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The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stim-
ulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or
damage. In cancer cells, this pathway can be activated through persistent DNA damage and
chromosomal instability, which results in the formation of micronuclei and the exposure of
DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further acti-
vate DNA sensing responses, which may occur in the cancer cells themselves or in stromal
and immune cells in the tumour microenvironment (TME). cGAS–STING signalling results
in the production of type I interferons, which have been linked to immune cell infiltration in
‘hot’ tumours that are susceptible to immunosurveillance and immunotherapy approaches.
However, recent research has highlighted the complex nature of STING signalling, with tu-
mours having developed mechanisms to evade and hijack this signalling pathway for their
own benefit. In this mini-review we will explore how cGAS–STING signalling in different cells
in the TME can promote both anti-tumour and pro-tumour responses. This includes the role
of type I interferons and the second messenger cGAMP in the TME, and the influence of
STING signalling on local immune cell populations. We examine how alternative signalling
cascades downstream of STING can promote chronic interferon signalling, the activation
of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and the production of inflammatory cytokines, which can have pro-tumour func-
tions. An in-depth understanding of DNA sensing in different cell contexts will be required
to harness the anti-tumour functions of STING signalling.

Introduction: DNA sensing in cancer
Our immune system has the capacity to detect and eliminate cancer cells, despite the fact that they are
derived from our own body. This is partly because cancerous and pre-cancerous cells – particularly those
with a high mutational burden – express proteins that can be detected as neo-antigens by the cells of our
adaptive immune system [1,2]. However, a pre-requisite for effective immune activation is a favourable
tumour microenvironment (TME), which relies on the innate immune mechanisms that result in the se-
cretion of interferons, cytokines and chemokines to promote the infiltration and activation of immune
cells with anti-cancer properties. One innate immune signalling axis, which can shape the immunologi-
cal properties of the TME is the signalling pathway involving the adaptor protein STING (Stimulator of
Interferon Genes) which is activated by the DNA sensor cGAS (cyclic GMP-AMP synthase) after the de-
tection of cytosolic DNA or DNA damage [3]. Immune cells within the TME, stromal cells and cancer
cells themselves can contribute to the DNA sensing response in cancer. Emerging evidence highlights a
multi-faceted role of STING signalling in cancer, which can lead to both anti-tumour and pro-tumour
signalling outcomes. This review will provide an overview of the recent advances in our understanding of
how STING signalling influences anti-tumour immune responses, how this signalling can be evaded by
tumours and how it can be subverted in some cancers to aid tumour progression.
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Figure 1. Sources of immunostimulatory DNA in tumour cells and the tumour microenvironment

The presence of self-DNA within the cytosol can occur due to chromosomal instability in cancer cells as well as from additional DNA

damage caused by cancer therapies. Micronuclei are a source of self-DNA within the cytosol often naturally arising in metastatic

and genomically unstable cancer cells as well as from exposure to ionising radiation. Chromatin bridges contain DNA connecting

two daughter cells. Mitochondrial (mt) DNA is another potential source of immunostimulatory DNA in the cytosol which arises from

mitochondrial damage. cGAS can only bind stretches of unmodified double-stranded DNA greater than 45 bp, its activation is

inhibited by nucleosomes. cGAS molecules assemble on histone free DNA forming a ladder-like structure and can form higher

order structures which agglomerate into molecular condensates which enhance the production of cGAMP. Nearby immune cells

can take up cGAMP or DNA released into the TME by dead or dying tumour cells. Tumour cells can also export DNA into the TME

in membrane bound vesicles such as exosomes which are taken up by local immune cells to activate STING signalling.

Sources of cytosolic DNA in cancer
Cytosolic DNA is detected as pathogen-associated molecular pattern (PAMP), during viral infection for instance,
but it can also serve as danger- or damage-associated molecular pattern (DAMP) when the cell’s own nuclear or
mitochondrial DNA is damaged and gains access to the cytosol. Tumour cells often contain cytosolic DNA, due to
persistent DNA damage and chromosomal instability (CIN), which is a hallmark of cancer [4,5], and additional DNA
damage is induced by radiotherapy and chemotherapy with DNA damaging agents. The presence of CIN and DNA
breaks is associated with the formation of micronuclei – membrane bound structures that form around damaged
DNA and lagging/mis-segregated chromosomes during mitotic exit [6]. Upon rupture of their unstable membrane
micronuclei expose their DNA content to the cytosol [7–11]. DNA damage and CIN may also lead to the direct leakage
of DNA fragments out of the nucleus and the formation of chromatin bridges which can also be detected by cytosolic
DNA sensors [12,13] (Figure 1). Furthermore, leakage of DNA from damaged mitochondria can also contribute to
the innate immune activation [14].
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Figure 2. Innate immune signalling in response to cytosolic DNA and DNA damage

On detecting cytosolic DNA, cGAS synthesises the second messenger cGAMP which can be exported to adjacent cells or the

extracellular environment using gap junctions and exporters. Within the cell, cGAMP can go on to bind STING anchored to the

endoplasmic reticulum (ER). STING is subject to numerous posttranslational modifications, then transported from the ER to the

Golgi where it forms a complex with TBK1 and is phosphorylated by TBK1 at Serine 366. This serves to recruit the transcription

factor IRF3 to the complex, which is also phosphorylated by TBK1. IRF3 and NF-κB p65 then promote the production of IFN-Is and

chemokines including CXCL10 and CCL5. An alternative non-canonical STING signalling pathway has been identified in human

epithelial cells. This pathway does not require the activity of cGAS, but the DNA damage sensing proteins PARP-1 and ATM, as

well as the DNA binding protein IFI16 which shuttles between the nucleus and cytosol. cGAS-independent DNA damage sensing

favours the activation of NF-κB over IRF3, generating a more pro-inflammatory cytokine profile that is distinct from canonical STING

signalling. In cancer cells, canonical STING activation can be re-wired to induce the activation of NF-κB p52, which also induces

a pro-inflammatory cytokine profile that may aid tumour progression.

DNA sensing by cGAS and STING
The DNA sensor cGAS and its adaptor protein STING constitute the key signalling axis for sensing dsDNA
within the cytosol of many different cell types (Figure 2) [15–19]. cGAS binds double-stranded (ds) DNA in a
sequence-independent manner, and cGAS dimers form ladder-like assemblies with dsDNA in higher order signalling
domains in the cytosol [20–24]. While cGAS is also present in the nucleus of many cells, its catalytic activity is in-
hibited by interaction with nucleosomes on chromatin (Figure 1) [25–29]. Independent of its catalytic activity cGAS
has also been shown to interact with DNA replication forks, regulate genomic stability as well as inhibit homologous
recombination [30–32]. Upon detection of dsDNA in the cytosol, cGAS catalyses the synthesis of the second mes-
senger 2′3′-cyclic GMP-AMP (cGAMP), which then binds STING, a membrane protein residing at the endoplasmic
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reticulum (ER) [16–18,33–35]. Activated STING dimers translocate through the ER–Golgi intermediate compart-
ments (ERGIC) to the Golgi apparatus [36–39]. STING forms a complex with TANK-binding kinase 1 (TBK1) which
phosphorylates STING and the transcription factor interferon regulatory factor (IRF3) as well as activating nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) (Figure 2) [15,39–41]. These transcription factors go
on to promote the expression of type I interferons (IFN-I), cytokines and chemokines including CXCL10 and CCL5.
STING activation can also induce autophagy, senescence and cell death, depending on signal strength and cell context
[42–44]. STING-mediated activation of inflammasome complexes has also been described [45], but other DNA sen-
sors such as AIM2 (Absent in Melanoma 2) may also play an important role in inflammasome activation, depending
on cell context [46,47].

cGAS-STING signalling is tightly regulated by post-translational modifications, including ubiquitylation with
K48-, K63-, K27- and K11-linked ubiquitin chains, modification with ubiquitin-like proteins as well modification
with metabolites and lipids [45,47]. Additional DNA binding proteins have also been shown to synergise with cGAS
in the activation of STING. This includes Interferon-γ-Inducible Protein 16 (IFI16), the helicase DDX41, the DNA
damage response kinase DNA-PK and the Z DNA-binding protein ZBP1 [51–57]. It remains to be elucidated whether
additional DNA binding proteins contribute specificity to the sensing of DNA ligands, or whether they represent addi-
tional fail-safe mechanisms for the full activation of DNA sensing responses only when appropriate. Antagonistic and
synergistic cross-talk between DNA sensing pathways such as cGAS-STING signalling and inflammasome activation
has been reported [58–60], which further influences downstream signalling outcomes.

STING can also be activated independently of cGAS, such as following membrane fusion or after uptake of cGAMP
from neighbouring cells [61,58]. Bacterial cyclic di-nucleotides (CDNs) can also activate STING directly in re-
sponse to infection [59]. While cGAMP sensing by STING bypasses the DNA sensing role of cGAS in bystander
cells, a non-canonical involvement of cGAS in the detection of extracellular cGAMP has also been described [62].
cGAS-independent STING activation following the detection of nuclear DNA damage has also been described in
human epithelial cells, which may be of particular relevance to cancer. This alternative STING activation pathway
involves the DNA binding protein IFI16, as well as the DNA damage sensing factors ATM, PARP1 and p53 [60]. The
cGAS-independent activation of STING links the nuclear DNA damage response to innate immune activation prior
to the formation of micronuclei and results in the expression of a different – more pro-inflammatory – set of cytokines
and chemokines [60].

Anti-tumour functions of STING signalling
cGAS–STING signalling has been shown to have potent anti-cancer activities in a variety of mouse tumour models
(Figure 3A). The production of STING-induced IFN-Is and chemokines by immune cells in the TME and by the can-
cer cells themselves facilitates further immune cell infiltration and the promotion of adaptive anti-cancer immune
responses [9,11,63–66]. Furthermore the induction of cGAS–STING signalling in cancer treatments such as radio-
therapy, is also thought to enable the generation of spontaneous adaptive anti-tumour immunity [66–70]. This has
led to a significant interest in harnessing cGAS–STING signalling in cancer therapy and the development of STING
agonists [63,65,66,71–76].

STING signalling in cancer cells
The first potential point of activation of cGAS–STING pathway is within the cancer cells themselves following detec-
tion of cytosolic DNA from micronuclei for instance [7,8]. This may be a result of inherent CIN or further DNA dam-
age from cancer therapy. Cancer cells can contribute to the anti-tumour responses generated against them through
the secretion of IFN-Is and chemokines into the TME [9,11,63,77–79]. In that way, the STING signalling capacity of
tumour cells themselves may shape their TME, with IFN-I signalling being associated with ‘hot’ tumours containing
infiltrating DCs and T cells. Moreover, following cell-intrinsic DNA sensing, cancer cells can also export the second
messenger cGAMP directly into neighbouring immune and stromal cells in the TME. Gap junctions between cells
have been shown to facilitate the transfer of cGAMP between tumour and stromal cells to promote IFN-I responses
in neighbouring cells [58,80,81]. cGAMP can also be secreted into the extracellular space. Several transporters, chan-
nels and pumps which shuttle cGAMP between the extracellular environment and the cytosol have recently been
identified and may contribute to the propagation of STING signalling in the TME [62,82–87].

STING signalling in endothelial cells
cGAMP production and export by tumour cells can activated STING signalling in neighbouring endothelial cells, to
induce further IFN-β and CXCL10 production in the TME. Activation of STING within the endothelium was also
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Figure 3. Pro-tumour and anti-tumour responses of STING signalling in cancer

(A) Anti-tumour responses. The cGAS-STING signalling axis with IFN-I and CXCL10 secretion as signalling output co-ordinates

multiple anti-tumour functions. The tumour suppressor p53 negatively regulates TREX1, making cytosolic DNA available for de-

tection by cGAS. Tumour DNA released into the TME can be taken up by DCs promoting their activation. cGAMP can also be

transported via gap junctions directly to adjacent cells or into the TME where it is taken up by local immune cells including NK

cells and macrophages. The uptake of cGAMP by the importers of these cells can trigger their own STING signalling cascades

and the production of IFN-Is. IFN-I responses enhance the activity of cytotoxic T-cells, DCs and NK cells as well as promote M2

to M1 macrophage polarisation. The activation of DCs is particularly important for generating adaptive CD8+ T-cell responses. (B)

Pro-tumour responses. Chronic IFN-β signalling can promote tumour growth and immunosuppression. This signalling can trigger

the expression of a subset of ISGs known as the IFN-related DNA damage resistance signature (IRDS) with potentially pro-tumour

functions. IFN-I and IFN-II signalling has been linked to the up-regulation of PD-L1/2 and IDO which have immunosuppressive

properties. STING signalling can also be subverted in some cancers to promote the activation of the non-canonical family of NF-κB

transcription factors (p52/RelB) which result in the expression of IL-6. IL-6 is important for cancer cell survival and metastasis, and

a pro-inflammatory TME can suppress anti-tumour immune responses through the recruitment of MDSC and regulatory T cells.

cGAMP can be exported into the TME where it can be broken down and converted to immunosuppressive adenosine by ENPP1.

cGAMP can trigger apoptosis and impair proliferation in T-cells which express high levels of STING. STING signalling in regulatory

B cells can also impair NK cell function via IL-35 secretion.

shown to be accompanied by increased expression of factors associated with T-cell adhesion to the endothelium and
the infiltration of lymphocytes into the TME. The activation of STING in endothelial cells in the tumour vasculature
is also thought to protect against angiogenesis and promote vascular normalisation in tumours [63–65,88].

STING signalling in immune cells
Immune cells in the TME can respond to extracellular tumour-derived DNA and activate the DNA sensing pathway.
The uptake of tumour DNA has been shown to be particularly important for activating DCs in the TME [68,69,89].
How precisely the uptake of DNA from the TME in these instances occurs is uncertain. Extracellular tumour DNA
may be available following cancer cell death, and uptake may be facilitated by association with chromatin modify-
ing proteins such as HMGB1, or through fusion of DNA-containing extracellular vesicles [68,69,89–95]. Following
the uptake of extracellular DNA in the cytosol of myeloid cells, cGAS is activated leading to IFN-I production. In
mice CD11c+ DCs were found to be one of the main producers of STING-dependent IFN-Is in the TME [68–70].
STING-induced type I interferons (IFN-Is) can further stimulate tumour infiltrating dendritic cells (DCs) and pro-
mote the presentation of tumour antigens to CD8+ T cells [96,97]. Anti-tumour adaptive immune responses are lost
in mouse hosts lacking the IFN-I receptor or STING in DCs, rendering them unable to reject implanted tumours
[70,97,97]. Conversely the intra-tumoral injection of STING agonists leads to immune-mediated clearance of tu-
mours in mice, showing that activation of STING signalling in both tumour cells and immune cells may contribute
to tumour clearance [81,98,99]. STING signalling has also shown to play an important role in regulating the polari-
sation of macrophages to an M1 anti-tumour phenotype in some tumours [99,100]. The human importer SLC46A2
facilitates the uptake of cGAMP by human macrophages and monocytes where it activates STING signalling [84].
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Similarly, STING-dependent IFN-β production has been shown to be important for promoting NK activity in mouse
models of glioblastoma, lymphoma and melanoma tumour [101,102]. STING signalling is also thought to reduce
numbers of myeloid-derived suppressor cells in the TME [103,104], although this may not be the case in all tumours
[105,106]. The STING-induced production of chemokines such as CXCL9, CXCL10 and CCL5 promote further re-
cruitment of immune cells into the TME, and high levels of STING expression in tumours has been linked to overall
higher immune cell infiltration in cancers [107].

STING agonists as anti-tumour agents
Activation of STING signalling has been shown to be a feature of ‘hot’ tumours, which show infiltration of DCs and
cytotoxic T cells – a pre-requisite for detection of tumour antigens by adaptive immune responses and for effective
immunotherapy [108]. Thus, there has been considerable interest in utilising STING agonists as potential anti-cancer
therapies. Numerous studies have investigated using STING agonists such as cGAMP, other cyclic di-nucleotides or
small molecule activators of STING in mouse tumour models [71–76,99,109]. There is a large body of evidence that
STING agonists have dramatic anti-tumour effects in these systems, enabling tumour clearance and often protecting
against subsequent challenge with tumour cells. However, so far none of these successes have translated into an effec-
tive therapy in clinical trials [110]. While the lack of success with an early STING agonist, DMXAA, was later shown
to be due to its specificity for murine STING [111,112], it is unclear what limits the efficacy of other STING ago-
nists in patients. It remains to be investigated whether this is due to limitations in agonist activity and bio-availability
(which could be overcome through advances in drug design and delivery) or due to more fundamental mechanistic
limitations which would be more difficult to address. Underlying reasons may be mouse–human species differences
in STING function or the dynamic re-wiring of STING signalling in human tumours.

Evasion of STING signalling during tumour progression
Due to of the anti-tumour effects of STING signalling, it was originally proposed that the pathway must be dysfunc-
tional or epigenetically suppressed in cancer cells [113]. Although this has been demonstrated in several cancer cell
lines, the genes for either cGAS or STING are rarely mutated in cancers [4,113–115]. Similarly, while STING and
cGAS expression have been found to be epigenetically silenced in some tumours, many cancers show normal or el-
evated cGAS and STING expression [114–118]. The sensing of cytosolic DNA can also be attenuated through the
over-expression of the cytosolic DNase TREX1 or extracellular DNases, and the inhibition of DNA uptake into DCs
[79,94,118–120]. Analogously, cGAMP in the extracellular environment can be broken down by ectonucleotide py-
rophosphate phosphodiesterase 1 (ENPP1) found on cell surfaces [83,121]. It has been shown that ENPP1 is increas-
ingly up-regulated as cancer cells become metastatic, and this enhances cancer cell migration in a cGAS-dependent
manner [122]. In addition to preventing immune cell activation by removal of extracellular cGAMP, the breakdown
of cGAMP increases levels of adenosine which further inhibits anti-tumour immune responses [122,123]. This has
generated interest in ENPP1 as therapeutic target in its own right [124].

Pro-tumour functions of STING signalling
In addition to its potent anti-tumour activities, STING signalling has also been shown to contribute to cancer cell
survival and tumour progression in some contexts. The balance of downstream STING signalling outputs may
be differentially regulated in tumour cells, so that anti-tumour IFN-I and cell death responses are limited, while
pro-inflammatory and pro-survival programs are promoted.

While short-lived interferon responses due to acute STING stimulation have clear anti-tumour effects mediated
by IFN-Is, it has been shown that low levels of chronic IFN-β signalling can promote cancer cell survival (Figure
3B) [125–128]. Mechanistically, prolonged low levels of IFN-β signalling cause the activation of an unphospho-
rylated ISGF3 (U-ISGF3) complex, which promotes the expression of a subset of interferon-stimulated genes with
pro-tumour functions [127–129]. Chronic IFN-I signalling and low-grade inflammation can have additional effects
on the immune composition of the TME, with the recruitment of myeloid-derived suppressor cells contributing to
radioresistance and tumour progression [105]. In addition to this, both type-I and -II IFNs up-regulate the expres-
sion of programmed death ligand (PD-L1/2) in cancer cells [78,130]. PD-L1 can interfere with STING-mediated IFN
production and IFN-mediated cytotoxicity in cancer cells alongside its ability to repress T cell responses [128,131].
The expression of the enzyme indoleamine-2,3-dioxygenase (IDO), which promotes an immune-suppressive TME
has also been linked to STING signalling [106,132,133].
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STING-dependent NF-κB activation in tumour cells
The STING-dependent expression of pro-inflammatory cytokines, and particularly IL-6, can also promote
inflammation-driven tumour progression. STING-deficient mice have been found to be resistant to the development
of skin tumours induced by the mutagen DMBA, which drives tumorigenesis through IL-6-mediated inflammation
[134]. Analysis of transcriptomics data from the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome
Atlas (TCGA) of primary tumour samples (including pancreatic adenocarcinoma, cutaneous melanoma, prostate ade-
nocarcinoma and breast adenocarcinoma) has also shown that higher levels of STING expression is associated with
higher levels of pro-inflammatory gene expression [10]. IL-6 in particular is a key enhancer of survival and metasta-
sis in cancer [135–138]. In triple negative breast cancer cells with CIN, the depletion of cGAS–STING resulted in a
reduction in IL-6 production and impaired cancer cell survival [139].

The expression of pro-inflammatory cytokines such as IL-6 is driven by the NF-kB family of transcription fac-
tors. In most cells, canonical cGAS–STING signalling induces only modest levels of NF-κB p65 activation, through
signalling by TBK1 which favours the activation of the transcription factor IRF3 [41]. However, an alternative
cGAS-independent mode of STING activation by nuclear DNA damage results in preferential NF-κB p65 activa-
tion and a more pro-inflammatory cytokine profile than conventional DNA sensing [60]. Thus, it is possible that this
pathway contributes the production of pro-inflammatory cytokines during chronic DNA damage or CIN in cancer.

As an additional immune evasion strategy, tumour cells can also re-wire cGAS-mediated STING signalling towards
increased non-canonical NF-κB activation in cancer cells through the NF-κB subunits p52 and RelB [118,140]. This
drives the production of pro-inflammatory cytokines, rather than IFN-Is following DNA sensing, and thus could
be a reason why cancers retain cGAS–STING signalling and subvert it to a different outcome. Non-canonical NF-κB
signalling through p52 can in turn interfere with conventional STING–TBK1–IFN signalling, and this has been shown
to further impair the anti-tumour effects of radiotherapy [140]. Similar inhibitory effects on STING signalling have
also been attributed to IL-6 production in prostate cancer [141]. Thus, the collective evidence points towards a model
where STING signalling is not restricted to interferon responses with anti-tumour functions, but rather can be adapted
dynamically to produce both anti- and pro-tumour signalling outcomes during tumour progression.

Pro-tumour functions of STING signalling in immune cells
It is becoming increasingly clear that the ultimate outcome of STING signalling is also highly sensitive to cell con-
text and differs between different cell types. For instance, while cGAMP transport to DCs can stimulate potent
anti-tumour responses, its transport into astrocytes can promote brain metastasis through the production of cytokines
that are beneficial for cancer cell growth and survival [80]. Activation of STING signalling in adaptive immune cells
themselves can also negatively impact anti-cancer immune responses. For instance, regulatory B cells can make use
of STING–IRF3 signalling to induce the production of IL-35, which impairs NK cell-mediated anti-tumour activity
[142]. Activation of STING signalling can also induce apoptosis in T cells, which may negatively impact anti-tumour
responses [44,133,143–151]. Adding to the complexity, the outcomes of STING signalling in T cells are also influ-
enced by the engagement of the T-cell receptor [133,147,151]. It has been proposed that these negative impacts of
STING signalling may be overcome by the use of lower doses of STING agonists or the specific targeting to tumour
cells [149,151]. However, given that activation thresholds and cell type specificities may also differ between mouse
models and individual cancer patients, there is an urgent need to understand how downstream STING signalling
effects are regulated in different human cell contexts.

Conclusions and outlook
The intense study of DNA sensing pathways in the last decade or so has revealed a crucial role of the
cGAS–STING–interferon signalling axis in shaping immune responses during infection, autoinflammation and can-
cer. However, despite the fact that the anti-tumour role of STING signalling is well documented in mouse tumour
models and multiple STING agonists have been tested in clinical trials, these approaches have not yet shown efficacy
as anti-tumour agents in patients. Indeed, STING signalling has been shown to have both pro- and anti-tumour func-
tions in cancer cells, stromal cells and the immune cells in the TME. While the activation of canonical, acute STING
signalling that results in IFN-I induction has been studied in great molecular detail and clearly possess anti-tumour
functions, we know much less about how low-grade, chronic STING signalling is induced in response to DNA damage.
We will also need to understand how different kinds of DNA damage induced by radio- and chemotherapy regimens
affect DNA sensing pathways, so that we can avoid potential pro-tumour effects. There are many open questions about
how STING activation drives different cellular outcomes, from the predominant activation of IRF3 to canonical or
non-canonical NF-κB activation, as well as inflammasome activation and cell death or senescence pathways. In the
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future, it may be possible to therapeutically influence the balance of STING signalling outputs, rather than STING
activation per se, to promote the anti-tumour functions of DNA sensing in cancer, while limiting adverse effects on
tumour progression.

Summary
• The detection of cytosolic DNA and DNA damage results in the activation of the innate immune

adaptor STING in cancer cells, immune cells or endothelial cells within the tumour microenvi-
ronment. All these cell types can contribute to the production of type I interferons which have
anti-tumour functions.

• If the STING signalling response is evaded or diverted towards a more pro-inflammatory cytokine
profile, this can instead promote the establishment of an immune-suppressive microenvironment
and can aid tumour cell survival and metastasis.

• A deeper understanding of how different cell contexts and regulatory mechanisms influence sig-
nalling outputs downstream of STING will be important for the development of STING-targeting
immunotherapies.
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