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Abstract. The quantitative deconvolution of 1D-NMR spectra into individual resonances or peaks is a key step
in many modern NMR workflows as it critically affects downstream analysis and interpretation. Depending on
the complexity of the NMR spectrum, spectral deconvolution can be a notable challenge. Based on the recent
deep neural network DEEP Picker and Voigt Fitter for 2D NMR spectral deconvolution, we present here an accu-
rate, fully automated solution for 1D-NMR spectral analysis, including peak picking, fitting, and reconstruction.
The method is demonstrated for complex 1D solution NMR spectra showing excellent performance also for
spectral regions with multiple strong overlaps and a large dynamic range whose analysis is challenging for cur-
rent computational methods. The new tool will help streamline 1D-NMR spectral analysis for a wide range of
applications and expand their reach toward ever more complex molecular systems and their mixtures.

1 Introduction

One of the major strengths of NMR spectroscopy is its broad
applicability to a vast range of molecular systems in solu-
tion or in the solid state. Because the nuclei of many atoms
in molecules are NMR-active, such as hydrogen atoms, the
information content of NMR spectra is uniquely rich, allow-
ing studies of molecular composition, interactions, structure
and dynamics at atomic detail. Due to its quantitative na-
ture, NMR is also highly suitable for the analysis of molecu-
lar mixtures for component identification and quantification
with application in metabolomics (Markley et al., 2017) and
for monitoring of industrial chemical and biochemical pro-
cesses (Wang et al., 2021).

Despite enormous methodological progress made over
many decades of NMR research that has resulted in a vast
collection of different NMR experiments, in many NMR fa-
cilities the most popular choice remains the standard one-
dimensional (1D) 'H proton NMR experiment. This is the

result of several factors, such as good sensitivity, short mea-
surement time (often associated with a low user fee), straight-
forward processing, and easy and dependable implementa-
tion on different types of NMR spectrometers. However, due
to the richness of the resulting '"H NMR spectrum in many
samples, it is prone to various amounts of spectral overlaps,
which is the overlap of two or more resonances, rendering
the identification and quantification of the underlying reso-
nances challenging (Giraudeau, 2017).

Because the first step of the analysis of almost every
NMR spectrum consists of the identification of the indi-
vidual resonances, spectral crowding often makes the pro-
cess incomplete, ambiguous or even impossible. For many
years, spectral analysis has been routinely assisted by com-
puter software to perform useful tasks like peak picking and
peak integration, thereby speeding up the analysis process by
supporting human experts during this process (Nelson and
Brown, 1989; Martin, 1994; Cobas et al., 2013). A num-
ber of commercial general-purpose software packages are
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available for the analysis of 1D 'H NMR spectra, such as
the ACD/NMR workbook suite (https://www.acdlabs.com/,
last access: 6 January 2023), the AMIX software (https://
www.bruker.com, last access: 6 January 2023), the Chenomx
NMR suite (https://www.chenomx.com, last access: 6 Jan-
uary 2023), and MNova NMR (https://www.mestrelab.com,
last access: 6 January 2023). Recent developments in NMR-
based metabolomics, which oftentimes involve highly com-
plex "H NMR spectra, have led to a proliferation of academic
software for the (semi-)automated analysis of such spectra,
including MetaboLab (Ludwig and Gunther, 2011), BAT-
MAN (Hao et al., 2014), Bayesil (Ravanbakhsh et al., 2015),
AQuA (Rohnisch et al., 2018), ASICS (Lefort et al., 2019),
rDolphin (Canueto et al., 2018) and MetaboDecon1D (Hackl
et al., 2021). Some of these programs are suitable for un-
targeted compound identification, whereas others only map
those spectral features that are contained in a pre-defined
metabolite spectral database.

For a fully quantitative spectral analysis, numerical line-
shape fitting has become the method of choice, using a
parametric representation of each resonance in the spectrum
(Higinbotham and Marshall, 2001; Smith, 2017; Sokolenko
et al., 2019). Commonly used lineshapes are Lorentzian,
Gaussian, and Voigt profiles that may explicitly include trun-
cation or apodization effects, such as sinc wiggles (Dudley
et al., 2020). Because essentially all fitting software relies
on a local nonlinear least squares minimization between the
model and the experimental spectrum, such as a Levenberg—
Marquardt minimizer, accurate line position and linewidth
for each resonance as input parameters are of paramount im-
portance. Because such information is hard to obtain by auto-
mated computational approaches alone, lineshape fitting of-
ten requires significant interactive intervention by a human
expert. This applies in particular to spectral regions with sig-
nificant peak overlap, manifested, for example, by one or sev-
eral shoulder peaks and a large dynamic range. Although so-
phisticated mathematical peak picking algorithms have been
developed that identify realistic peak positions (Cobas et al.,
2013), they work best for well-resolved peaks or peaks with
moderate overlap but tend to fail in the case of strong over-
laps and overlaps involving three or more peaks.

Recent applications of machine-learning methods, in par-
ticular of deep neural networks (DNNs), have shown qual-
itative progress in the ability to deconvolute complex mul-
tidimensional NMR spectra (Li et al., 2022b). In the case
of DEEP Picker, training was exclusively based on a library
containing 5000 synthetic 1D test spectra consisting of three
to nine individual Voigt-shaped peaks with random ampli-
tudes and positions amounting to a collection of training
spectra with a wide range of spectral overlap (Li et al., 2021).
The algorithm was then generalized to two-dimensional (2D)
NMR spectra as encountered in many protein NMR and
metabolomics applications.

In the present work, we introduce DEEP Picker for un-
targeted applications to complex 1D-NMR spectra, includ-
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ing complex biological mixtures. The deconvolution power
of DEEP Picker1D is demonstrated for spectra with various
amounts of overlap and how it can be paired with the nonlin-
ear least squares fitting software Voigt Fitter1D for a fully
quantitative deconvolution of the input spectra. The com-
puter codes of DEEP Picker1D and Voigt Fitter1D are made
publicly available.

2 Materials and methods

2.1 Sample preparation
Glucose sample

2mM glucose (from Sigma-Aldrich) was prepared in D>,O
before 600uL was transferred to a 5 mm NMR tube for NMR
data collection.

Mouse urine sample

A frozen mouse urine sample was thawed on ice. An aliquot
of 178uL mouse urine was mixed with 20uL sodium phos-
phate buffer (500 mM) in DO and 2uL DSS (4,4-dimethyl-
4-silapentane-1-sulfonic acid from 10mM stock solution
prepared in D,O) with a final pH of 7.4; 200uL of the fi-
nal sample was transferred to a 3 mm NMR tube for NMR
data collection.

2.2 NMR experiments and processing

All NMR spectra were collected at 298 K on Bruker
AVANCE III HD 850 MHz spectrometers equipped with a
cryogenically cooled TCI probe. A 1D 'H NOESY glucose
spectrum was recorded with a total of 32768 complex data
points and 64 scans. The relaxation delay between consecu-
tive scans was 12s, the spectral width was 13 ppm, and the
transmitter frequency offset was set to 4.7 ppm. NMR data
were zero-filled 4-fold, apodized using a cosine-squared win-
dow function, Fourier-transformed, and phase-corrected us-
ing the Bruker Topspin 4 software.

A 1D 'H mouse urine spectrum was recorded with the
Bruker standard pulse sequence “zgesgppe”, which is a 'H
perfect-echo 1D experiment with excitation-sculpting water
suppression, with a total of 53 190 complex data points and
64 scans. The relaxation delay between consecutive scans
was 4 s. The spectral width was 25 ppm, with the transmitter
frequency offset set to 4.7 ppm. The NMR free induction de-
cay was zero-filled 2-fold, apodized using a 27 -Kaiser win-
dow function, Fourier-transformed, and phase-corrected us-
ing NMRPipe (Delaglio et al., 1995).

A 2D BC-'H high-resolution HSQC spectrum of mouse
urine was recorded with Bruker pulse program ‘“hsqcetg-
psisp2.2”, which is a sensitivity-enhanced '3C-'H HSQC
with bi-level adiabatic decoupling; 3072 total complex data
points in the 'H 7, dimension and 512 total complex points
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in the 13C 7, dimension were recorded. For each 7, incre-
ment 16 scans were recorded, and the relaxation delay be-
tween consecutive scans was set to 1.5 s. The spectral widths
along the 'H and '3C dimensions were 18 and 185 ppm, re-
spectively. The transmitter frequency offsets were 4.7 and
82.5 ppm, respectively. NMR data were zero-filled 8-fold in
both dimensions, apodized using a 27 -Kaiser window func-
tion, Fourier-transformed, and phase-corrected using NMR-
Pipe (Delaglio et al., 1995).

2.3 Deep neural network DEEP Picker1D and Voigt
Fitter1D

DEEP Picker1D is a deep neural network that was trained on
a library of 5000 synthetic 1D-NMR spectra containing be-
tween three and nine peaks with a Voigt lineshape and vari-
able amounts of overlaps (Li et al., 2021). In the original
work, DEEP Picker was specifically adapted for the analy-
sis of 2D NMR spectra and subsequently combined with the
Voigt Fitter software for the quantitative analysis of 2D NMR
metabolomics spectra either as standalone software or incor-
porated into the public web server COLMARq (Li et al.,
2022a). Briefly, DEEP PickerlD is a convolutional neural
network, which was trained using TensorFlow v1.3 (Abadi
et al.,, 2016), taking a 1D spectrum as input. It contains
seven hidden convolutional layers, one hidden max-pooling
layer, and two parallel output layers with a total of 8037 train-
able parameters. A convolutional output classifier layer with
SoftMax activation classifies every input data point by as-
signing an individual score for three peak classes (main peaks
in class 2, shoulder peaks in class 1, no peak in class 0). The
class with the maximal score is then chosen as the predicted
class with the numerical score as a quantitative measure of
confidence of the predicted class for each data point of the
input spectrum. For any data point predicted to be a peak
(class 2 or 1), DEEP Picker1D also predicts the sub-pixel
peak position relative to the on-grid points, peak amplitude,
peak width, and Lorentzian vs. Gaussian components to the
Voigt shape using a convolutional output regressor layer. Al-
though DEEP Picker1D is a rather accurate predictor of peak
parameters in its own right, these values can be further re-
fined by the Voigt Fitter1D software by performing a nonlin-
ear least square fit of the original input 1D spectrum in terms
of Voigt peak shapes using the DEEP Picker1D output peak
parameters as input. Voigt Fitter1D is essentially a 1D ver-
sion of the 2D Voigt Fitter software published previously (Li
et al., 2022a). DEEP Picker1D paired with Voigt FitterlD
results in a fully quantitative representation of the input 1D-
NMR spectrum in terms of a finite set of 1D Voigt-shaped
peaks.

The input spectrum for DEEP PickerlD needs to be
preprocessed in standard fashion, including phase cor-
rection, baseline correction, zero filling, apodization and
Fourier transformation. DEEP Picker1D contains two mod-
els whereby model 1 (model 2) has optimal performance
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when the digital resolution is sufficiently high around 12
(8) points per peak (PPP). Deep Picker1D performs best for
peaks with a moderate to high signal-to-noise ratio (S/N)
and lineshapes that closely follow Voigt profiles with a
S/N > 10 where the noise level is defined as the standard de-
viation of the spectrum in a peak-free region. In the presence
of significant amounts of noise, non-negligible lineshape dis-
tortions, such as those caused by temperature fluctuations, or
suboptimal shimming during data collection, Deep Picker1D
may pick some false peaks, for example, by interpreting line-
shape distortions as shoulder peaks. Voigt Fitter1D has built-
in tools to remove spectral features from its peak list when
one of the following situations occurs: (i) a fitted peak is
too wide; i.e., the peak width is larger than the fitting re-
gion, or it becomes too narrow, i.e., the peak width is less
than 1 point; (ii) a fitted peak strongly overlaps with another
peak, so that merging of two peaks into a single peak causes a
minimal change in the fitting error. Deep Picker1D and Voigt
Fitter1D together provide a self-sufficient spectral analysis
tool set for the complete deconvolution of 1D spectra into in-
dividual peaks. Peak parameters such as peak position, peak
height and peak volume can then be directly used for down-
stream analysis, such as compound identification and quan-
titative NMR applications when incorporated into a quanti-
tative NMR workflow (qNMR). Because error estimation is
an important part of any quantitative data analysis, Monte
Carlo-based error propagation is implemented in Voigt Fit-
ter1D as an option. It performs repetitive fitting of the recon-
structed spectrum after adding random noise with the same
standard deviation as that of the experimental input spectrum
for each round of fitting. The output from this error esti-
mation procedure contains the fitting parameters from each
round from which the uncertainty of each peak parameter is
obtained.

3 Results

DEEP PickerlD and Voigt Fitter]D performance is first
demonstrated for glucose in D,O (Fig. 1).

Because glucose populates two non-equivalent isomers o-
glucose and B-glucose with different relative populations that
interconvert on a slow timescale and displays strong coupling
effects even at a high magnetic field, the deconvolution of
its ID '"H NMR spectrum is notoriously difficult. Figure 1
shows selected regions of the 1D 'H NMR glucose spec-
trum with variable amounts of peak overlap. The experimen-
tal spectra (black) along with the deconvolution results (blue)
are shown in the left column (Fig. 1a, c, and e). The right col-
umn (Fig. 1b, d, and f) shows the corresponding spectral re-
gions derived from quantum-mechanical spin simulations us-
ing chemical shifts and scalar J-couplings obtained from the
GISSMO library (Dashti et al., 2018). An artificially slow,
uniform transverse R relaxation rate of 0.6s~! was applied
to the simulated free induction decays (FIDs) so that, after
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Figure 1. Demonstration of DEEP Picker1D and Voigt Fitter1D for selected regions of a 1D 'H spectrum of glucose. (a, ¢, and e) Exper-
imental and reconstructed spectra are depicted in black lines and red dots, respectively. Deconvoluted individual peaks are depicted as blue
lines. (b, d, and f) Simulated spectra including strong coupling effects with the spin Hamiltonian constructed based on parameters taken
from the GISSMO website at the same By field strength (850 MHz 'H frequency) as in the experiments. Transverse R, relaxation rates were
uniformly set to a low value of 0.6 s~1 to obtain a very high-resolution spectrum for better comparison with DEEP Picker. Pairs of panels (a,
b), (c, d), and (e, f) show the same 1D spectral regions. DEEP Picker1D and Voigt Fitter1D correctly deconvoluted the experimental spectra
for the simple region (a) and more complex regions (c, ). A few peaks cannot be deconvoluted because of strong spectral overlap, such as
the small peak around 3.717 ppm in (d) and the peak around 3.823 ppm in (f). The deconvolution by DEEP Picker1D was performed with

model 2 with a PPP number of 9.

Fourier transformation, the resulting spectrum has sharp lines
for easy recognition of the individual peaks and for the com-
parison with the automated deconvolution results. Figure 1a
starts out with a symmetric doublet centered at 5.223 ppm,
which is accurately picked and fitted by DEEP Picker1D
and Voigt Fitter1D, in agreement with the simulation results
in Fig. 1b. Figure lc and d show a triplet centered around
3.705 ppm whereby the strong central peak overlaps with
two much smaller peaks on each side, which are correctly
picked and fitted. According to the simulation, there is an-
other small peak around 3.718 ppm, which however strongly
overlaps with a much stronger peak at 3.716 ppm and there-
fore could not be identified by DEEP Picker1D. This small
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peak also cannot be discerned by visual inspection (note that
the small J-splitting of the small peak in the simulated spec-
trum of Fig. 1d is not resolved in the experimental spectrum
of Fig. 1c). The most complex region of the glucose spectrum
(3.81-3.85 ppm) is depicted in Fig. le along with its decon-
volution, which is in very good agreement with the simulated
peaks (Fig. 1f). The neural network does a remarkable job in
identifying the small peak at 3.838 ppm, which only gives
rise to a very faint shoulder peak of its downfield-shifted
larger neighbor. The broad, somewhat oddly shaped spectral
feature from 3.82 to 3.83 ppm in the experiment is decon-
voluted into four individual peaks whereby the small peak
found in the simulation at 3.823 ppm was not deconvoluted
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Figure 2. Application of DEEP Picker1D and Voigt Fitter1D to selected regions of 1D spectra, which were generated by adding two selected
traces along the direct 'H dimension from the experimental 2D B 1y HSQC of a mouse urine sample. (a, ¢, and e) Experimental and
reconstructed spectra are depicted as black lines and red dots, respectively. Deconvoluted individual peaks are depicted as blue lines. (b, d,
and f) The two HSQC traces and their sum are depicted as purple, cyan, and black lines, respectively. Pairs of panels (a, b), (c, d), and (e, f)
show the same 1D spectral regions for comparison. The deconvolution by DEEP Picker1D was performed with model 1 with a PPP number

of 12.

by DEEP Picker1D because it overlaps too strongly with the
main peak at 3.824 ppm. This is consistent with the gen-
eral rule that two peaks whose positions differ within their
linewidths are hard to deconvolute, especially when their am-
plitudes significantly differ from each other.

To assess the deconvolution accuracy of our tool, we con-
structed experimental spectra with overlaps from resolved
spectra by co-adding traces of a '3C—'H HSQC spectrum
of mouse urine along the direct 'H detection dimension at
a fixed 13C chemical shift. Selected examples of overlapping
peaks, both in isolation and as a superposition, are shown in
Fig. 2. The left column (Fig. 2a, c, and e) shows the experi-
mental superpositions (black) together with their deconvolu-
tion (blue) and the full spectral reconstruction (red), which
can be directly compared with the individual traces (purple
and cyan) in the right column (Fig. 2b, d, and f). Figure 2a
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and b show two strongly overlapped peaks of different ampli-
tudes giving rise to a sum peak with a noticeable protrusion
on its right flank, which are accurately deconvoluted and fit-
ted by DEEP Picker1D and Voigt Fitter1D. Figure 2c and d
show a similar scenario, except that the amplitude ratio of
the two peaks is around 35 : 1, which is much larger than in
Fig. 2a and b. Again, deconvolution was achieved with high
accuracy. Figure 2e and f demonstrate the deconvolution ca-
pacity for a challenging case of four moderately to strongly
overlapped peaks. Although the peak at 3.139 ppm is wedged
between two stronger peaks, it is successfully extracted by
the peak picking and fitting algorithms. The final example
(Fig. 3) shows a region of the mouse urine spectrum (black)
along with the deconvolution (blue) and reconstruction re-
sult. The algorithm deconvolutes the spectrum by identifying
not only the main peaks, but also all the minor peaks, includ-

Magn. Reson., 4, 19-26, 2023



24

S

7.82 7.81

\
.._A‘/A‘A ;».‘!AA

D.-W. Li et al.: DEEP Picker1D and Voigt Fitter1D

= Experiment
® Reconstruction
—— Deconvolution

7.805 7.8 7.795

"H Chemical shift (Pppm)

Figure 3. Application of DEEP Picker1D and Voigt Fitter1D to a spectral region of the 1D Iy spectrum of mouse urine. Experimental and
reconstructed spectra are depicted as black lines and red dots, respectively. Deconvoluted individual peaks are depicted as blue lines. The
deconvolution by DEEP Picker1D was performed with model 2 with a PPP number of 8.

ing the peak at 7.809 ppm, with confidence, demonstrating
the potential of the proposed deconvolution method in prac-
tice when encountering spectra with highly overlapped re-
gions, such as those routinely collected for urine and other
complex biofluids in the context of metabolomics.

4 Discussion and conclusion

In the vast majority of modern NMR applications, one of
most critical steps in NMR spectral analysis is the iden-
tification of individual peaks along with their quantitative
parametrization by lineshape fitting. The result of this proce-
dure often dictates the usefulness, and ultimately the success,
of the collected experiment. Traditional peak picking meth-
ods rely on clearly defined mathematical criteria, such as the
properties of the first and second derivatives of the spectrum,
to identify individual peaks. These criteria are often too rigid
to deal with spectral overlap scenarios encountered in prac-
tice. After proper training, a deep neural network like DEEP
Picker1D, on the other hand, has a stunning ability to track
major and minor spectral features, surpassing the capacity
of most human NMR practitioners. Through the combina-
tion of advanced machine learning by the convolutional deep
neural network DEEP PickerlD and a peak fitting routine
Voigt Fitter1D, it was demonstrated how 1D-NMR spectral

Magn. Reson., 4, 19-26, 2023

features of variable complexity can be deconvoluted into in-
dividual resonances in a reliable and accurate manner. The
success rate of the method depends on the quality of spec-
tra that can be affected by sample preparation, NMR data
acquisition, and pre-processing. This concerns the elimina-
tion or suppression of the solvent signal or of a prominent
background caused, for example, by the presence of a macro-
molecular matrix in the sample. Although apodization, zero
filling, and phase and baseline correction are standard steps
during data processing, they need to be applied judiciously
to prevent suboptimal performance of spectral deconvolution
and fitting. Phase errors of up to about 3° can be tolerated, but
for larger phase distortions, DEEP PickerlD may interpret
asymmetries in the peak shapes as shoulder peaks. Similarly,
poor shimming of higher-order shims, especially z? and z*,
can lead to systematic peak asymmetries across the spectrum,
which DEEP Picker1D may interpret as shoulder peaks. In
order to accurately recognize peak shapes, DEEP Picker1D
requires an adequate digital resolution, which is around 8 or
12 points across a single peak, depending also on the chosen
DEEP PickerlD model. If needed, lower-resolution spectra
can be easily subjected to appropriated zero filling to meet
this criterion. Peak shapes should follow in good approxima-
tion Voigt profiles, which can be achieved by the application
of common window functions such as those described for the

https://doi.org/10.5194/mr-4-19-2023
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processing of the spectra in this work (cosine-squared and
2 -Kaiser window functions; see the “Materials and meth-
ods” section). As discussed previously (Li et al., 2022a), the
computational time of Voigt Fitter1D scales linearly with the
number of peaks, allowing rapid fitting of complex 1D spec-
tra with even thousands of peaks. The fitting of the 1D mouse
urine spectrum with a total of 4500 Voigt-shaped peaks took
about 1 min on a standard desktop computer. Like all nonlin-
ear optimization software, Voigt FitterID cannot guarantee
that the final solution is the global X2 minimum. Therefore,
a nearly complete list of high-quality initial peaks returned
by DEEP Picker1D that match the ground truth as closely as
possible is key for the success of Voigt Fitter1D.

A surge in metabolomics research over recent years has
spurred the development of advanced quantitative tools for
the analysis of complex NMR spectra for both 1D and
2D spectra. Some metabolomics software (Hao et al., 2014;
Ravanbakhsh et al., 2015) is specifically geared toward the
quantification of specific metabolites with known reference
spectra, limiting their application to specific samples only,
such as serum. In the case of DEEP Picker1D and Voigt Fit-
ter1D, the analysis is performed in a fully untargeted man-
ner, i.e., without any molecular spectral templates, allowing
its application to essentially any NMR spectrum that con-
sists of resonances with Voigt lineshapes. The deconvolution
results can then be further analyzed, for example, by query-
ing against a spectral database or for quantitation of mixture
component concentrations. In the case of a cohort of sam-
ples, the DEEP Picker1D and Voigt Fitter1D results can be
used for univariate or multivariate statistical analysis for the
assessment of statistically significant differences between co-
horts. Metabolomics query capabilities for the analysis of the
output of DEEP PickerlD and Voigt Fitter1D, which will
also take into account peak shifts caused, for example, by
pH differences between samples, are currently under devel-
opment. The DEEP PickerlD and Voigt Fitter]D software
can also be applied to a pseudo-2D series of 1D spectra for
the extraction of longitudinal R, transverse R, relaxation
parameters or translational diffusion constants by diffusion-
ordered NMR (Johnson, 1999). The unique strength of the
combination of DEEP Picker1D with Voigt Fitter1D is their
ability to accurately deconvolute and reconstruct NMR spec-
tra of generic origin ranging from well-resolved to highly
crowded, which should fulfill the growing needs in a wide
range of contemporary NMR applications.

Data availability. The spectra shown in this paper are for illustra-
tion purposes and are not essential for using the software. Please
add “Test spectra are available from the authors upon request.”

Code availability. The 1D versions of DEEP Picker and Voigt
Fitter are implemented in C/C++ and are now part of the DEEP
Picker package, which is freely available from https://github.com/

https://doi.org/10.5194/mr-4-19-2023

25

lidaweil975/deep (last access: 6 January 2023) under the GNU
General Public License Agreement. They can also be accessed
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