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Heterogeneous microgeographic genetic structure of the
common cockle (Cerastoderma edule) in the Northeast Atlantic
Ocean: biogeographic barriers and environmental factors
Manuel Vera 1✉, Sophie B. Wilmes2, Francesco Maroso1, Miguel Hermida1, Andrés Blanco1, Adrián Casanova1, David Iglesias 3,
Asunción Cao3, Sarah C. Culloty4,5,6, Kate Mahony4,5, Francis Orvain7, Carmen Bouza1, Peter E. Robins2, Shelagh K. Malham2,
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Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers
limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a
bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies
demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need
to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for
the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative
homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the
analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however,
neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring
both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions
related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered
supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-
economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define
sustainable management actions across the whole distribution range of the species.
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INTRODUCTION
Knowledge of genetic diversity distribution is crucial for the
sustainable management and conservation of natural resources
(Leary et al. 2009; Sa-Pinto et al. 2012). This distribution is affected
by larval connectivity, demographic parameters and selective
processes operating on species populations. Scarcity of physical
barriers in marine environments is expected to promote higher
connectivity among populations in comparison to terrestrial
species (Waples 1998). Moreover, marine species usually show
large population sizes, which along with pelagic larval stages,
often lasting several weeks, facilitate population genetic homo-
genisation across wide regions (Sa-Pinto et al. 2012; do Prado et al.
2018). Despite these general features, genetic studies on marine
organisms have frequently detected genetic differentiation, even
at local scales (i.e., below the geographic scale of effective
dispersal of the species studied, known as chaotic genetic

patchiness; see Eldon et al. 2016), which can be explained by
historical and reproductive/demographic factors (e.g., high
fecundity and high mortality in early life stages, sweepstakes
reproductive success; see Parrondo et al. 2022), natural selection
associated with environmental conditions (Vilas et al. 2015; do
Prado et al. 2018; Vera et al. 2019) and oceanic features such as
residual currents, bathymetry, coastline shape, upwelling, fronts,
gyres and eddies (Vera et al. 2016, 2022; Coscia et al. 2020; Handal
et al. 2020; Fisher et al. 2022).
Different types of ocean fronts have been described across the

Northeast Atlantic region, encompassing tidal mixing fronts, shelf
break fronts, and freshwater fronts separating estuarine fresh-
water and higher salinity coastal waters (Sharples and Simpson
2019). Examples of these frontal systems on the NW European
Shelf include the Celtic Sea Front (NE Celtic Sea), the Irish Sea
Front (NW Irish Sea), the Alderney Race (with one of the strongest
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currents in Europe) and the Ushant Front (W English Channel)
(Suberg et al. 2019). These fronts may influence genetic structure
acting as barriers to cross-front planktonic dispersal and as
conduits through along-front dispersal by frontal jets, with
important influences on the pelagic distribution of larvae of
marine species (Galarza et al. 2009). Biogeographical barriers can
also limit dispersal in marine environments. In the Northeast
Atlantic region, Cape Finisterre, the Cornwall Peninsula, the tip of
Brittany, the Llyn Peninsula, and the Alderney race along Cotentin
Peninsula have been identified as potential barriers to the
connectivity of marine organisms due to their oceanographic
features, including fish (Abaunza et al. 2008; Larmuseau et al.
2009) and molluscs (Dupont et al. 2007; Piñeira et al. 2008;
Martínez et al. 2015; Handal et al. 2020; Vera et al. 2022).
The common cockle, Cerastoderma edule, is a bivalve mollusc

naturally distributed throughout the Northeast Atlantic coast, from
Senegal, West Africa, to Norway, northern Europe, where it
inhabits on intertidal and shallow subtidal soft sediments
(Hayward and Ryland 1995). The species is commercially exploited
and provides a wealth of services to coastal communities mainly
in Ireland, United Kingdom, France, Spain and Portugal, where it is
harvested (Flach and de Bruin 1994; Carss et al. 2020; Jackson-Bue
et al. 2022). Cockle harvest has been reduced since the 1980s
(>100,000 tonnes) to nowadays (~25,000 tonnes in 2019) due to
changes in fisheries policies, overfishing, variable recruitment and
mass mortalities produced by pollution, climate events and
parasites (Villalba et al. 2014; Mahony et al. 2020; Pampín et al.
2023). Furthermore, cockles are considered keystone for ecosys-
tem due to their role as reef engineers, agents of carbon
sequestration and their linking between primary producers and
higher trophic levels (Norris et al. 1998; Carss et al. 2020). The
species is dioecious and can live up to 10 years displaying fast
sexual maturation (reached in the first year of life) and high
fecundity (Honkoop and van der Meer 1998). The reproductive
period occurs from April to August (Malham et al. 2012), but it can
be extended to September in more southern European countries
such as Portugal (Mahony et al. 2021), and planktonic larvae can
remain in the water column for 30 days facilitating widespread
dispersal (de Montaudouin et al. 2003; Dare et al. 2004).
Genetic studies throughout the natural cockle’s distribution

have identified three main population genetic units: (i) a southern
group encompassing the Atlantic coast from Morocco to the Bay
of Biscay; (ii) a central group comprising of the Celtic and Irish
Seas, the English Channel and the southern North Sea; and (iii) a
northern group consisting of the northern North Sea (Beaumont
et al. 1980; Hummel et al. 1994; Martínez et al. 2013, 2015). These
results have been recently confirmed by Vera et al. (2022) through
a wide genome scan (~10,000 single-nucleotide polymorphisms,
SNPs), but additionally enabled identifying substructure within the
main genetic groups using outlier loci under divergent selection,
mostly in accordance with residual current patterns and environ-
mental variables.
However, due to the limited number of markers and/or the

scale of sample collection, a comprehensive picture of population
connectivity in the common cockle is still incomplete. Information
at the microgeographic level, always considering the dispersal
capacity of the species (Eldon et al. 2016; Vera et al. 2022), is
relevant for the management of fisheries (Bernatchez et al. 2017).
Using a wide SNP genomic screening, Coscia et al. (2020)
identified three genetic clusters (global FST= 0.021) of cockles in
the Celtic and Irish seas and that could be associated with residual
ocean currents, salinity and geographical proximity using informa-
tion on larval dispersal.
This study aimed to analyse the genetic structure of the

common cockle at a microgeographic scale using 2b Restriction
Associated DNA sequencing (2b-RADseq). Two regions were
investigated: (1) the SW British Isles and the English Channel,
characterised by putative habitat fragmentation due to tidal

mixing fronts and biogeographical barriers; and (2) the North-
west coast of Spain (Galicia), representing a quite homogeneous
region according to previous information on other mollusc
species (Diz and Presa 2009; Vera et al. 2016). The results
confirmed the significant differentiation of cockles’ populations
at microgeographic scale, but also the power of larval dispersal
to homogenise rather wide coastal areas, thus providing
essential information for proper management of this valuable
resource.

MATERIAL AND METHODS
Sample area and oceanography
Two geographic areas along the Northeast Atlantic coast were investigated
(Fig. 1). The first was focused on the British Isles and the English Channel
(hereafter called the SW British Isles region), where previous, though
incomplete information, supported significant genetic sub-structuring (e.g.,
Coscia et al. 2020; Vera et al. 2022). The second area was Galicia (Northwest
Spain), which may be genetically homogeneous according to information
on other mollusc species (Diz and Presa 2009; Vera et al. 2016).
Over the cockle reproductive season (May to September; Mahony et al.

2020), the coastline of Galicia is characterised by wind-driven upwelling of
cold waters resulting in sea surface temperatures (SSTs) that are several
degrees colder than off-shore SSTs (Supplementary Fig. 1b). Also driven by
the predominantly northerly winds in the summer months, the Portugal
coastal current transports waters southwards along the coastline of Iberia
(Teles-Machado et al. 2016) with residual current strengths along the
Galician coastline exceeding 0.15m/s (Supplementary Fig. 1d). The SW
British Isles region is divided into distinct oceanographic regions (the
English Channel, the Celtic Deep, the Celtic Sea and the Irish Sea) by
diverging current or seasonal frontal systems (Galparsoro et al. 2014).
Several tidal mixing fronts separate seasonally stratified and mixed waters
(Supplementary Fig. 1a): the Ushant Front (Group “Grepma” 1988), the
Celtic Sea Front, and the Irish Sea Front (Simpson and Pingree 1978). The
Celtic Sea is characterised by northward flow along the western coast of
Cornwall, which merges into the Celtic Sea Front jet and links into the Irish
Coastal Current, which transports water clockwise along the south and
west coast of Ireland (Supplementary Fig. 1c; Brown et al. 2003; Fernand
et al. 2006). Northward currents along the Ushant Front link the American
Shelf with the Celtic Sea. The southern English Channel coast is dominated
by northeastward flow, with the strongest currents occurring around the
Cotentin Peninsula.

Sample collection
A total of 374 cockles from 14 wild natural beds were collected across the
aforementioned two regions in the period 2017–2020 and stored in 100%
ethanol for analyses (Table 1). In addition, 231 cockles from eight beds
previously analysed (Vera et al. 2022: identified as IDA_18, IDC_18,
WDE_17, WBY_17, FBS_17, FAR_17, SNO_17 and SLO_17, where 17 and 18
in the codes represent 2017 and 2018, respectively) were included in the
analysis to achieve a comprehensive picture of the areas studied, thus
providing an overall total of 605 cockles. To avoid generation overlapping,
all samples belonged to the 0+ year age class of their sampling year. No
temporal replicates were included considering the temporal genetic
stability previously reported by Vera et al. (2022).

Single-nucleotide polymorphism (SNP) genotyping
Total DNA was extracted from gills using the E.Z.N.A. E-96 mollusc DNA
kit (OMEGA Bio-tek), following manufacturer recommendations. 2b-
RAD libraries (~90 cockles per run) were constructed using the AlfI IIb
restriction enzyme and sequenced in an Illumina NextSeq 500 platform
following Maroso et al. (2018; 2019). Bowtie 1.1.2 (Langmead et al.
2009) was used to align reads to the cockle’s genome (Bruzos et al.
2022) allowing a maximum of three mismatches and a unique valid
alignment (-v 3 -m 1). The reference-based mode with default
parameters in the gstacks module of STACKS 2.0 (Catchen et al.
2013) was used for SNP calling. For genotyping, SNPs were filtered
following Vera et al. (2022): (i) SNPs genotyped in >60% individuals; (ii)
MAC (minimum allele count) ≥3; (iii) conformance to Hardy–Weinberg
expectations (i.e., SNPs with significant FIS values (P < 0.05) in at least
25% of the populations were removed); and (iv) the most polymorphic
SNP within each RAD-tag were retained. Individuals with less than
250,000 reads were discarded.
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Genetic diversity and population structure
Estimates of genetic diversity (i.e., mean number of alleles per locus (Na),
observed (Ho) and expected (He) heterozygosity, proportion of poly-
morphic loci), departure from Hardy–Weinberg equilibrium and inbreeding
coefficients (FIS) were estimated using GENEPOP v4.0 (Rousset 2008) and
ARLEQUIN v3.5 (Excoffier and Lischer 2010). Because a minimum allele
frequency (MAF) filtering was not applied, ARLEQUIN was also used to
estimate Ho, He and FIS exclusively with polymorphic loci (MAF >0.017
according to sample size) for comparison with previous studies.
Global and pairwise coefficients of population differentiation (FST)

between cockle beds were calculated with ARLEQUIN v3.5 using 10,000
permutations to test for significance. The variational Bayesian clustering
method implemented in the package fastSTRUCTURE v2.3.4 (Raj et al.
2014) was used to estimate the number of genetic population units (K) in
the whole studied area and in each region testing from K= 1 to K =
number of beds + 1, with an admixture ancestry model, convergence
criterion of 1 × 10−8, five cross-validated sets and the simple prior (flat-beta
prior). The most likely number of K was estimated using the “chooseK.py”
programme included in the fastSTRUCTURE which gives the best K value
and the K corresponding with weak population structure in the data using
heuristic scores. Summarised outputs were carried out using the software
POPHELPER (Francis 2017). Discriminant analyses of principal components
(DAPC) were run in ADEGENET package (Jombart et al. 2010; Jombart and
Ahmed 2011) for the R platform (R Development Core Team 2014; http://
www.r-project.org) with the whole dataset and for each region. Data were

transformed using principal component analysis (PCA) and the optimal
number of principal components (PC) was calculated using the optim.a.-
score() command (see Miller et al. 2020). Isolation by distance (IBD) was
checked by the correlation between geographical (measured as the
shortest oceanic distance between two beds in km) and genetic distance
(measured as FST/1-FST; Rousset 1997) matrices using a Mantel test with
10,000 permutations using NTSYS v.2.1 (Rohlf 1993).

Outlier tests
The Bayesian FST-based method implemented in BAYESCAN v2.1 (Foll and
Gaggiotti 2008) was used to identify outlier loci subjected to selection.
BAYESCAN was run using default parameters (i.e., 20 pilot runs; prior odds
value of 10; 100,000 iterations; burn-in of 50,000 iterations and a sample
size of 5000, hereafter “BY10”), but we also explored increasing prior odds
value to 1000 (hereafter “BY1000”). Despite high prior odds tend to remove
false positives, they also reduce the power for detection loci under
selection (Foll 2012). Loci with a false discovery rate (FDR, q value) <0.05
were considered as outliers. Moreover, the PC-based method implemented
in R package PCADAPT v4.0 (Luu et al. 2017; Prive et al. 2020) was also
applied. This method renders low false-positive rates and uses individual
information, not requiring a priori population assignment. For the analysis,
the number of PC retained was performed with the “chooseK” option. The
outlier identification was carried out with an FDR <0.05. We considered as
outliers those loci identified by any of the two approaches, but

Fig. 1 Geographical distribution of the Cerastoderma edule beds analysed in the present study. Location of the study area in Europe (a)
and focused on SW British Isles (b) and Galicia (c) regions. Summer sea surface temperatures are shaded. Summer sea surface ocean currents
are schematically depicted with magenta-coloured arrows. Tidal mixing fronts are indicated with purple dashed lines. UF Ushant Front, CSF
Celtic Sea Front, ISF Irish Sea Front. Location codes are shown in Table 1. Beds previously analysed by Vera et al. (2022) are marked with
asterisks.
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additionally, those shared between all approaches as the most
confident ones.

Seascape analyses
Effects of spatial (latitude and longitude) and relevant abiotic factors in
coastal and marine environments (SST, °C); sea bottom temperature (SBT, °C);
sea surface salinity (SSS, psu); sea bottom salinity (SBS, psu); bottom shear
stress (BSS, N·m−2); net primary productivity (NPP, mg·m−3·day−1); see Coscia
et al. 2020; Vera et al. 2022) shaping genetic differentiation across beds in the
studied areas were assessed using a canonical redundancy analysis (RDA)
implemented in the VEGAN software (Oksanen 2015) in R. This abiotic
information was retrieved as monthly averages from the IBI_REANALYSI-
S_PHYS_005_002 ocean reanalysis model (https://resources.marine.
copernicus.eu/?option=com_csw&task=results?option=com_csw&view=
details&product_id=IBI_REANALYSIS_PHYS_005_002) and IBI_REANALYSIS_-
BIO_005_003 model (https://resources.marine.copernicus.eu/?option=com_
csw&task=results?option=com_csw&view=details&product_id=IBI_REANA
LYSIS_BIO_005_003) for the period 2014–2018 (Supplementary Table 1),
respectively. The nearest model cell classified as the ocean was selected to
extract the data (average distance between the sampling location and centre
of the nearest model grid cell edge = 11.6 km). Then, averages for the
spawning season (i.e., from April to September, see Malham et al. 2012;
Mahony et al. 2020), winter (i.e., from January to March) and summer (i.e.,
from July to September) were calculated for each bed. Allele frequencies
were calculated for each bed with ADEGENET package using the “makefreq”
option. Loci with missing values were removed from the analysis. The
significance of the variance associated with the different variables was tested
with 1000 random permutations. Variance inflation factor (VIF) was estimated
to explore collinearity (correlation) between seascape variables in the dataset,
with VIF values >10 suggesting important collinearity problems (Marquardt
1970). The selection model was performed using an automatic stepwise
model-building algorithm based on permutation p values tests. This
procedure was performed with the ordistep function included in VEGAN.
The reduced panel of explanatory variables was used to recalculate the total
proportion of genetic variation in the variance partitioning. The weight of the
different loci on the significant environmental vectors was calculated using
VEGAN. All these analyses were performed separately for the whole, neutral
and divergent outlier SNP datasets in the regions studied.
Potential correlations between allele frequencies and seascape variables

were investigated with BAYENV2 (Coop et al. 2010; Gunther and Coop 2013)
and results were compared with the mentioned RDA analyses. The method
implemented in this software allows controlling the neutral genetic
structure, because the fit improvement for a given genetic variant between
a model including the environmental factor and a model including only
neutral genetic structure is tested (Rellstab et al. 2015). BAYENV2 was
carried out using the whole SNP datasets from SW British Isles and Galicia,
respectively. First, analyses were performed with 100,000 iterations across
five independent runs to obtain the average covariance matrix for each
subset. Secondly, the correlation between each SNP and the different
variables was calculated using 100,000 iterations to obtain Bayes factors
(BFs). As in the previous step, five independent runs were used. Only SNPs
with a BF >10 and Spearman’s coefficient (rho, ρ) thresholds >1% for any
variable in all runs were considered well-supported environment-associated
SNPs. Finally, significantly correlated SNPs were compared with the outliers
identified in the BAYESCAN and PCADAPT analyses.

Gene mining and functional enrichment
RAD-tags including divergent outlier SNPs were mapped in the C. edule
genome (Bruzos et al. 2022) and their position compared with the
consistent genomic windows under divergent selection previously
reported by Vera et al. (2022) in the Northeast Atlantic Ocean. The very
low genetic differentiation with neutral markers in the studied areas
precluded the detection of consistent genomic regions under stabilising
selection. Thus, we could verify in more restricted geographical scenarios
(SW British Isles and Galicia) the consistency of the genomic regions under
divergent selection previously detected. In addition, we looked for new
regions under selection considering the singularity of the new sample
collections of this study following a similar methodology to that proposed
by Vera et al. (2022). Briefly, we defined a consistent window when ≥2
consecutive outliers were detected; then, we expanded the region ±250 kb
from the external outliers of the seed to define a genomic window for
mining. Genes included in those genomic windows were identified using
the cockle’s transcriptome assembled and annotated by Pardo et al. (2022),
which was used as a reference to detect Gene Ontology (GO) functional

enrichment of the genomic regions under selection (FDR 5%) using
GOfuncR (Grote 2022). Furthermore, we also analysed genomic windows
around the SNPs correlated with environmental variables for mining; since
we could not identify consecutive SNPs as with outliers, we were more
conservative and defined smaller windows around each SNP (±100 kb).

RESULTS
Genetic diversity and differentiation: whole sample and SNP
dataset
A total of 599 cockles were analysed since six specimens that
exhibited a low number of reads (<250,000 reads) from WDE_17
(two individuals), SAN_17 (one individual), SVI_17 (two individuals)
and SMO_17 (one individual), were removed. After quality
filtering, the number of SNPs retained in the whole dataset was
9250. This number was slightly lower than the number used in the
macrogeographical study carried out by Vera et al. (2022) (9309
markers), because 59 of these markers were monomorphic in the
studied regions. All the 9250 markers were included in the “9309
markers” dataset and their genomic information is available at
https://onlinelibrary.wiley.com/doi/10.1111/eva.13340, where the
SNP code from Vera et al. (2022) has been maintained for
comparison between studies.
Observed (Ho) and expected (He) heterozygosities ranged

respectively from 0.070 (SMO_17, Spain) to 0.080 (IWC_20,
IGC_20 and IKF_20, Ireland; mean ± SD= 0.075 ± 0.003) and from
0.076 (WDE_17, Wales) to 0.087 (SNO_17, Spain and IKF_20, Ireland;
mean ± SD= 0.082 ± 0.003) (Table 1). All FIS values per locus and
bed were positive, suggesting heterozygote deficit, but low (always
<0.115) and not significant, and all beds met HW expectations
(P < 0.0022; 0.05/22 populations), an expected outcome consider-
ing the HW filtering applied to retain SNPs. The percentage of
polymorphic loci ranged from 25.5% in SMO_17 (Spain) to 52.8% in
SNO_17 (Spain) (mean ± SD= 41.3 ± 7.2%). When only poly-
morphic loci within each bed were considered, Ho ranged from
0.137 in SLO_17 (Spain) to 0.181 in SMO_17 (Spain)
(mean ± SD= 0.155 ± 0.014), showing these two beds also the
lowest (0.156) and highest (0.200) He (mean ± SD= 0.171 ± 0.012).
No differences in genetic diversity were found between the SW
British Isles and Galician regions (Mann–Whitney U tests P > 0.250
for Ho, He with all loci and with polymorphic loci). Genetic diversity
was in the range of previous values reported by Vera et al. (2022)
for the whole Atlantic area using the same methodology.
Global FST for all beds was 0.02118 (P < 0.001), pairwise FST

ranged from 0 (non-significant ≠ 0) for many bed pairs up to a
maximum of 0.05040 (P < 0.001) between IDC_18 and SVI_17
(Supplementary Table 2). Most pairwise comparisons were
significant excluding those from Galicia. Average pairwise FST
between the SW British Isles and Galicia was 0.03400 (P < 0.001),
while 0.01374 (P < 0.001) within the SW British Isles and −0.00529
(P= 1.000) within Galicia. The two beds from the Cotentin
Peninsula (FBV_19 and FGO_19, SW British Isles region), separated
by 190 km, showed significant genetic differentiation (FST=
0.01207, P < 0.001). The most likely K values inferred by
fastSTRUCTURE were 1 and 3. When K= 3 was plotted, two main
groups were identified differentiating the SW British Isles (IGC_20,
IKF_20, IWC_20, IDA_18, IDC_18, WDE_17, WBY_17, ECE_20,
FBS_17, FBV_19 and FGO_19) from Galicia (plus Arcachon)
(FAR_17, SBA_17, SMI_17, SAN_17, SNO_17, SLO_17, SSA_17,
SVI_17, SCA_17, SMO_17, SBI_18) (Fig. 2A). FGO_19 (France,
Cotentin Peninsula) showed a high component of the southern
group, also detectable in all samples from the English Channel
(ECE_20, FBS_17 and FBV_18), suggesting some introgression
between the two groups. The DAPC representation on the SW
British Isles also suggested differentiation of the English Channel
samples from the northernmost populations across the second
component, while the first one, indicated a remarkable divergence
of the IKF_20 sample from the remaining ones (Fig. 3A). The DAPC
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from Galicia showed most of the samples grouped excluding
SNO_17, in the middle of the distribution, below Cape Finisterre,
and SBI_18, the southernmost one (Fig. 3B).

Genetic structure within regions: demographic and selective
factors
To understand the factors underlying genetic differentiation
within the SW British Isles and Galician regions, we first identified
those loci under selection using three different statistical

approaches. BY10, BY1000 and PCADAPT detected 159, 47 and
84 outliers in the SW British Isles, respectively, all of them under
divergent selection and representing a total of 186 different
outliers (Supplementary Table 3). Thirty-five markers were shared
between the three methods. The number of outliers in Galicia was
much lower (BY10= 15, BY1000= 2, PCADAPT= 39), two of them
shared between the three methods and representing a total of 51
outliers, all of them putatively under divergent selection. Among
the whole outlier dataset, 15 were shared between SW British Isles

Fig. 2 Population structure of Cerastoderma edule at different geographical scales using fastSTRUCTURE. Each vertical bar represents one
individual, and the colour proportion of each bar represents the posterior probability of assignment of each individual to the different clusters
(K) inferred by the programme. The most likely K= 3 using the whole dataset (A), and K= 2 using the 35 shared divergent outliers between
methodologies and K= 3 using the total 186 divergent outliers (B) for the SW British Isles are represented. Codes are shown in Table 1. Plots
for all the K values tested for the different datasets are shown in Supplementary Figures.
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Fig. 3 Representation of discriminant analysis of principal components (DAPC) results using complete SNP datasets. DAPC plots of
Cerastoderma edule beds belonging to the SW British Isles (A) and Galicia (B) are shown. The weight of retained discriminant analysis (DA) and
principal components selected are shown on left bottom box and right bottom box, respectively. Codes are shown in Table 1.
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and Galicia. Then, by discounting the total number of outliers to
the whole dataset in each region, a total of 9064 neutral markers
were identified in the SW British Isles and 9199 in Galicia,
representing the neutral datasets for each region.
Small but significant genetic differentiation was detected

among the SW British Isles beds using neutral markers (FST=
0.00778, P < 0.001), suggesting limitations to larval dispersion in
this area by biogeographical barriers. As expected, the 186 total
outliers rendered a much higher global FST (0.10959, P < 0.001),
being more accentuated when using the shared set of outliers
between methods (FST= 0.17411, P < 0.001), which suggests
selective factors increasing structuring. Pairwise FST ranged from
−0.03095 (IKF_20 – WDE_17) to 0.02366 (IGC_20 – FGO_19 pair)
for neutral markers; from 0.00061 (IDA_18 – IDC_18 pair) to
0.17142 (IDA_18 – FGO_19 pair) for the 186 total outliers; and from
−0.00345 (IDA_18 – IDC_18 pair) to 0.27313 (IKF_20 – FBS_17 pair)
for the 35 shared outliers (Supplementary Table 4). IBD was
significant with the shared and total outlier datasets (r= 0.63169
and 0.55136, respectively; P < 0.001), but not with the neutral
dataset (r= 0.08578, P= 0.330). These results suggest that
correlations could be a by-product of the unequal spatial
distribution of the environmental factors responsible for selective
forces shaping the cockle’s genome, since IBD patterns should be
reflected by the balance between drift and migration on neutral
markers. The fastSTRUCTURE analyses identified K= 1, K= 2 and
K= 3 as the most likely values for the neutral, 35 shared outlier
and 186 total outlier datasets, respectively (Fig. 2B), which
consistently differentiated the Celtic Sea and the Northwest Irish
cluster (IGC_20, IKF_20 and IWC_20), not studied to date, and the
English Channel cluster (ECE_20, FBS_17, FBV_19, FGO_19). In
contrast, the Irish Sea appeared as a rather differentiated group
with 186 outliers, which was split into two clusters, the Irish side
(IDA_18 and IDC_18) most closely associated with the Celtic and
Atlantic Ocean cluster, and the Welsh side (WDE_17 and WBY_17),
most closely linked with the English Channel cluster, when using
the 35 outlier loci. The differentiation of the Irish Sea from the
other samples, and the contrast between the Welsh and Irish (east
and west, respectively) samples of the Irish Sea, was shown when
exploring a scenario with a larger K value, with both datasets
displaying a very similar structure with K= 4 (Supplementary Figs.
2 and 3). The DAPC analysis with neutral markers showed a very
similar picture to that described with the whole SNP dataset
(Supplementary Fig. 4A); however, the 186 and 35 outlier datasets
displayed a very distinct picture, both separating the English
Channel (ECE_20, FGO_19, FBV_19 and FBS_17) from the Welsh
populations, but also from the Irish populations, which were
further divided into two groups, the westernmost Northeast
Atlantic Ocean group (IWC_20, ICG_20 and IKF_20) and the Irish/
Celtic Seas group (IDC_18 and IDA_18) (Supplementary Fig. 4B, C).
In contrast to the SW British Isles, no population differentiation

was found in Galicia with the neutral dataset (FST= 0.00552,
P= 1.000), also supported by the fastSTRUCTURE (K= 1) and
DAPC, as previously outlined with the whole dataset (Fig. 3B and
Supplementary Fig. 4D). However, low but significant differentia-
tion was detected with the 51 outliers (FST= 0.00870, P < 0.001),
the pairwise FST supporting a significant differentiation of the two
northernmost samples (SMI_17 and especially SBA_17; Supple-
mentary Table 5) from the rest. This differentiation was not
disclosed with fastSTRUCTURE (K= 1; see Supplementary Fig. 5)
and only suggested with DAPC (Supplementary Fig. 4E).

Seascape analysis
RDA analyses in SW British Isles region suggested longitude as the
main driver for the observed differentiation with all datasets and
seasons (Table 2). Latitude was also supported as a driver for many
models, especially for those related to the 186 total outliers. SBS
was suggested for all seasons with the 186 outlier dataset, while
BSS was for reproductive and summer seasons using the whole

and neutral datasets (Table 2). When longitude and latitude were
removed, SST was suggested for all the datasets in the summer
season, and in the reproductive and winter seasons only with the
whole and 186 outlier datasets, respectively. SBT was suggested
for the reproductive and summer season with the 186 outlier
dataset. SBS and SSS were suggested with the 186 outlier dataset
for the summer and winter seasons, respectively. NPP was
suggested for all datasets in the winter season and for the 186
outlier dataset for the reproductive season. Finally, BSS was
suggested in all seasons for the neutral dataset and in the
reproductive and summer seasons for the complete dataset. In
Galician region, no associations were found, except for latitude in
all periods analysed using the 51 outliers, and for BSS during
winter when latitude and longitude were removed (Table 2).
However, VIF values were usually high (>10), suggesting that
results should be taken with caution due to the high collinearity
among the variables in many cases.
While no correlations were identified in Galicia with BAYENV2, a

total of 54 markers were correlated with different environmental
variables in the SW British Isles (Supplementary Table 6). Thirty of
these markers (55.6%) were previously identified as outliers by the
different methodologies applied. Markers were mainly correlated
with latitude, longitude, temperature and salinity. The main
variable correlated with genetic markers in the reproductive
season and summer scenarios was SBT, while SSS and NPP were in
the winter scenario.

Gene mining around outliers and environmentally correlated
markers
Genetic markers associated with divergent selection or correlated
with environmental variables were mapped in the common cockle
genome to look for functional interpretation (Supplementary
Tables 3 and 6). Outliers identified in the SW British Isles area were
scattered across all chromosomes, between one in C18 and 22 in
C3, while five chromosomes (C8, C11, C13, C14, C17) did not bear
any outlier in Galicia, the maximum being detected in C1 (11
outliers) (Table 3). The 51 outliers detected in Galicia only
identified a single consistent genomic region (window) under
selection according to our criteria and other five outliers were
distributed across four confident genomic windows previously
reported by Vera et al. (2022) (Supplementary Tables 7 and 8).
However, among the 186 outliers detected in the SW British Isles,
14 defined five new consistent genomic windows under divergent
selection and other 45 mapped on genomic windows previously
reported by Vera et al. (2022) (Supplementary Tables 7 and 8).
Most outliers detected in Galicia were specific to this region, while
an important number of outliers from the SW British Isles were
shared with the Northern region previously analysed by Vera et al.
(2022) (Supplementary Fig. 6). Still, a notable proportion of outliers
in the North were specific of each study (North-Vera et al. (2022):
137 vs SW British Isles: 101) suggesting specific evolutionary
factors related to each scenario. Among the genes annotated in
the five new windows, several related to oxidative stress, hypoxia
and immunity were identified in a 200 kb region in C2 and in a
340 kb region in C3 (Supplementary Table 9) (Gerdol and Venier
2015; Grandi et al. 2016; Sokolov et al. 2019). Also, in a 480 kb
region in C5, some genes involved in signalling and detoxification
(Wang et al. 2018; Kron 2022; Thoma et al. 2022) were identified.
Finally, a gene associated with ocean acidification (Lim et al. 2021)
was identified in C19. Despite the low number of genes handled, a
significantly enriched GO Molecular Function was detected
(protein serine/threonine phosphatase activity; GO:0004722) tak-
ing as background the common cockle transcriptome reported by
Pardo et al. (2022).
Markers correlated with environmental variables were scattered

across most chromosomes, excluding C7, C14 and C18, and a
higher number (seven markers) were detected in two big
chromosomes (C2 and C4) (Table 3). An important number of
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correlated markers were also identified as outliers for divergent
selection (55.6%), some of them associated with consistent
genomic windows (Supplementary Table 8). Of note, the three
markers were detected in one of the most consistent genomic
windows in C4. We also mined the cockle genome around the
correlated marker dataset (Supplementary Table 10) and detected
several genes related to nervous system development and
physiology. These genes were mostly clustered at C1 around
142462_31 (correlated with SBT) and C2 around 210318_7
(correlated with SST), respectively. Furthermore, some of these
genes were previously associated with temperature stress and
oxygen depletion stress or differentially expressed under specific
experimental conditions in other mollusc species (Woo et al. 2011;
Chen et al. 2022). Another important group of genes scattered
around different markers in the cockle genome were related to
immunity and defence and had been previously reported in other
mollusc species in response to viruses and bacteria (Barbosa et al.
2022; Saco et al. 2023) (Supplementary Table 9).

DISCUSSION
Assessment of the distribution of genetic variability across
populations, incorporating historical processes and local adapta-
tion framed within the dispersal range of the focal organism
(Richardson et al. 2014), is essential to develop management
actions to preserve exploited species (Bernatchez et al. 2017). In
the present study, two different patterns of genetic structure at
microgeographic scale were identified in two regions within the
natural distribution of C. edule, highlighting the need to perform
analyses at multiple spatial scales (Hoffman et al. 2012), to provide
information supporting the management of this valuable resource.

Heterogeneous pattern of microgeographic structure in the
common cockle
The two geographic areas studied, the SW British Isles region and
Galicia, were selected by their different habitat fragmentation
patterns. Both areas were slightly differentiated (FST= 0.03400), in
accordance with their location in the major northern and southern
regions of the species’ range separated around French Brittany
(Vera et al. 2022), but did not show differences in genetic diversity,
unlike Vera et al. (2022), who reported a slight, but significant
higher diversity in the southern region.
The extensive analysis performed in Galicia (10 natural beds)

suggested the presence of a single panmictic unit in this area, as
previously reported for other molluscs, with similar pelagic larval
periods (Donax trunculus, Nanton et al. 2017; Ensis siliqua, Arias-
Perez et al. 2012; Mitilus galloprovincialis, Diz and Presa 2009;
Ostrea. edulis, Vera et al. 2016; Polititapes rhomboides, Chacón et al.
2021), and for other marine species (Hippocampus guttulatus,
Lopez et al. 2015; Pollicipes pollicipes, Parrondo et al. 2022). Our
data does not support Cape Finisterre as a biogeographical barrier
for the species as previously suggested (Lopez-jamar et al. 1992;
Piñeira et al. 2008; Martínez et al. 2013; Cruz et al. 2020) since no
differentiation was detected between beds on both sides of the
Cape with the whole and neutral datasets. However, when using
outlier loci, the two northernmost Galician beds showed
significant differentiation from the remaining ones, especially
the bed closest to the Cantabrian Sea (SBA_17) (average
FST= 0.03145), which could be related to the higher temperature
regime in the Cantabrian Sea (Marquina et al. 2015), but a more
detailed study in the Cantabrian Sea would be necessary to
confirm this observation. Oceanographic dynamics on the Galician
coast indicate that the cold-upwelled water usually penetrates

Table 3. Distribution of divergent outliers and markers correlated with environmental variables in the SW British Isles and Galicia across the
Cerastoderma edule genome (version 4.0).

Outlier loci (divergent selection)

Mega-scaffold
(chromosome)

Chromosome length (bp) British Isles Galicia Shared Markers correlated environmental
variablesa

C1 64,609,245 21 11 3 5 (3)

C2 56,319,168 14 2 7 (3)

C3 55,987,847 22 3 1 6 (5)

C4 52,087,795 18 5 2 7 (6)

C5 50,828,891 11 1 1 3 (2)

C6 40,237,005 13 3 2 4 (1)

C7 39,934,596 2 1

C8 39,684,391 9 2 (1)

C9 39,070,162 11 3 2 (1)

C10 38,264,924 14 8 2 1

C11 38,197,540 2 1

C12 36,327,582 6 1 1 (1)

C13 35,955,507 10 5 (2)

C14 33,816,358 5

C15 31,726,440 3 1 1 3 (1)

C16 31,510,408 10 8 1 2 (2)

C17 26,587,828 4 2 (1)

C18 22,603,465 1 1 1

C19 21,711,631 4 1 1 1

Other scaffolds 6 2 2 (1)

Total 186 51 15 54 (30)
aOnly detected in SW British Isles; in parentheses, those markers also identified as outliers for divergent selection.
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estuaries on the west, while it only occurs during very intense
events on the north (Alvarez et al. 2010). Thus, water temperature
decreases from north to west, with an SST average value of 19.5 °C
on the Cantabrian coast compared with the 18.5 °C measured on
the west coast for the 1985–2005 period (Gomez-Gesteira et al.
2008). Larval dispersal modelling carried out by Vera et al. (2022)
(see their Fig. 7) confirmed that cockle beds are well connected
with each other by larval transport in Galicia, but the connection
between the Rias and the sites to the northeast of Cape Finisterre
was weaker, though present. Furthermore, whilst the beds along
the northwest coast of the Iberian Peninsula are affected by very
similar oceanographic conditions, during the late spring and late
summer, temperatures at the most north-easterly site can differ
markedly from those at the other beds due to its location at the
edge of the upwelling system and at the inception point of the
Portugal Coastal Current (STT two degrees higher in the northern
beds (mean = 18.51 °C) than in the southern ones (mean =
16.47 °C) during the summer; see Supplementary Table 1). Despite
the genotype-environment association methods did not identify
sea temperature as driver, latitude, which is highly correlated with
temperature, was suggested by the RDA analysis as a potential
driver in the region.
Previous data from the SW British Isles suggested significant

structure in C. edule related both to current dynamics as well as to
abiotic factors, such as salinity and temperature (Coscia et al. 2020;
Vera et al. 2022), as reported in other shellfish species such as the
horse mussel Modiolus modiolus (Gormley et al. 2015) and the
great scallop Pecten maximus (Vendrami et al. 2019; Hold et al.
2021). However, some regions in this area are still poorly sampled
in the common cockle (English Channel) or without information
(West Irish coast, Northeast Atlantic). Outlier markers showed a
moderate pairwise genetic differentiation between beds (FST=
0.10959 and 0.17411 with the 186 and 35 outlier datasets,
respectively), higher than that observed with neutral markers
(FST= 0.00778), as expected, suggesting selective factors shaping
specific genomic regions in a small geographic area. An important
proportion of divergent outliers (68 markers) were shared with
those reported by Vera et al. (2022) for the northern group (210
outliers), which gives robustness to our observations; however,
data also suggest specific selective factors shaping the cockle’s
genome associated with the new sampling in the SW British Isles
(117 new outlier loci; 31 within consistent genomic windows). In
fact, five new confident genomic windows were identified,
including relevant genes related to oxidative stress and immunity
that would deserve further studies as candidates to explain the
association observed with environmental factors. Despite biotic
factors, such as pathogens, could not be contemplated in our
study, their diversity and distribution (influenced by abiotic
factors) are important drivers shaping the genome and distribu-
tion of species (Theodosopoulos et al. 2019) and specifically in
cockles (Vera et al. 2022; Pampín et al. 2023). Furthermore, we also
deepened into the correlation of specific SNPs with environmental
factors and could identify, by mining in the cockle genome several
genes related to nervous transmission and immunity, arranged in
clusters or scattered in different chromosomes, that had been
previously reported in other mollusc associated with temperature
or oxidative stress (Woo et al. 2011; Barbosa et al. 2022; Chen et al.
2022).
The population structure observed in the SW British Isles region

may be in part explained by the residual ocean currents and ocean
fronts that characterise this area, but also by selective factors such
as salinity gradients, variable BSS (due to large tidal variability) and
sea temperature gradients (driven by ocean currents, stratification
and mixing, and latitudinal gradients); however, spatial seascape
results should be taken with caution due to the collinearity
detected among variables. Both outlier datasets could identify
four genetic clusters following two main west-east and north-
south axes, which could explain the correlation observed between

genetic and geographic distances for outlier loci, but also the
identification of longitude and latitude as two main drivers in the
seascape analysis. According to the outlier information, the new
sampled beds from Western Ireland (IGC_20, IKF_20 and IWC_20)
(Northeast Atlantic) would constitute a new cluster. These sites are
connected by the Irish coastal current (Brown et al. 2003; Fernand
et al. 2006) and larval dispersal modelling (see Fig. 7 in Vera et al.
2022) showed that the beds along the southwest coast of Ireland
are well interconnected. The Irish Sea can be split into two
different clusters associated with the Irish and Welsh sides, as
previously suggested by Coscia et al. (2020). Sites along the
southeast coast of the Irish Sea are generally connected by
northward currents and sites along the north coast of Wales by
eastward currents. In contrast, the two sites on the west coast of
the Irish Sea (IDC_18 and IDA_18) appear genetically separated
from the remainder of the Irish Sea. This may be driven by the Irish
Sea Front acting as a barrier which also drives warmer
temperatures in the northwest Irish Sea than in the well-mixed
northeast Irish Sea. Finally, the English Channel forms a fourth
cluster including the ECE_20 bed from Cornwall with the southern
beds limited by the Ushant front. Interestingly, the Cotentin
Peninsula, previously identified as a physical barrier to dispersal in
other molluscs, such as the slipper limpet Crepidula fomicata
(Dupont et al. 2007) and P. maximus (Nicolle et al. 2016; Handal
et al. 2020), showed significant differentiation between samples
on its west and east sides (FGO_19 and FBV_19) with neutral
markers (FST= 0.01045, P < 0.001) and higher with outlier loci (FST
35 outliers = 0.06654, P < 0.001; FST 186 outliers = 0.05876,
P < 0.001), suggesting additional selective factors differentiating
both sides. Oceanic distance between the two Cotentin beds
(~190 km) is shorter than the longest distance between Galician
beds (~300 km), where no genetic differentiation was detected
with neutral markers. Of note, FGO_19 showed an important
genomic component of the South group, suggesting introgression
from the south especially in the west coast of the Cotentin
Peninsula.

Management implications
The present study represents a refined analysis of the population
structure of C. edule in two geographic areas of small-medium size
representing differentiated models that could aid in obtaining a
more comprehensive picture for improving the management and
conservation of this valuable commercial and ecological resource.
Galician beds were suggested to constitute a panmictic popula-
tion and this region could be managed as a single genetic unit.
The fisheries in this region are exclusively commercial and their
exploitation management can be through territorial concessions
leased by shellfisher guilds or directly by Galician regional
government (i.e., free access shellfish areas). This genetic
information should be included in the Galician legislation, thus
allowing translocations from high-production areas (Ría de Noia)
to depleted ones by different factors, such as the parasite M.
cochillia (Ría de Arousa; Villalba et al. 2014). However, caution
should be taken considering biotic factors not evaluated in our
study, such as emergent pathologies (e.g., marteiliosis), which will
require specific recommendations within the general framework
depicted in our study. A sharp fragmentation was displayed by the
SW British Isles region, especially with divergent outliers, mostly
representing adaptive management units (Bernatchez et al. 2017).
Thus, Western (Northeast Atlantic) Irish beds would represent a
differentiated group from those previously described, while subtle
genetic sub-structuring was identified along the English Channel,
with a significant effect at the Cotentin Peninsula representing as
a biogeographic barrier. Furthermore, the Irish Sea, a narrow water
body mass between Wales and Ireland, appears to represent
differentiated units on its both sides, according to our information.
All these population units should be individually managed,
avoiding translocations between them. Finally, our results could
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help to improve cockles’ production by founding appropriate
broodstock to enhance depleted populations and by tracing
samples to check undesirable transferences among regions.

DATA AVAILABILITY
Data for this study are available at Dryad Digital Repository (https://doi.org/10.5061/
dryad.xpnvx0kmr) and Supplementary material.
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