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Abstract

Nonparametric feature selection for high-dimensional data is an important and challenging 

problem in the fields of statistics and machine learning. Most of the existing methods for feature 

selection focus on parametric or additive models which may suffer from model misspecification. 

In this paper, we propose a new framework to perform nonparametric feature selection for both 

regression and classification problems. Under this framework, we learn prediction functions 

through empirical risk minimization over a reproducing kernel Hilbert space. The space is 

generated by a novel tensor product kernel, which depends on a set of parameters that determines 

the importance of the features. Computationally, we minimize the empirical risk with a penalty 

to estimate the prediction and kernel parameters simultaneously. The solution can be obtained by 

iteratively solving convex optimization problems. We study the theoretical property of the kernel 

feature space and prove the oracle selection property and Fisher consistency of our proposed 

method. Finally, we demonstrate the superior performance of our approach compared to existing 

methods via extensive simulation studies and applications to two real studies.
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1 ∣ INTRODUCTION

With fast technological advances in modern medicine, biomedical studies that collect 

complex data with a large number of features are becoming the norm. High-dimensional 

feature selection is an essential tool to allow using such data for disease prediction or 

precision medicine, for instance, to discover a subset of biomarkers that can predict 

treatment response to chronic disorders or to determine predictive biomarkers for effective 

management of patient healthcare. Accurately identifying the subset of true important 

features and building an individualized treatment outcome prediction model is even more 

crucial and challenging in modern medicine and personalized healthcare. Specifically, in 

a motivating study presented in Section 4 (Trivedi et al., 2016), the goal is to identify 

behavioral and biological markers that can predict treatment response in patients affected 

by major depressive disorder (MDD) to guide clinical care. Treatment responses for mental 

disorders are inadequate, and considerable heterogeneity is observed, in part because of a 

lack of knowledge on predictive markers that are informative of heterogeneous treatment 

effects. It is desirable to create a biosignature of treatment response for MDD by selecting 

and combining informative markers among a comprehensive candidate pool of clinical, 

behavioral, neuroimaging, and electrophysiology measures.

High-dimensional feature selection has been extensively studied for a linear model or 

generalized linear models in the past decades, and many methods have been developed 

including Lasso (Tibshirani, 1996), smoothly clipped absolute deviation (Fan and Li, 2001), 

and minimax concave penalty (Zhang, 2010). In these parametric models, the importance of 

individual features is characterized by non-null coefficients associated with them, so proper 

penalization can identify non-null coefficients with the probability tending to one when the 

sample size increases. However, parametric model assumptions are likely to be incorrect for 

many biomedical data due to potential higher order interactions among feature variables. In 

fact, applying these approaches to any simple transformation of feature variables may lead to 

very different feature selection results.

More recently, increasing efforts have been devoted to high-dimensional feature selection 

when parametric assumptions, especially linearity assumptions, do not hold. Various 

approaches were proposed to select features based on measuring certain marginal 

dependency (Guyon and Elisseeff, 2003; Fan and Lv, 2008; Fan et al., 2011; Song et 

al., 2012; Yamada et al., 2014; Urbanowicz et al., 2018). For example, the nonparametric 

association between each feature and outcome was used for screening (Fan and Lv (2008); 

Fan et al. (2011); Song et al. (2012). Li et al. (2012) adopted a robust rank correlation 

screening method based on the marginal Kendall correlation coefficient. Yamada et al. 

(2014) considered a feature-wise kernelized Lasso, namely HSICLasso, for capturing 

nonlinear dependency between features and outcomes. In this approach, after a Lasso-type 

regression of an output kernel matrix on each feature-wise kernel matrix, nonimportant 

features with small marginal dependence in terms of a Hilbert–Schmidt independence 

criterion (HSIC) would be removed. However, all methods based on marginal dependence 

may fail to select true important variables since marginal dependency does not necessarily 

imply the significance of a feature when other features are also included for prediction, 

which is the case even for a simple linear model.
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Alternatively, other approaches were proposed to relax parametric model assumptions and 

perform feature selection and prediction simultaneously. Lin and Zhang (2006) proposed 

Component Selection and Smoothing Operator (COSSO) to perform penalized variable 

selection based on smoothing spline ANOVA. Ravikumar et al. (2009) studied feature 

selection in a sparse additive model (SpAM), which assumed an additive model but allowed 

arbitrary nonparametric smoothers such as approximation in a reproducing kernel Hilbert 

space (RKHS) for each individual component function. Huang et al. (2010) considered 

spline approximation in the same model and adopted an adaptive group Lasso method to 

perform feature selection. Wu and Stefanski (2015) also proposed a kernel-based variable 

selection method as an extension of the additive model via local polynomial smoothing 

using a backfitting algorithm. Although COSSO, SpAM, and Wu and Stefanski (2015) 

allowed nonlinear prediction from each feature, they still imposed restrictive additive model 

structures, possible with some higher order interactions. To allow arbitrary interactions 

among the features and perform a fully nonparametric prediction, Allen (2013) and 

Stefanski et al. (2014) proposed a procedure in which the feature input was constructed 

in a Gaussian RKHS in order to perform nonparametric prediction. Different weights were 

used for different features in the constructed Gaussian kernel function so that a larger weight 

implied higher importance of the corresponding feature variable. However, due to high 

nonlinearity in the kernel function, estimating the weights was numerically unstable even 

when the dimension of the features was moderate. Finally, Yang et al. (2016) and Rosasco 

et al. (2013) considered model-free variable selection by examining the partial derivatives 

of regression functions with respect to each feature variable. Although theoretically an 

unimportant feature should yield a zero derivative, estimating the partial derivatives in a 

high-dimensional setting is known to be numerically unstable and such methods cannot be 

applied to noncontinuous feature variables.

In this paper, we propose a general framework to perform nonparametric high-dimensional 

feature selection. We consider a general loss function, which includes both regression 

models and classification as special cases. To perform nonparametric prediction, we 

construct a novel RKHS based on a tensor product of kernels for individual features. The 

constructed tensor product kernel, as discussed in Gao and Wu (2012), can handle any 

high-order nonlinear relationship between the features and outcome and any high-order 

interactions among the features. More importantly, each feature kernel depends on a 

nonnegative parameter which determines the feature importance, so for feature selection, 

we further introduce a l1-penalty of these parameters in the estimation. Computationally, 

coordinate descent algorithms are used for updating parameters and each step involves 

simple convex optimization problems. Thus, our algorithm is numerically stable and can 

handle high-dimensional features easily. Theoretically, we first derive the approximation 

property of the proposed RKHS and characterize the complexity of the unit ball in this 

space in terms of bracket covering numbers. We then show that the estimated prediction 

function from our approach is consistent, and, moreover, we show that under some regularity 

conditions the important features can be selected with the probability tending to one.

The rest of the paper is organized as follows. In Section 2, we introduce our proposed 

regularized tensor product kernel and lay out a penalized framework for both estimation 
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and feature selection. We then provide detailed computational algorithms to solve the 

optimization problem. In Section 3, two simulation studies for regression and classification 

problems are conducted and we compare our method to existing methods. Applications to a 

microarray study and a depression study are given in Section 4. We conclude the paper with 

some discussion in Section 5.

2 ∣ METHOD

Suppose data are obtained from n independent subjects and consist of (Xi, Y i), i = 1, …, n, 

where we let X denote pn-dimensional feature variables and Y  be the outcome which can be 

continuous, binary, or ordinal. Our goal is to use the data to learn a nonparametric prediction 

function, f(X), for the outcome Y .

We learn f(X) through a regularized empirical risk minimization by assuming f( ⋅ ) belongs 

to an RKHS associated with a kernel function, κ(X, X), which will be described later. 

Specifically, if we denote the RKHS generated by κ(X, X) by ℋκ, equipped with norm ‖ ⋅ ‖ℋκ, 

then the empirical regularized risk minimization on RKHS for estimating f(X) solves the 

following optimization problem:

min
f

Pnl(Y , f(X)) + γn‖f‖ℋκ
2 , (1)

where l(y, f) is a prespecified nonnegative and convex loss function to quantify the 

prediction performance, Pn denotes the empirical measure from n observations, that is, 

Png(Y , X) = n−1∑i = 1
n g(Y i, Xi), and γn is a tuning parameter to control the complexity of 

f. For a continuous outcome, l(y, f) is often chosen to be an L2-loss given as (y − f)2, 

while, for a binary outcome, it can be one of the large-margin losses such as exp( − yf)
in Adaboost since it yields the same classifier as the Bayesian classifier (Bartlett, 2006). 

There are many choices of kernel functions for κ( ⋅ , ⋅ ) so that the estimated f(X) is 

nonlinear. One of the most commonly used kernel functions in machine learning is the 

Gaussian kernel function given by κ(X, X) = exp( − ‖X − X‖2 ∕ σ2) for some bandwidth σ, 

where ‖ ⋅ ‖ is the Euclidean norm. To handle high-dimensional features, SpAM is considered 

as an additive kernel function by assuming κ(X, X) = ∑j = 1
pn exp( − ∣ Xj − Xj ∣ 2 ∕ σ2). In 

the kernel iterative feature extraction procedure, the kernel function is defined as 

κω(X, X) = exp{ − ∑j = 1
pn ωj(Xj − Xj)2 ∕ σ2}, where ωj, j = 1, . . , pn, are the additional weights to 

determine the feature importance.

To achieve the goal of both nonparametric prediction and feature selection, we propose a 

tensor product kernel as follows. For any given nonnegative vector λ = (λ1, λ2, …, λn)⊺, we 

define a λ-regularized kernel function as

κλ, σn(X, X) = ∏
m = 1

pn

{1 + λmκn(Xm, Xm)}, (2)
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where κn(x, y) = exp{ − (x − y)2 ∕ 2σn
2} with a predefined bandwidth σn in ℛ. There are two 

important observations for this new kernel function. First, it is the product of a univariate 

kernel function for each feature variable, which is given by 1 + λmκn(Xm, Xm). Thus, the 

RKHS generated by κλ, σn is equivalent to the tensor product of the RKHS generated by 

each feature-specific space. Second, each univariate kernel function is essentially the same 

as the Gaussian kernel function when λm ≠ 0. Consequently, the resulting tensor product 

space is the same as the RKHS generated by the multivariate Gaussian kernel function 

from all features whose λms are nonzero. Therefore, the closure for the RKHS generated 

by κλ, σn consists of all functions that only depend on feature variables for which λm ≠ 0. In 

other words, nonnegative parameters, λm, completely capture and regularize the contribution 

of each feature Xm. In this way, feature selection can be achieved by estimating the 

regularization parameters, λms, in the kernel function. In Web Figure 1, we present a tensor-

product kernel function in a two-dimensional space with different choices of λ1 and λ2. When 

increasing λ1 (or λ2 ) from zero to some positive number, the kernel function along X1 (or 

X2) direction becomes nonflat, indicating that such a kernel function can capture nontrivial 

functional form along this direction.

More specifically, using the proposed kernel function, we let ℋλ, σn denote the RKHS 

corresponding to κλ, σn so we aim to minimize

Ln(λ, f) ≡ Pnl{Y , f(X)} + γ1n‖f‖ℋλ, σn
2 + γ2nP(λ)

subject to M ≥ λ1, λ2, …, λpn ≥ 0, (3)

where M is a prespecified large constant. P(λ) = ∑m = 1
pn P(λm) = ∑m = 1

pn λmI(λm < M ∕ 2), which 

is a truncated Lasso, and γ1n, γ2n are tuning parameters. Here, we include an l1 penalization 

term on the regularization vector to perform feature selection and restrict λm to be bounded. 

The latter bound is useful for numerical convergence to avoid the situation that some λm

can diverge. Since our RKHS contains a constant and based on the representation theory 

(Aronszajn, 1950) for RKHS, solution for (3) takes the form

f(X) = ∑
i = 1

n
αiκλ, σn(X, Xi) (4)

and

‖f‖ℋλ, σn
2 = αTKλ, σnα, (5)

where α = (α1, …, αn)T  and Kλ, σn is an n × n matrix with entry κλ, σn(Xi, Xj). Then the 

optimization becomes solving
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min
α1, …, αn, λ

Pnl Y , ∑
i = 1

n
αiκλ, σn(X, Xi)

+ γ1nαTKλ, σnα + γ2n ∑
m = 1

pn

λmI(λm < M ∕ 2)

subject to M ≥ λ1, λ2, …, λpn ≥ 0 .

(6)

We iterate between α and λ to solve the above optimization problem. At the kth iteration,

αk + 1 = min
α

n−1 ∑
j = 1

n
l Y j, ∑

i = 1

n
αiκλk, σn(Xj, Xi)

+ γ1nα⊺Kλk, σnα
(7)

λk + 1 = min
0 ≤ λ ≤ M

n−1 ∑
j = 1

n
l Y j, ∑

i = 1

n
αi

k + 1κλ, σn(Xj, Xi)

+ γ1n(αk + 1)⊺Kλ, σnαk + 1

+ γ2n ∑
m = 1

pn

λmI(λm < M ∕ 2) .

(8)

Since the loss function is a convex loss, the optimization in (7) is a convex minimization 

problem, so many optimization algorithms can be applied. To solve (8) for λ, we adopt a 

coordinate descent algorithm to update each λq (q = 1, 2, …, pn) in turn. Specifically, to obtain 

λq
k + 1, we fix λ1

k + 1, λ2
k + 1, …, λq + 1

k , λq + 2
k , …, λpn

k  and then after simple calculation, the objective 

function takes the following form:

min
λq ≥ 0

1
n ∑

i = 1

n
g(aiq + biqλq) + dqλq, (9)

where g(ajq + bjqλq) is equal to l{Y j, ∑i = 1
n αi

k + 1κλ, σn(Xj, Xi)} as a function of λq, and aiq, biq, dq’s are 

constants. By the construction of κλ, σn, g( ⋅ ) is a differentiable and convex function so each 

step in the coordinating descent algorithm is a constrained convex minimization problem in 

a bounded interval, which is easy to solve.
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ALGORITHM 1 Algorithm for learning

Input:Data (X, Y); Regularization prarameter γ1n and γ2n;

Former updating results, αk, λk, fλk;
Initialize For regression, λ0 = 0; For classification,

λ0 = (0, …, 1, …, 0), where all elements equal to 0, expect
the one having largest margin correlation with outcome.

Iterate until convergence

(δ = abs{Ln(λ
k + 1, fλk + 1) − Ln(λ

k, fλk)} ≤ c1,

e = ‖λk + 1 − λk‖1 ≤ c2, where c1 and c2 arge given cut
points):

(i) Update αk + 1 for fix λk, which can be solved explicitly for
regression and via fminsearch function for classification.

(ii) Update λk + 1 for fixed αk + 1 via the coordinate descent
algorithm.

(iii) δ = abs{Ln(λ
k + 1, fλk + 1) − Ln(λ

k, fλk)} and

e = ‖λk + 1 − λk‖1 .

Output: αk + 1, λk + 1, fλk + 1 .

At the convergence after k iterations, the final prediction function is given as

f λk + 1(X) = ∑
i = 1

n
αi

k + 1κλk + 1, σn(X, Xi) . (10)

For the classification problem, the classification rule is

sign f λk + 1(X) = sign ∑
i = 1

n
αi

k + 1κλk + 1, σn(X, Xi) . (11)

We give details of our algorithm in Algorithm 1.

Remark 1. When updating α iteratively for regression, it can be solved in a closed form 

as αk + 1 = (Kλk, σn
⊺ Kλk, σn + nγ1nKλk, σn)

−1Kλk, σn
⊺ Y. For classification, we apply the one-step Newton 

method for updating. Tuning parameters in the algorithm are chosen via cross-validation 

over a grid of 2−15, 2−13, …, 213, 215. Although the kernel bandwidth, σn, can also be tuned, 

to save computation cost, we follow Jaakkola et al. (1999) to set it to be the median value 

of the paired distances. Following the same analysis as in Wright (2015), since g-function in 

(9) is convex and is twice continuously differentiable, if we further assume that it is strictly 

convex and has bounded second derivatives in a neighborhood of the minimizer for λ in 
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Step (ii), say N, then the distance between the updated λq and its convergent value can be 

bounded by a mulitiplier of the distance for the previous λq. In addition, this multiplication 

factor is approximately abs[1 − {maxλ ∈ N∑i g″(aiq + biqλq)}−1{minλ ∈ N∑i g″(aiq + biqλq)}] so is less 

than one when λ is sufficiently close to its convergent value. That is, the whole coordinate 

descent algorithm has a linear convergence rate in a local neighborhood of the minimizer for 

λ. Finally, since it is possible that the proposed algorithm will converge to a local minimum, 

we suggest to start with a few initial values and consider the algorithm to converge once 

the objective function does not change more than a given threshold. In practice, we may 

also compare the prediction error from our algorithm with the ones from other methods 

such as SpAM or random forest, so it will give additional assurance when these errors are 

comparable.

Remark 2. In the Supporting Information accompanying this paper, we provide details for 

the properties of the proposed kernel function including its universal approximation property 

and complexity of the unit ball in its induced RKHS. Furthermore, we provide regularity 

conditions to show that our proposed prediction function leads to the best prediction 

performance asymptotically. We also establish the oracle property of variable selection using 

the proposed method in an ultra-high dimensional setting, that is, when the dimension of the 

feature variables grows exponentially as a function of the sample size.

3 ∣ SIMULATION STUDY

We conducted two simulation studies, one for a regression problem with continuous Y  and 

the other for classification with binary Y . In the first simulation study, we considered a 

continuous outcome model with a total number of p correlated feature variables, which 

were generated from a multivariate normal distribution, each with mean zero and variance 

one. Furthermore, X1, X2, X3, X4 were correlated with corr(X1, X2) = 0.4, corr(X1, X3) = − 0.3, 

corr(X2, X3) = 0.5 and corr(X3, X4) = 0.2, while the others were all independent. The outcome 

variable, Y , was simulated from a nonlinear model

Y = 0.9X5
3 + 4X1X2X3 + 2.3 exp( − X3) + 4X4 + ϵ, (12)

where ϵ ∼ N(0, 1). Thus, X1 to X5 were important variables but not any others. In 

the second simulation study, X were generated similarly but with some different 

correlations: corr(X1, X2) = − 0.2, corr(X1, X4) = 0.2, corr(X2, X3) = 0.5, corr(X2, X4) = 0.3, and 

corr(X3, X4) = − 0.4 The binary outcome, Y , with values −1 and 1, was generated from a 

Bernoulli distribution with the probability of being one given by

1 + e−0.25 + (X2 − 1.1X3 + 0.3X4)3
−1

, (13)

so only X2 to X4 were important variables. Since many biomedical applications (as well 

as our application in this work) have small to moderate sample sizes, in both simulation 

studies, we considered sample size n = 100, 200, and 400 and varied the feature dimension 

from p = 200, 400 to 1000. Each simulation setting was repeated 500 times.
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For each simulated data, we used the proposed method to learn the prediction function. 

Initial values, tuning parameters, and the optimization package used for the binary case are 

chosen as in Remark 1 of Section 2, where threefold cross-validation was used for selecting 

the tuning parameters. The bound of regularized parameter M was chosen to be 105. We also 

centered the continuous outcome and reweighted class label controlled to be balanced before 

iteration to make numerically stable. We reported the true positive rates, true negative rates, 

and the average number of the selected variables for feature selection. We also reported 

the prediction errors or misclassification rates using large and independent validation data. 

For comparison, we compared our proposed method with HSICLasso and SpAM since both 

methods were able to estimate nonlinear functions in high-dimensional settings. In addition, 

we also compared the performance with LASSO in the first simulation study and l1-SVM 

in the second simulation study, in order to study the impact due to model misspecification. 

In the simulations, our algorithm usually converged within 400 iterations for the continuous 

outcome and within 100 iterations for the binary outcome.

The results based on 500 replicates are summarized in Tables 1 and 2. From these tables, 

we observe that for a fixed dimension the performance of our method improves as sample 

size n becomes large in terms of the improved true positive and true negative rates for feature 

selection as well as decreasing prediction errors. In almost all cases, our true negative rate is 

close to 100%, which shows that noise variables can be identified with a very high chance. 

As expected, the performance deteriorates as the dimensionality increases. Interestingly, 

our method continues to select only a small number of feature variables. Comparatively, 

HSICLasso selected many more noise variables and had larger prediction errors, while 

SpAM also tended to select more features than our method. The performance of these 

methods becomes much worse when the feature dimension is 1000.

Clearly, LASSO and l1-SVM did not yield reasonable variable selection results and their 

prediction errors are much higher due to model misspecification. We also give violin plots 

to visualize the prediction performance of 500 replications in Figures 1 and 2. Since Lasso 

cannot provide stable prediction errors, its prediction errors from many replicates are out of 

the bound as shown in Figure 1. Figures 1 and 2 further confirm that our method is superior 

to all other methods, even when the dimension is as large as 1000 and the sample size is as 

small as n = 100, which is of similar size as our real data analysis example in Section 5. In 

the Supporting Information, we conducted an additional simulation study that had a similar 

setting to the first simulation study but allowed the dependence between the important and 

unimportant variables. Our method remains to perform better than the other methods.

4 ∣ APPLICATION

4.1 ∣ Application to microarray study of eye disease in animals

We applied our proposed method to analyze a gene expression study in Scheetz et al. (2006). 

This study analyzed microarray RNAs of eye disease from 120 male rats, containing the 

expression levels from about 31,000 gene probes. Gene TRIM32 is known to cause Bardet–

Biedl syndrome (Chiang et al., 2006) but is responsible for less than half of cases. Therefore, 

identifying other genes associated with TRIM32 can help to identify additional novel disease 
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genes, which provide a more complete gene signature to understand the disease mechanisms. 

The biological rationale behind this is that there is an evolutionary advantage in linking 

the expression of functionally related genes to the same biological system for which their 

function is needed. As a note, the association analysis between the causal gene and other 

genes using the same dataset has also been considered in Scheetz et al. (2006) and Huang et 

al. (2010).

Since the expression value for TRIM 32 was skewed due to some extreme values, we 

dichotomized TRIM32 based on whether it was overexpressed as compared to a reference 

sample in the dataset. We further restricted our feature variables to the top 1000 probe 

sets that were most correlated with TRIM32, while the analysis using all 31,000 probes 

was presented in the Supporting Information. All feature variables were on a log-scale and 

standardized in the analysis. To examine the performance of our method, we randomly 

divided the whole sample so that 70% was used for training and the rest was used for 

testing. This random splitting was then repeated 500 times to obtain reliable results. For 

each training data, we used threefold cross-validation to choose tuning parameters. We also 

applied HSICLasso, SpAM, and l1-SVM for comparison.

The analysis results are shown in Table 3. We notice that our method gives almost the 

same classification error as l1-SVM, which is the smallest on average. However, our method 

selects a much smaller set of feature variables with an average of five variables. SpAM 

selects 13 variables on average, but its classification error is higher. In Table 3, we also 

report the top 10 most-frequently selected features among all 500 replications for each 

method. We notice that some features such as Fbxo7 and LOC102555217 were selected 

by at least three methods. In addition, Gene Sirt 3 was identified by all three nonlinear 

feature selection methods, but not l1-SVM, indicating some possible nonlinear relationship 

between Sirt 3 and TRIM32. In the Supporting Information, we provide a figure to reveal 

the nonlinear relationship between Sirt 3 and Fbxo7. We applied our method to analyze the 

whole sample and obtained a training error of 21.9% along five genes identified (Fbxo7, 

Plekha6, Nfatc4, 1375872, and 1388656), which were all selected as the top 10 genes in 

the previous random splitting experiment. As a note, the average prediction errors when 

using only the top five feature variables were in turn 0.345, 0.344, 0.344, 0.367, and 0.294, 

indicating that each individual feature itself was not sufficient to achieve the best prediction.

4.2 ∣ Application to the EMBARC study

In the second application, we applied our method to the Establishing Moderators and 

Biosignatures of Antidepressant Response for Clinical Care (EMBARC) study (Trivedi 

et al., 2016), which aimed to create a biosignature from clinical and biological markers 

to improve the response rates for MDD as well as to guide clinical care for patients. 

The study recruited early onset (< 30 years) chronic or recurrent MDD patients, and the 

study medication was Sertraline (an antidepressant). A comprehensive array of biomarkers 

was collected from participants: functional magnetic resonance imaging (fMRI) was used 

to assess key amygdala-anterior cingulate cortex circuitry implicated in implicit emotion 

processing and regulation under task and to collect functional connectivity measures under 

resting state (a total of 232 variables including the region of interest [ROI] biomarkers 
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measuring regional brain activation under tasks and functional connectivity during rest); 

an electroencephalogram was used to measure brain signals at several power spectral 

bands (e.g., alpha and theta power and loudness dependence of auditory evoked potential 

[LDAEP], a total of 11 variables); and structural MRI was used to collect diffusion tensor 

imaging white matter measures (two variables). Other measures included demographics, 

quick inventory of depressive symptomatology (QIDS score), and behavioral phenotyping 

that measures psychomotor slowing, cognitive control (particularly posterror behavioral 

adjustments), working memory performance, and reward responsiveness. Details of the 

study measures were reported elsewhere (Trivedi et al., 2016).

Our study sample included 111 randomized patients. The outcome we considered was 

the treatment responder status assessed by a trained clinician (36 responders and 75 

nonresponders). Due to a large number of candidate feature variables (266 variables) 

compared to the sample size, it was essential to select features that can best predict patient 

response to create the biosignature. We standardized all the feature variables before fitting 

the model and treatment assignment was included as a feature variable. To further examine 

the performance of our method, we randomly divided the whole sample so that 70% was 

used for training and the rest was used for testing. We repeated 500 times of random 

splittings to obtain reliable results. We used threefold cross-validation to choose tuning 

parameters. We compared with HSICLasso, SpAM, and l1-SVM as in the simulation studies.

The analysis results are shown in Table 4. Our proposed method has the smallest mean 

and median classification error among all the comparison methods. Regarding feature 

selection, our proposed method gives the sparsest results with only 3.36 variables selected, 

on average, among 500 replications. However, all the other three methods selected more than 

40 variables with larger classification errors. The topmost selected variables by our method 

include age, behavioral phenotypes (e.g., reaction time under various behavioral tasks), and 

neuroimaging biomarkers (e.g., mean activation in ROIs under various tasks). Moreover, 

one task fMRI measure (i.e., mean activation of subgenual cingulate ROI under the conflict 

adaptation task) was chosen both by our method and SpAM, but not l1-SVM, which indicates 

that there could be a nonlinear relationship between this moderator and the outcome. More 

interestingly, there are some overlaps regarding the features selected by the proposed method 

and l1-SVM, but our proposed method has a much smaller prediction error compared to 

l1-SVM. This indicates that the proposed method successfully identified some predictors that 

have nonlinear relationships, which improves the classification error compared to a linear 

model. Note that the marginal classification errors for the top five features selected by our 

method range from 0.381 to 0.419, which are higher than the classification error when 

they are all included in our prediction method. These results provide empirical evidence 

to support using behavioral and neuroimaging measures to predict depression treatment 

responses, which has been suggested in theoretical models of depression biotypes (Williams, 

2017).

5 ∣ DISCUSSION

In this work, we have proposed a general framework for nonparametric feature selection 

for both regression and classification in high-dimensional settings. We introduced a novel 
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tensor product kernel for empirical risk minimization. This kernel led to fully nonparametric 

estimation for the prediction function but allowed the importance of each feature to be 

captured by a nonnegative parameter in the kernel function. Our approach is computationally 

efficient because it iteratively solves a convex optimization problem in a coordinate descent 

manner. We have shown that the proposed method has theoretical oracle property for 

variable selection. The superior performance of the proposed method was demonstrated 

via simulation studies and a real data application with a large number of feature variables.

We considered the l2 loss function for regression and the exponential loss function for 

classification as examples, respectively. Clearly, the proposed framework applies to feature 

selection under many different loss functions in the machine learning field. Another 

extension is to incorporate structures of feature variables in constructing the kernel function. 

For example, in integrative data analysis, feature variables arise from many different 

domains such as clinical domain, DNA, RNA, imaging, and nutrition. It will be interesting 

to construct a hierarchical kernel function, which can not only identify feature variables 

within each domain but also identify important domains at the same time. Furthermore, our 

theoretical results can be extended to not only derive the oracle selection of the important 

feature variables but also obtain the convergence rate of the prediction error.

Our framework of nonparametric feature selection can be generalized to perform feature 

selection when estimating individualized treatment rules. We can adapt loss functions 

used for learning treatment rules in our proposed method to simultaneously accomplish 

nonparametric variable selection and discover optimal individualized treatment rules. 

Extensions to categorical outcomes and multistage treatment rule estimation can also be 

considered.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Violin plots of prediction errors for continuous outcome
Note: The plots give the distribution of prediction errors among four competing methods. 

The comparing methods from left to right in each plot are our proposed method, HSICLasso, 

SpAM, and Lasso. This figure appears in color in the electronic version of this article, and 

any mention of color refers to that version
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FIGURE 2. Violin plots of misclassification errors for binary outcome
Note: The plots give the distribution of misclassification rates among four competing 

methods. The comparing methods from left to right in each plot are our proposed method, 

HSICLasso, SpAM, and l1-SVM. This figure appears in color in the electronic version of this 

article, and any mention of color refers to that version
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