol [25] 
caused hypoactivity and non-significant hypothermia and 
augmented adenosine-induced hypothermia but is a poor 
ENT1 inhibitor (Fig. 3). Taken together, these results suggest 
that at the doses tested, dipyridamole and nimodipine have 
some adenosinergic effects, likely by ENT1 inhibition, while 
cilostazol has a different mode of action.

The immunosuppressive drug cyclosporine A, a 
calcineurin inhibitor, was reported to inhibit adenosine 

uptake by red blood cells [34] and T-lymphocytes 
[35]. Cyclosporine A (30 mg/kg, i.p.) caused a slight 
hypothermia and hypoactivity that were not clearly 
reduced in QKO mice (Fig. 4a–f). However, cyclosporine 
treatment significantly increased adenosine-induced 
hypothermia (Fig.  4g–l). These data suggest that 
cyclosporine A has both adenosinergic and non-
adenosinergic action.

Fig. 2  Effects of nimodipine. a Vehicle or nimodipine (10 or 20 mg/
kg) treatment of WT mice. b Mean Tb at 0–60 min, c mean activity at 
0–60 min, d mean Tb at 0–300 min, e time below 34 °C, and f mean 
activity at 0–300 min; n = 7–11/group. g Treatment of QKO and con-
trol mice with nimodipine (20 mg/kg). h Mean Tb at 0–60 min, (i) 
mean activity at 0–60  min, j mean Tb at 0–300  min, k time below 

34  °C, and l mean activity at 0–300  min; n = 5–6/group. m Effect 
of nimodipine (10  mg/kg) pretreatment on adenosine (100  mg/
kg) induced hypothermia. n Mean Tb at 0–60 min, o mean activity 
at 0–60  min, p mean Tb at 0–300  min, q time below 34  °C, and r 
mean activity at 0–300 min; n = 5–6/group. Statistical analyses are in 
Table S2
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Drugs without hypothermic effects

The anti-epileptic drug cannabidiol, a putative ENT1 
inhibitor [23, 36–39], had no effect on body temperature 
and did not augment adenosine-induced hypothermia at 
10 mg/kg, i.p. (Fig. S1).

The diuretic canrenoate has cardioprotective effects 
which are absent in mice lacking either CD73 or the 

 A2BAR, suggesting dependence on extracellular adeno-
sine [40]. However, canrenoate (0.3, 1, and 3 mg/kg, i.p.) 
did not reduce Tb in WT mice (Fig. S2). At 3 mg/kg, 
canrenoate tended to increase Tb and, therefore, was not 
investigated further.

The PDE5 inhibitor sildenafil may modulate antinociception 
via multiple AR subtypes [41]. However, sildenafil (1, 3, 10, 
and 30 mg/kg, i.p.) had no effect Tb in WT mice (Fig. S5). 

Fig. 3  Effects of cilostazol (10  mg/kg) pretreatment on adenosine 
(100  mg/kg) induced hypothermia. a Time course, b mean Tb at 
0–60  min, c mean activity at 0–60  min, d mean Tb at 0–300  min, 

e time below 34  °C, and f mean activity at 0–300  min; n = 10–11/
group. Statistical analyses are in Table S2

Fig. 4  Effects of cyclosporine A. a Treatment of QKO and control 
mice with cyclosporine A (30  mg/kg). b Mean Tb at 0–60  min, c 
mean activity at 0–60 min, d mean Tb at 0–300 min, e time below 
34  °C, and f mean activity at 0–300  min; n = 7–14/group. g Effect 
of cyclosporine A (30  mg/kg) pretreatment on adenosine (100  mg/

kg) induced hypothermia. h Mean Tb at 0–60 min, i mean activity at 
0–60 min, j mean Tb at 0–300 min, k time below 34 °C, and l mean 
activity at 0–300  min; n = 10–12/group. Statistical analyses are in 
Table S2
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Therefore, alone it does not appear to have AR agonist activity, 
but we have not evaluated its possible indirect action.

Drugs with non‑adenosinergic hypothermic effects

Nifedipine is a  Ca2+ channel blocker used as an antihypertensive 
agent with a lower affinity at ENT1 but reported to have 
adenosinergic actions [42, 43]. Nifedipine (10  mg/kg) 
caused hypothermia without significant reduction of activity 
in both WT and QKO mice, suggesting non-adenosinergic 
action (Fig. 5a–l). However, nifedipine treatment potentiated 
adenosine-induced hypothermia in additive manner (Fig. 4m–r).

The anti-angina drug ranolazine may exert its beneficial 
effects by increasing myocardial adenosine levels [44]. 
Ranolazine (50 mg/kg, i.p.) itself reduced Tb and activity in both 
WT and QKO mice and had no effect on adenosine-induced 
hypothermia (Fig. 6).

The antidepressant ketamine was reported to boost aden-
osinergic signaling [45, 46]. Ketamine was tested at four 
doses (1, 3, 10, and 30 mg/kg, i.p.). Only the highest dose 
caused significant reduction of Tb with no changes in activ-
ity (Fig. S4a–f). However, the hypothermic effect was the 
same in WT and QKO (Fig. S4g–l), suggesting a non-aden-
osinergic MoA for the ketamine-induced hypothermia.

Fig. 5  Effects of nifedipine. a Vehicle or nifedipine (10 or 20  mg/
kg) treatment of WT mice. b Mean Tb at 0–60  min, c mean activ-
ity at 0–60 min, d mean Tb at 0–300 min, e time below 34 °C, and 
f mean activity at 0–300 min; n = 6–18/group. g Treatment of QKO 
and control mice with nifedipine (10 mg/kg). h Mean Tb at 0–60 min, 
i mean activity at 0–60 min, j mean Tb at 0–300 min, k time below 

34 °C, and l mean activity at 0–300 min; n = 10–18/group. m Effect 
of nifedipine (10  mg/kg) pretreatment on adenosine (100  mg/kg) 
induced hypothermia. n Mean Tb at 0–60  min, o mean activity 
at 0–60  min, p mean Tb at 0–300  min, q time below 34  °C, and r 
mean activity at 0–300 min; n = 8–11/group. Statistical analyses are 
in Table S2
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Ethanol may modulate adenosine signaling by multiple 
mechanisms [47–49]. Ethanol (2 or 3  g/kg) reduced 
Tb similarly in both WT and QKO mice and did not 
potentiate adenosine-induced hypothermia, suggesting non-
adenosinergic action (Fig. S5).

Zinc chloride elicits an antidepressant-like effect in 
the mouse model of forced swimming, with some of the 
effect attributed to enhanced adenosine signaling [50]. Zinc 
chloride induced a robust hypothermic effect at 10 mg/kg, 
but not at lower doses; however, the effect was similar in 
WT and QKO mice (Fig. 7). Of note, at 30 mg/kg, the dose 

used by Lobato et al. [40], zinc chloride caused death in four 
out of four WT mice; the difference in the results could be 
due to the different genetic background, C57BL/6 vs Swiss.

The antidepressant amitriptyline was also reported to 
modulate adenosine signaling [51]. Amitriptyline (20 mg/
kg) reduced both Tb and activity in WT mice, but this reduc-
tion was slightly increased in the QKO mice, consistent with 
non-adenosinergic MoA (Fig. 8).

Taken together, these data show that the hypothermic 
effects of nifedipine, ranolazine, ketamine, ethanol, zinc 
chloride, and amitriptyline are independent of AR signaling.

Fig. 6  Effects of ranolazine. a Vehicle or ranolazine (12.5, 25, or 
50 mg/kg) treatment of WT mice. b Mean Tb at 0–60 min, c mean 
activity at 0–60 min, d mean Tb at 0–300 min, e time below 34 °C, 
and f mean activity at 0–300  min; n = 6–16/group. g Treatment of 
QKO and control mice with ranolazine (50  mg/kg). h Mean Tb 
at 0–60 min, i mean activity at 0–60 min, j mean Tb at 0–300 min, 

k time below 34  °C, and l mean activity at 0–300  min; n = 8–10/
group. m Effect of ranolazine (50 mg/kg) pretreatment on adenosine 
(100 mg/kg) induced hypothermia. n Mean Tb at 0–60 min, o mean 
activity at 0–60 min, p mean Tb at 0–300 min, q time below 34 °C, 
and r mean activity at 0–300 min; n = 5–6/group. Statistical analyses 
are in Table S2
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Discussion

Following up on indirect evidence and prior hypotheses, we 
have directly tested pharmacologically important substances 
for adenosinergic effects using mouse hypothermia as an 
in vivo assay. The thirteen drugs examined can mainly be 
divided into three groups, (1) evidence for adenosinergic 
effect, (2) hypothermia via non-adenosinergic mechanisms, 
and (3) no effect at all in this assay.

A major strength of using hypothermia as an in vivo 
screen for adenosinergic actions is that it detects agonism at 

any of the four ARs. The detailed mechanisms are not char-
acterized in all cases. For example,  A3AR agonists activate 
peripheral mast cells in mice, causing degranulation and his-
tamine release, increased vascular permeability, and hypo-
tension [52]. The hypothermia is caused by the histamine 
acting via  H1 receptors [53]. Classically, central  A1AR were 
identified as mediators of adenosine hypothermia [54–56]. 
Additional studies suggested that activation of  A1AR on 
neurons both within and outside the blood–brain barrier 
can cause hypothermia [57]. Within the brain, activation of 
 A1AR-expressing neurons in the dorsomedial hypothalamus, 

Fig. 7  Effects of zinc chloride. a Vehicle or zinc chloride (1, 3, 10, 
or 30 mg/kg) treatment of WT mice. b Mean Tb at 0–60 min, c mean 
activity at 0–60 min, d mean Tb at 0–300 min, e time below 34 °C, 
and f mean activity at 0–300  min; n = 4–9/group. g Treatment of 

QKO and control mice with zinc chloride (10 mg/kg). h Mean Tb at 
0–60 min, i mean activity at 0–60 min, j mean Tb at 0–300 min, k 
time below 34 °C, and l mean activity at 0–300 min; n = 10–12/group. 
Statistical analyses are in Table S2

Fig. 8  Effects of amitriptyline (20  mg/kg) treatment of QKO and control mice. a Time course, b mean Tb at 0–60  min, c mean activity at 
0–60 min, d mean Tb at 0–300 min, e time below 34 °C, and f mean activity at 0–300 min; n = 8/group. Statistical analyses are in Table S2
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but not the preoptic area, causes hypothermia [57]. Agonism 
at peripheral  A2AAR causes hypothermia, possibly via vaso-
dilation and hypotension [32, 58]. Finally, agonism of cen-
tral  A2BAR also causes hypothermia, with the mechanistic 
details not yet determined [32]. It is conceivable that that 
some of the activities observed here for drugs that permeate 
the BBB occur at the CNS level.

Since hypothermia is caused by at least five different 
AR/site combinations, demonstration of hypothermia and 
its lack in the QKO mice is a first step in characterizing 
the adenosinergic actions of a drug. Further experiments 
are needed to determine if the drug is a direct agonist or 
antagonist at one or more of the AR, or if it modulates 
a different target, changing adenosine levels either at 
particular anatomic sites or throughout the body. Non-
receptor targets could include adenosine transporters [18], 
adenosine deaminase [59], and adenosine kinase inhibitors 
[27, 60]. Hypothermia can be a sensitive test for some 
drugs, but might miss potent adenosinergic actions, such as 
central adenosinergic effects for a drug that does not pass 
the blood–brain barrier. Even for compounds that do reach 
the relevant ARs, hypothermia may occur at a higher dose 
than required for other actions via that AR. It is important 
to remember that the hypothermia screen depends on the 
affinity of the tested drug for mouse AR and that a drug’s 
affinity can vary widely among species [61]. There may also 
be species differences in the biology, with one example being 
mast cell expression (or not) of  A3AR [62].

An adenosinergic effect of a drug can also be 
identified by its ability to potentiate adenosine-induced 
hypothermia, an important approach for screening 
compounds blocking adenosine transport. While the 
inhibition of transport alone might not produce significant 
hypothermia, co-administration of adenosine with the 
test substance increases the sensitivity of the assay. We 
previously demonstrated that the ENT1 inhibitor NBMPR 
by itself produced a hint of hypothermia, but it greatly 
augmented adenosine-induce hypothermia [27]. Here 
we show that four drugs reported to inhibit adenosine 
transport (dipyridamole [21], nimodipine [33], cilostazol 
[63], and cyclosporine A [34, 35]) also increased the 
hypothermia caused by adenosine; these results are 
consistent with inhibition of adenosine transport. In vivo 
studies indicate that dipyridamole alone, as an ENT2 
inhibitor, can increase  A2BAR activation, e.g. in colitis 
and lung injury mouse models [64, 65]. Dipyridamole 
and nimodipine probably increased adenosine levels 
through inhibition of adenosine clearance via ENT1. 
In contrast to dipyridamole which itself did not reduce 
Tb, nimodipine alone caused hypothermia in WT mice 
that was diminished in QKO mice. This indicates that 
nimodipine has both adenosinergic (such as via ENT1 
inhibition) and non-adenosinergic actions.

CBD is reported to be a sub-micromolar ENT1 inhibitor 
[23, 36–38], but CBD did not enhance adenosine-induced 
hypothermia. Thus, CBD does not appear to be sufficiently 
efficacious as an ENT1 inhibitor under the in vivo conditions 
tested. Similarly, no adenosinergic effects were detected for 
canrenoate or sildenafil.

Cyclosporine A has been shown to increase plasma 
adenosine levels in kidney transplant recipients and inhibit 
adenosine uptake in red blood cells [34]. In T lymphocytes, 
it had dual action and inhibited both adenosine transport 
and adenosine kinase activity [35]. The enhancement of 
adenosine-induced hypothermia by cyclosporine A is con-
sistent with inhibition of adenosine transport; however, it is 
unknown if this effect is mediated by ENT1.

The PDE3 inhibitor cilostazol is an anti-claudication drug 
that has been reported to inhibit adenosine transport in vitro 
and in vivo [63]. That MoA is thought to contribute to its 
cardioprotective and anti-ischemic neuroprotective effects [66]. 
Cilostazol did not induce hypothermia itself, but enhanced 
adenosine-induced hypothermia in wild type mice. Since 
cilostazol is a poor human ENT1 inhibitor (ref. 27 in Table 1), 
it might act at different targets. Its potency at mouse ENT1 is not 
reported. Taken together, these results suggest that at the doses 
tested, dipyridamole and nimodipine have some adenosinergic 
effects, likely by ENT1 inhibition, while cilostazol may have 
a different mode of action. Nevertheless, the relationship of 
cilostazol to potential human adenosinergic signaling was 
strengthened by a report that in acute coronary syndrome 
patients it raised plasma adenosine levels [67].

Ethanol has been hypothesized to act in the brain by 
reducing adenosine uptake [68].  ENT1−/− mice were less 
sensitive to acute effects of ethanol and showed an increase 
in alcohol consumption. While the hypothermic effects of 
ethanol were partially blunted in the  A2AAR KO mouse [69], 
we have not detected any adenosinergic effects in the hypo-
thermia assay. Unexpectedly, both ethanol and cannabidiol, 
that weakly block ENT1, did not cause adenosine-induced 
hypothermia. This likely reflects an insufficient degree of 
ENT1 inhibition under these conditions.

Nifedipine is a calcium channel blocker used as an 
antihypertensive. It caused hypothermia by itself and enhanced 
adenosine-induced hypothermia. However, nifedipine 
hypothermia was not altered in the QKO mice. Nifedipine may 
potentiate adenosine hypothermia via its hypotensive actions. 
Our results do not support the proposed adenosinergic effects 
of nifedipine [42].

The antidepressant, amitriptyline, also has antinociceptive 
actions reported to depend on  A3AR, because this effect 
was attenuated by a co-administered  A3AR antagonist 
MRS1191 [51]. Amitriptyline itself induced hypothermia, 
but there was no reduction (actually a slight enhancement) 
in the QKO mice. Therefore, in vivo activation of  A3AR by 
amitriptyline was not detectable and whether loss of ARs 
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enhances amitriptyline-induced hypothermia requires further 
investigation.

There are many drugs and chemicals that can cause hypo-
thermia, potentially for therapeutic application [70]. Here we 
have identified an adenosinergic mechanism for some com-
pounds and found that others caused hypothermia via non-
adenosinergic mechanisms because their effect remained in 
QKO mice. We have not investigated the mechanisms of 
these non-adenosinergic drugs.

Adenosine and adenosine receptor signaling has been 
implicated in many biological processes [1–7]. Extracellular 
adenosine can be elevated during disease conditions by 
generation from nucleotides or by transcriptional control of the 
hypoxia-inducible factor 1α (HIF1A) pathway during hypoxia 
[71]. Numerous exogenous AR agonists and antagonists have 
beneficial therapeutic effects in animal models, and many 
have been tested in clinical trials. However, currently, short-
acting, parenteral agonists, adenosine and regadenoson, are the 
only AR agonists approved for human use [5]. Regadenoson 
is also being examined for treatment of sickle cell disease, 
glioblastoma (opening the blood brain barrier) and other 
conditions (ClinicalTrials.gov Identifier: NCT03971734, 
accessed November 15, 2022) [72, 73]. Thus, identification 
of approved drugs that elevate adenosine in vivo could lead 
to expanded indications for these compounds. Dipyridamole 
has been repurposed as a potential treatment of Covid19 
(ClinicalTrials.gov Identifiers: NCT04391179, NCT04424901, 
accessed November 15, 2022) based on the anti-inflammatory 
effects of adenosine elevation [74]. Other conditions in 
which adenosine could have a beneficial effect include pain, 
inflammation, steatohepatitis, and seizures. Identifying and 
characterizing adenosinergic actions is a promising approach 
for repurposing approved drugs.

Abbreviations AR:  Adenosine receptor; CBD:  Cannabidiol; 
ENT: Equilibrative nucleoside transporter; GPCR: G protein-coupled 
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methyl]-6-thioinosine; NMDA: N-methyl-D-aspartate; PDE: Phos-
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QKO: Quadruple knockout of adenosine receptors; WT: Wild-type
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