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Abstract
An important goal of evolutionary genomics is to identify genomic regions whose substitution rates differ among 
lineages. For example, genomic regions experiencing accelerated molecular evolution in some lineages may provide 
insight into links between genotype and phenotype. Several comparative genomics methods have been developed to 
identify genomic accelerations between species, including a Bayesian method called PhyloAcc, which models shifts in 
substitution rate in multiple target lineages on a phylogeny. However, few methods consider the possibility of dis
cordance between the trees of individual loci and the species tree due to incomplete lineage sorting, which might 
cause false positives. Here, we present PhyloAcc-GT, which extends PhyloAcc by modeling gene tree heterogeneity. 
Given a species tree, we adopt the multispecies coalescent model as the prior distribution of gene trees, use Markov 
chain Monte Carlo (MCMC) for inference, and design novel MCMC moves to sample gene trees efficiently. Through 
extensive simulations, we show that PhyloAcc-GT outperforms PhyloAcc and other methods in identifying target 
lineage-specific accelerations and detecting complex patterns of rate shifts, and is robust to specification of popu
lation size parameters. PhyloAcc-GT is usually more conservative than PhyloAcc in calling convergent rate shifts be
cause it identifies more accelerations on ancestral than on terminal branches. We apply PhyloAcc-GT to two 
examples of convergent evolution: flightlessness in ratites and marine mammal adaptations, and show that 
PhyloAcc-GT is a robust tool to identify shifts in substitution rate associated with specific target lineages while ac
counting for incomplete lineage sorting.
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M
ethods Introduction

The ongoing deluge of whole-genome sequences across 
the tree of life, combined with new phylogenetic methods, 
have provided comparative biologists with powerful op
portunities for a detailed understanding of variation in 
substitution rates among genes and lineages, with the 
aim of identifying regions of the genome evolving by nat
ural selection and potentially linked to phenotypic evolu
tion. Regions of the genome that are conserved between 
species are generally considered to be functional, with 
purifying selection resulting in lower substitution rates 
than expected under conditions of neutrality (Cooper, 
Stone, Asimenos, Program, et al. 2005). For example, in 
protein-coding genes, the rate of synonymous substitution 
is generally much higher than the rate of nonsynonymous 
substitution because nonsynonymous changes are more 

likely to be deleterious and removed by selection. In con
trast, regions of the genome exhibiting accelerated substi
tution rates may have undergone positive directional 
selection or relaxation of purifying selection. Identifying 
these regions in a phylogenetic framework can therefore 
provide insight into the selective pressures acting on 
them and may enable the identification of potential 
changes in function in lineages of interest (Sackton et al. 
2019; Kowalczyk et al. 2020; Espindola-Hernandez et al. 
2022; Pollard et al. 2006).

A number of sophisticated methods exist to model how 
substitution rates in protein-coding genes vary across co
dons and lineages, such as PAML (Yang 1997b) branch-site 
models (Zhang et al. 2005), and models implemented in 
HyPhy (Pond and Muse 2005) including aBSREL (Smith 
et al. 2015) and BUSTED (Murrell et al. 2015). These mod
els have been modified to account for multinucleotide 
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mutations (Venkat et al. 2018; Lucaci et al. 2021), and some 
have been implemented to estimate changes in selective 
constraint (e.g., RELAX Wertheim et al. 2015). However, 
protein-coding genes are only a small fraction of the se
quence that is conserved between species. Although com
parative studies frequently estimate that 3–8% of 
vertebrate genomes are conserved, a significant majority 
of these regions are noncoding (Siepel et al. 2005; 
Consortium 2020). A number of popular methods exist 
to estimate simple models of variable conservation and ac
celeration across the genome (e.g., PHAST: Siepel et al. 
2005; Hubisz et al. 2011, phyloP: Pollard et al. 2010, 
GERP: Cooper, Stone, Asimenos, Green, et al. 2005), but 
these approaches have largely focused on finding regions 
of conservation amongst the vast quantity of uncon
strained sequence in the genome. Of these methods, 
phyloP (Pollard et al. 2010) from the PHAST (Hubisz 
et al. 2011) package conducts likelihood ratio tests to iden
tify conservation in specific loci, as well as acceleration on 
prespecified lineages, modeling substitution rates on the 
target lineages using a scaling factor relative to the back
ground rate. The BEAST package (Drummond and 
Suchard 2010) assumes a random local clock model, using 
an indicator variable to denote rate changes in each node 
and a Possion prior to control the total number of rate 
changes on the tree.

Other methods exist that jointly model substitution 
rates and phenotypic traits, one approach of the general 
effort to link genomic and phenotypic variation via phylo
genetic trees (PhyloG2P; Smith et al. 2020). CoEvol 
(Lartillot and Poujol 2011) jointly models genomic substi
tution rates or presence/absence of genomic loci and con
tinuous phenotypic traits using a multivariate Brownian 
diffusion process, or which identify deletions of loci asso
ciated with specific target lineages. In the “Forward 
Genomics” framework (Hiller et al. 2012; Prudent et al. 
2016), genome sequences are imputed in ancestral species 
and compared among species groups with and without 
the trait of interest to identify associations between pres
ence–absence of genomic loci and phenotypic variation. 
O’Connor and Mundy (2009, 2013) use the likelihood ratio 
test to detect associations between genotypes and a dis
crete phenotype. Under the null model (genotype and 
phenotype are independent), the rate matrices of the 
genotype and phenotype are independent, while a scaling 
factor depending on the phenotype is multiplied to the 
rate matrix of the genotype under the alternative model. 
TraitRate (Mayrose and Otto 2011; Levy Karin et al. 
2017) also use likelihood methods to detect molecular 
rate changes associated with discrete phenotypes. 
Kowalczyk et al. (2019) developed RERconverge to esti
mate lineage-specific substitution rates on a phylogeny 
and demonstrated its use in linking substitution rates 
and mammalian lifespan (Kowalczyk et al. 2020). 
However, many of these methods lack complexity com
pared to their counterparts designed for protein-coding 
regions, which limit their ability to detect complex pat
terns of rate shifts, particularly when the species of interest 

do not form a monophyletic clade. There is thus a need for 
flexible methods that allow researchers to ask whether 
noncoding regions of the genome are accelerated specific
ally on branches of interest that may be associated with a 
trait or trait value of interest.

Recently, we developed PhyloAcc (Hu et al. 2019) (pro
nounced “Phylo-A-see-see”), a Bayesian method to quan
tify multiple shifts in substitution rate on a phylogeny. It 
infers the most probable pattern of shifts in substitution 
rate from sequence alignments and identifies loci with 
lineage-specific accelerations using Bayes factors, with 
many possible applications. For example, PhyloAcc and 
RERconverge have both been applied to test for correla
tions between convergent phenotypic states in a phyl
ogeny and substitution rates (Chikina et al. 2016; Partha 
et al. 2017; Hu et al. 2019; Sackton et al. 2019; Tong et al. 
2022). Whereas RERconverge is designed to test one pat
tern of rate shifts at a time on the tree, PhyloAcc can fit 
an unrestrained, full model to the input sequences, with 
rates and rate shifts estimated for each locus on each 
branch of the tree. Such a model allows researchers to 
ask general questions about genome-wide rate shifts, mak
ing possible tests for general patterns of evolution (e.g., 
“Which loci are accelerated on a prespecified branch or 
set of branches?”; “Which branches have an excess of 
rate shifts across all loci?”).

Although the methods mentioned above all estimate 
substitution rates along a phylogeny in different ways to 
assess shifts in evolutionary rates, they all accept as input 
a single species tree, and tacitly assume that the gene 
tree toplogies for all regions of the genome are identical 
to each other and to the species tree. However, phyloge
nies for different regions of the genome (which we refer 
to as gene trees by convention, even for nongenic regions 
of the genome) can differ from the species history and 
from other genomic regions due to multiple biological 
processes such as incomplete lineage sorting (ILS) or 
deep coalescence, which occurs when variation in ances
tral species persisted after speciation, as well as introgres
sion, and gene duplication and loss (Maddison 1997; Avise 
and Robinson 2008; Edwards 2009). Phylogenetic discord
ance is commonly observed across the tree of life (Jarvis 
et al. 2014; Pease et al. 2016; Lopes et al. 2021; Sun et al. 
2021) and failure to account for it can lead to mis- 
estimation of substitution rates when sequences from dis
cordant loci are mapped onto the species tree (Mendes 
and Hahn 2016) as well as incorrect inference of diver
gence times (Jennings and Edwards 2005; Angelis and 
Dos Reis 2015). Hahn and Nakhleh (2016) address the im
portance of considering gene tree topology variation when 
attempting to correlate substitution rates and phenotypic 
traits, specifically in the context of convergent evolution. 
Additionally, even when the gene tree and species tree 
are topologically identical, the two can still differ in their 
branch lengths (Edwards 2009).

Recently, the multispecies coalescent ILS-aware soft
ware Bayesian Phylogeography and Phylogenetics (BPP) 
was extended to include relaxed molecular clocks 
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(Rannala and Yang 2017; Flouri et al. 2022). However, this 
model estimates overall rates of each branch of the species 
tree, as opposed to estimating rates of individual loci along 
each branch of the species tree. Ogilvie et al. (2017) im
proved the relaxed random clock model by considering 
the multispecies coalescent for more accurate inference 
of per-species substitution rates, while still assuming a 
common rate across loci per branch. Earlier works also ex
ist for estimating a per branch evolutionary rate, while not 
accounting for ILS (Thorne et al. 1998; Kishino et al. 2001). 
In general, macroevolutionary models of molecular clocks 
and substitution rates have yet to embrace the widespread 
heterogeneity in gene trees found across the Tree of Life, 
with unknown consequences for molecular dating, 
PhyloG2P, and other questions in evolutionary biology 
(Bravo et al. 2019).

To more accurately estimate substitution rates and 
identify noncoding sequences that may have experienced 
accelerated evolution on particular lineages of a tree, here 
we extend the Bayesian model implemented in PhyloAcc 
to account for phylogenetic (henceforth “gene tree”) dis
cordance. In our new model, named PhyloAcc-GT, we spe
cify a prior distribution for the gene tree of each locus 
according to the multispecies coalescent model (Rannala 
and Yang 2003; Rannala et al. 2020). The full likelihood 
of the observed sequences from extant species and unob
served sequences from extinct species is defined condi
tioning on the latent gene tree estimated based on DNA 
substitution models. To sample gene trees from the pos
terior distribution, we also develop a Markov chain 
Monte Carlo (MCMC) algorithm (Liu 2008) using a new 
Metropolis–Hastings (MH) proposal distribution targeting 
the conditional posterior distribution of the gene tree con
ditioning on the species tree, sequence alignment and 
other parameters. We use subtree pruning and re-grafting 
when proposing new gene tree topologies, but carefully se
lect candidate locations when re-grafting the tree to im
prove sampling efficiency. Through extensive simulations 
with various acceleration scenarios, we show that 
PhyloAcc-GT outperforms both PhyloAcc and *BEAST2 
(Heled and Drummond 2009; Ogilvie et al. 2017), another 
Bayesian method for detecting substitution rate variation 
while accounting for ILS. We use PhyloAcc-GT to re- 
analyze two datasets, one consisting of 43 bird species 
with a focus on convergent loss of flight in ratites (Hu 
et al. 2019; Sackton et al. 2019) and the other consisting 
of 62 mammal species with a focus on convergent evolu
tion of traits linked to marine life (Hu et al. 2019). We 
show that, after accounting for gene tree discordance 
PhyloAcc-GT is able to distinguish spurious signals of ac
celeration due to gene tree variation from true rate shifts. 
Finally, we also greatly improved the usability and effi
ciency of our software by developing a command-line 
user interface that facilitates preprocessing and postpro
cessing analyses and provides adaptive method selection 
(PhyloAcc vs. PhyloAcc-GT) based on site concordance 
factors (Ané et al. 2007; Minh, Hahn, et al. 2020) in the in
put alignments.

Methods
Bayesian Model to Estimate Substitution Rates in the 
Presence of Gene Tree Discordance
For a given sequence alignment of a locus, we estimate sub
stitution rates in the presence of gene tree discordance 
based on an input species tree, hereafter denoted as T, 
and population size parameter θ ≡ 4Neμ, where Ne is the 
effective population size and μ is the mutation rate per 
site per generation. Parameter θ, whose estimation will be 
discussed next in Estimating Population Size Parameters 
section, measures the rate of coalescence in a species and 
is required when applying the multispecies coalescent mod
el. T is a rooted bifurcating tree having N nodes, S extant 
species, and its branch lengths represent the expected num
ber of neutral substitutions per site. Let Θ = (θ1, . . . , θN) 
represent population sizes for the N species on the species 
tree. A set of target lineages in the phylogeny to test for ac
celeration can also be provided if known a priori.

To model patterns of shifts in substitution rate, 
PhyloAcc-GT follows the original PhyloAcc model and as
sumes that substitution rates can only take three values cor
responding to three conservation states. The original 
PhyloAcc model uses three states to closely follow the 
modeling framework of phyloP (Pollard et al. 2010), which 
defined conserved, neutral, and accelerated states for 
individual loci. We use Z = (Z1, . . . , ZN) ∈ {0, 1, 2}N to re
present these latent conservation states for the N species on 
the tree, where Zs = 0 indicates the background state with 
the background rate r0 = 1, and Zs = 1, 2 represent the 
conserved and the accelerated states, respectively, with 
the corresponding conserved rate r1 < 1, and accelerated 
rate r2 > r1. In this way, we frame our test for accelerated 
substitution rates relative to a premeasured background 
or neutral rate of substitution across the genome. Rates 
are inferred for up to three models: a null model that re
stricts all lineages in T to the background r0 or conserved 
rate r1, a restricted model in which the target lineages, if pre
sent, are allowed to evolve at r2, and a full model in which all 
lineages can have any of the three r values.

We assume that the transition between states is 
Markovian with a prior transition probability matrix 

Φ =
1 − α α 0

0 1 − β β
0 0 1

⎛

⎝

⎞

⎠. Here, α is the prior probabil

ity of a locus becoming conserved from the background 
state in a lineage, and β is the prior probability of losing 
conservation. We put uniform priors on the hyperpara
meters α and β. Substitution rates r1 and r2 follow gamma 
distributions a priori.

The genealogical relationships and branch 
lengths among sequences of a locus are modeled by a la
tent gene tree variable, denoted by G. The prior distribu
tion of a gene tree given the species tree and population 
sizes is defined according to the standard multispecies co
alescent model (Rannala and Yang 2003), which we briefly 
review here. For each species, we record the coalescence 
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events backwards in time until speciation. Suppose for an 
ancestral species s with branch length ts, there are ms se
quences entering s at time 0, and ns leaving at time ts, 
with ns < ms. Let τs

m, τs
m−1, . . . , τs

n+1 be the coalescent 
times for the time ordered (m − n)th coalescent events, 
and τs

n = ts −
􏽐ms

k=ns+1 τs
k be the remaining time from the 

last coalescent event to the next speciation event. The 
prior density of a gene tree G is

f (G ∣ T, Θ) =
􏽙N

s=S+1

􏽙ms

k=ns+1

2
θs

exp −
k(k − 1)
θs

τs
k

􏼒 􏼓􏼨

· exp −
ns(ns − 1)

θs
ts −

􏽘ms

k=ns+1

τs
k

􏼠 􏼡􏼢 􏼣􏼩

·
􏽙mN

k=2

2
θN

exp −
k(k − 1)
θN

τN
k

􏼒 􏼓

Note that we model DNA sequences evolving according to 
a continuous-time Markov process defined on the gene 
tree, whereas the substitution rates are determined by 
the conservation states in each branch of the species 
tree. See figure 1 for an illustration.

Under the GTR substitution model, substitutions on one 
branch of the gene tree follow a continuous-time Markov 
process with the stationary distribution π and a rate matrix 
Q. Instead of assuming a fixed and known stationary distribu
tion of the base frequencies, π = (πA, πC , πG, πT), for all loci 
as in the original PhyloAcc, in PhyloAcc-GT we model the 
stationary distribution of each locus independently. Here, 
we use the strand-symmetry model (Bielawski and Gold 
2002; Singh et al. 2009) and assume that substitution rates 
are the same on the two DNA strands, that is, πA = πT and 
πG = πC. Thus, we have only one free parameter πA, for which 
we impose a half-Beta prior: 2πA ∼ Beta(γ, γ). The strand- 
symmetry assumption can be relaxed, in which case 
the Beta prior can be replaced by a Dirichlet distribution 
that can model a vector of probabilities of any finite 
dimensions.

For one locus of length l, let Y = (Y j,s)s=1 : S
j=1 : l denote the 

observed aligned sequences in the S extant species. We 
use X = {Y, H} to represent the complete data, where H 
stands for the unobserved sequences in ancestral species 
at both coalescent events on the gene tree and speciation 
events on the species tree.

Given all parameters and latent variables, the complete 
likelihood function is

P(X ∣ Z, r, G, Φ, T, Θ, Q, π)

=
􏽙l

j=1

􏽙N−1

s=1

􏽙2ms−ns

k=1

PerZs ts
kΛP−1( 􏼁

X j,(s,k) ,X j,pa(s,k)

􏼠 􏼡􏼠

·
􏽙2mN−2

k=1

PerZN tN
k ΛP−1

􏼐 􏼑

X j,(N,k) ,X j,pa(N,k)

·π(X j,(N,2mN−1))
􏼁
,

(1) 

where X j,(s,·) contains base pair information at position j of 
the locus for all sequences recorded in species s, and X j,(s,k) 

for sequence k in s. ts
k is the branch length from gene node 

(s, k) to pa((s, k)). X j,(s,k) is the jth base pair in the kth 

sequence entering species s when k = 1, . . . , ms, and 
is the jth base pair in gene node (s, k) generated by the 
(k − ms)

th coalescent event in species s when 
k = ms + 1, . . . , 2ms − ns.

The posterior distribution of all the latent variables (G, 
Z, H) and unknown parameters (r, π, Φ) is proportional to 
the product of the likelihood of the complete data given 
the latent gene tree G, conservation states Z, and para
meters r, π, Φ, and their joint prior distribution. We use 
MCMC to sample from the posterior distribution and 
make posterior inference.

Estimating Population Size Parameters
PhyloAcc-GT requires an estimate of the population 
size for each species, θ, which can be challenging in 
many cases. Some approaches (Rannala and Yang 2017; 
Flouri et al. 2018) provide direct estimates of θ for both 
current (when more than one allele per extant species is 
sampled) and ancestral species; other approaches, such 
as the “two-step” species tree methods, which are helpful 
in cases of large, genome-wide datasets, estimate branch 
lengths in coalescent units (t/2Ne), from which θ could 
be extracted if one knows the number of generations 
per branch (Degnan and Rosenberg 2009; Liu et al. 2010, 
2015; Mirarab et al. 2014). Additionally, whereas some phy
logeographic approaches for estimating ancestral popula
tion sizes can benefit from the information from 
multiple loci (Flouri et al. 2018), here we try to estimate 
rate parameters for a single locus, which alone cannot yield 
robust estimates of branch-specific population sizes. In our 
approach, we estimate genome-wide θ first, then treat θ as 
a fixed input that we condition on to estimate other 
parameters.

For a given branch on a tree, PhyloAcc-GT requires a 
length l1 in units of expected number of substitutions 
per site. This is a common output of phylogenetic software 
packages (e.g., RAxML: Stamatakis 2014, IQ-TREE: Nguyen 
et al. 2015) and, if estimated from unconstrained sites, can 
be related to the neutral substitution rate as l1 = tμ, where 
t is the number of generations. Other software such as 
MP-EST (Liu et al. 2010) and ASTRAL (Mirarab et al. 
2014) estimate branch lengths in coalescent units, which 
are defined with respect to the number of generations t. 
For a given branch, the length in coalescent units is 
l2 = t/(2Ne). Using these two definitions of branch length, 
we estimate θ at branch l as: θ̂l = 2l1/l2. For all extant spe
cies, θ is set to 0 as only one sequence per extant species is 
usually available, and θ for the root node is set as the aver
age θ values among the internal branches of the species 
tree. PhyloAcc-GT performs this calculation internally 
both with the species tree provided by the user, with 
branch lengths in units of expected substitutions per site 
under the neutral rate, as well as with a topologically 
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identical species tree with branch lengths in coalescent 
units estimated using one of the methods mentioned 
above. If this second tree is not pre-estimated, 
PhyloAcc-GT automates its estimation with a 
Snakemake (Mölder et al. 2021) pipeline that uses 
IQ-TREE to estimate individual locus trees for up to 
5,000 of the longest input loci and ASTRAL to obtain 
branch lengths in coalescent units.

MCMC Procedure for Posterior Inference
Here, inferring the substitution rates r and the conservation 
states Z for each lineage are of the greatest interest, allowing 
us to identify the most probable pattern of substitution rate 
shifts along the phylogeny for each locus. However, other vari
ables, for example, the gene tree G and the ancestral sequences 
H, cannot be easily integrated out. As such, we use collapsed 
Gibbs sampling (Liu 1994) to make posterior inference of all 
parameters. For each locus, we iteratively impute ancestral 
DNA sequences H and, conditional on the imputed H, sample 
conservation states Z, substitution rates r, the stationary dis
tribution of base frequencies π, gene trees G, and the hyper
parameters from their conditional posterior distributions.

We use the forward–backward (Felsenstein 1973) algo
rithm to compute conditional likelihoods and sample Z 
and H, and use the MH algorithm to sample r. Because 
the substitution rate matrix Q depends on πA, we employ 
the MH algorithm to sample the posterior distribution of π.

When proposing a new gene tree G for a given locus, we 
use two MH moves (supplementary fig. S2, Supplementary 

Material online). The first move proposes to change the 
tree topology of the locus. We randomly select a gene tree 
branch s, disconnect the subtree rooted at s from the re
maining tree, and graft it back at a new position in the re
maining tree. When proposing the new position, we use 
the already imputed ancestral sequences H to compute tran
sition probabilities of the sequence from all candidate grand
parent nodes compatible with the species tree and the 
current gene tree structure to s. A candidate node is chosen 
with probability proportional to its transition probability. 
Such a proposed move takes into account both the sequence 
information and the tree structure. Second, we update gene 
tree branch lengths locally by shifting the height of each in
ternal node in the gene tree without altering the gene tree 
topology using an MH algorithm with uniform proposals 
centering around the current node position. The correctness 
of the MCMC algorithm is supported by the analysis in 
supplementary material S3, Supplementary Material online.

The strategy of subtree pruning and re-grafting for updat
ing the tree topology has been explored previously (Rannala 
and Yang 2003, 2017). However, to the best of our knowl
edge, our design is the first to utilize sequence information 
to guide the MCMC move directly. Rannala and Yang 
(2003) randomly select a feasible branch to graft back to, 
while Rannala and Yang (2017) prefer smaller topological 
changes by selecting a new position with probability inversely 
proportional to the number of nodes on the path to the dis
solved branch. Felsenstein et al. (1999) use the gene tree con
ditional prior distribution as the proposal distribution, which 
would result in lower efficiency as sequence length increases.

G1 G2 G3 G4

L4

L3

L2

L1

G12

G13 G23

G33

G5

G6

G62 G44

G42

G43

G32G22

G7

G1 G2 G3 G4

G12

G13 G23

G33

G5

G6

G52 G44

G42

G43

G32G22

G7

G34

Gene tree branch 
conservation states: background (Z = 0) conserved (Z = 1) accelerated (Z = 2)

A B

Imputed sequence 
information (H): speciation times coalescent events

FIG. 1. Conservation states and DNA evolution given a species tree and two gene trees. For each panel, the species tree is represented with the 
bold lines and encompasses a gene tree with thinner solid, dashed, or dotted lines. (A) A gene tree with a topology identical to the species tree, 
but with different branch lengths (coalescent times). (B) A gene tree that has a topology that is discordant with the species tree. For both panels, 
there are S = 4 extant species in the tree. L1 represents the current time and L2-L4 represent speciation times. A gene tree branch can span 
speciation times and can therefore be in different conservation states at different times. For both gene trees, gene sequences (G1 to G4) are 
observed and stored as Y. Labeled points on the gene tree represent sequences imputed by PhyloAcc-GT. Triangular shaped points (G5, G6, 
and G7, underlined) represent gene sequence information at coalescent events prior to the speciation of those lineages. Circular points represent 
sequence information imputed at speciation times of any two lineages (L2, L3, or L4). Sequences are imputed at speciation times for every species 
in the locus, not just the two that are speciating. Imputed sequence information at both circular points and triangular points are stored in H. For 
example, in panel A, H6 = (H(6,1), H(6,2), …, H(6,5) = G13, G23, G33, G5, G6) stores the three sequences, G13, G23, and G33, at speciation time 
L3 (m6 = 3), two sequences G5 (coalescence of G2 and G3) and G6 (coalescence of G1 and G5) between speciation times L3 and L4, and one 
sequence, G62, at speciation time L4 (n6 = 1). The coalescence times τ6

3, τ6
2, and τ6

1 correspond to the branch lengths from G23 to G5, G5 to G6, 
and G6 and G62, respectively.
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Detecting and Reconstructing Patterns  
of Acceleration Based on Bayes Factors  
and Estimated Conservation States
PhyloAcc-GT fits up to three nested models to each input 
alignment and selects the best one based on marginal like
lihoods (Bayes factors) of the models.

When a set of target lineages are specified, we run all 
three models. Under the null model M0, we assume no 
species is in the accelerated state. Under the lineage- 
specific model M1, we only allow lineages leading to spe
cified target species to potentially be in the accelerated 
state. Finally, we run a full model, M2, allowing all species 
not in the outgroup to potentially be in the accelerated 
state. We identify target lineage-specific accelerations 
from loci that best fit M1 based on two Bayes factors: 
BF1 = P(Y∣M1)

P(Y∣M0), which reflects support for the 
target-restricted model compared to the conserved mod
el, and BF2 = P(Y∣M1)

P(Y∣M2), which reflects support for the 
target-restricted model compared to the unrestricted 
model. Loci with BF1 and BF2 greater than some prespeci
fied thresholds larger than 1 favor the lineage-specific 
model (M1), and are most likely to have experienced tar
get lineage-specific accelerations.

PhyloAcc was originally designed to identify convergent 
rate shifts related to phenotypic convergence, under which 
it was proven to outperform existing methods. Under such 
scenarios, target lineages consist of all extant species hav
ing the convergent phenotype. However, PhyloAcc can be 
used more generally, and allows users to specify any com
bination of lineages as the target set and identify loci that 
are accelerated within target lineages, or to provide no tar
get lineages to see which loci are best explained by M2. In 
our application here, as previously (Hu et al. 2019), we do 
so while also satisfying the condition of Dollo irreversibility 
of acceleration. For the analyses in this paper, we have 
elected to retain the assumption as a fair comparison 
with the original PhyloAcc paper. In cases of convergent 
evolution, such as those of flightless birds and marine 
mammals presented here and in the original PhyloAcc pa
per, we posit that the Dollo assumption makes sense be
cause we want to detect elements similarly accelerated 
in convergent lineages. This is especially true for loss of 
flight in birds. By assuming Dollo irreversibility, we also re
strict ourselves to a smaller search space of all possible pat
terns of acceleration, and thereby gain statistical power, 
especially when the sequence length is short. This ap
proach might actually be favored in many real-world situa
tions. On the other hand, our software is capable of 
running PhyloAcc(-GT) models with or without the 
Dollo assumption, based on user choice (see Discussion 
section).

The identified loci that favor M1 can have varying pat
terns of acceleration, because not all species in the target 
group are necessarily accelerated. We identify accelerated 
lineages by filtering out P(Zs ∣ Y, T,M1) ≥ 0.5 or higher 
for each lineage s in the target group inferred under 
M1. Patterns of acceleration can be similarly inferred 

based on P(Zs ∣ Y, T,M2) for loci favoring M2 with or 
without an input target set.

When a target set is not specified, we recommend run
ning both model M0 and M2 to detect loci experiencing 
rate acceleration in any lineage. Loci having BF3 : ≡ 
P(Y∣M2)
P(Y∣M0) = BF1

BF2 greater than some threshold (at least 1) are 
likely to have experienced accelerations in some branches 
of the tree. The precise pattern of acceleration can be in
ferred from the Z vector estimated under M2, in the 
same way as under M1, and they imply potential com
monalities among accelerated lineages that may not 
have previously been evident.

To compute the marginal likelihood of the observed se
quences under each model, we need to integrate out both 
the gene tree topology and the branch lengths. We use the 
Wang-Landau mixture method in Dai and Liu (2020) to es
timate marginal likelihoods of the three models, which are 
in turn used to calculate the Bayes factors. This method 
works well for both continuous and discrete latent vari
ables. We partition Y into equally sized data blocks, 
Y1, . . . , Yb, and recursively apply the Wang-Landau mix
ture method with a sequence of target and surrogate dis
tributions. In the first step, we take the prior distribution as 
the surrogate distribution and P(Z, r, G, Φ, π ∣ Y1,M) as 
the target distribution to estimate P(Y1 ∣M). In the sub
sequent step i, the target distribution from the previous 
step P(Z, r, G, Φ, π ∣ Y1 : i−1,M) becomes the new surro
gate distribution and P(Z, r, G, Φ, π ∣ Y1 : i,M) becomes 
the new target distribution. In the last step, we get an es
timate of P(Y ∣M).

Simulating Sequence Data
To test the accuracy of PhyloAcc-GT and compare it to other 
methods, we simulated sequence data given a species tree 
under several scenarios of substitution rate acceleration, 
where we allow either a single monophyletic acceleration, 
two independently accelerated clades, or three independent
ly accelerated clades (fig. 2). The full species tree used in the 
simulations is shown in figure 2A, with both tree topology 
and branch lengths borrowed from a ratite tree. Species 
O1, O2, and O3 are the outgroups. We simulated sequences 
using the “SIMULATE” function in PhyloAcc-GT. The 
SIMULATE function takes as input a species tree with branch 
lengths in expected number of substitutions, population size 
parameters, a DNA substitution stationary distribution, and 
a rate matrix Q. For each locus, the function first generates a 
gene tree according to the multispecies coalescent model 
(see supplementary material S4, Supplementary Material on
line), and the DNA sequence at the root of the gene tree fol
lowing a simulated stationary distribution based on the Beta 
distribution: 2πA ∼ Beta(10, 10). Subsequent sequences are 
generated using the continuous-time Markov model, but 
only those for extant species are output. The conserved 
and accelerated rates are generated from Gamma distribu
tions: Gamma(5, 0.04) and Gamma(10, 0.2), respectively. 
The two distributions correspond to a mean rate of 0.2 
and 2. More simulation analysis using different priors are 
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detailed in supplementary material S7, Supplementary 
Material online. The population size parameters for the simu
lations are estimated from real data based on ratites (see be
low). For our simulations, we first simulated 400 loci with 
conserved rates in every lineage. Then, for each scenario out
lined above, we combined these 400 loci with up to 100 loci 
simulated with accelerated substitution rates in the specified 
lineages. All loci are simulated to be 100 base pairs (bp) long.

We used these simulated datasets in several ways to com
pare PhyloAcc-GT’s accuracy in identifying both genomic 
loci experiencing acceleration and lineages harboring those 
loci that are accelerated. First, we calculated the area under 
the precision-recall curve (AUPRC) based on BF1. Precision is 
the proportion of true positives out of all called positives. 
Recall is the percentage of true positives identified out of 
all true positives. When a dataset contains many more nega
tives (i.e., loci without any acceleration along the tree) than 
positives (i.e., loci having at least one acceleration event on a 
target lineage), the precision-recall curve has been shown to 
be a more informative measure of a method’s performance 
than receiver operating characteristic (ROC) curves (Davis 
and Goadrich 2006). AUPRC varies as a function of the pro
portion of positives in the dataset (Saito and Rehmsmeier 
2015), measuring model performance under different de
grees of data skewness. We therefore vary the ratio of the 
number of accelerated to the number of conserved con
served loci from 1 to 100, and compare AUPRC between 
PhyloAcc-GT and the original PhyloAcc species tree model 
(henceforth just “PhyloAcc”).

We also examined how well PhyloAcc-GT identifies spe
cific lineages with accelerated substitution rates under the 

optimal model inferred. Here, we compared the perform
ance of PhyloAcc-GT, PhyloAcc, and the random local 
clock model implemented in *BEAST2 (Ogilvie et al. 
2017). *BEAST2 also estimates substitution rates along a 
phylogeny within a Bayesian framework, but does not re
strict rate variation to three distinct classes. Because 
*BEAST2 does not explicitly calculate the probability of ac
celeration per lineage for a given locus, to compare the 
performance of *BEAST2 with that of PhyloAcc-GT and 
PhyloAcc, we estimate P(Z = 2 ∣ Y) by the proportion of 
MCMC outputs in which the branch is accelerated. We 
treat a branch to be in the accelerated state if its estimated 
rate is greater than the estimated rate of its parent branch, 
or if its estimated rate equals that of its parent, and its par
ent is in the accelerated rate. *BEAST2 does not require in
put θ, but models and integrates out population size. 
However, for a fair comparison with PhyloAcc-GT, we in
put and fix the θ parameters to *BEAST2 as well. We 
also input and fix the species tree when running 
*BEAST2. More details on identifying acceleration from re
sults by *BEAST2, as well as results using several alternative 
criteria to identify accelerations in *BEAST2’s results can be 
found in supplementary material S6, Supplementary 
Material online.

To test how PhyloAcc-GT handles phylogenetic discord
ance, we varied θ in our simulated data. When θ increases, 
the mean and variance of coalescent times between sister 
lineages on the tree increase, leading to an increased prob
ability of discordance. We multiplied the θ values estimated 
from the ratite data by 3, 6, or 10 and use these new para
meters to simulate new sequences under the three 

FIG. 2. Trees representing simu
lated scenarios of accelerated se
quence evolution. (A) The full 
tree used for simulations with 
topology and branch lengths 
based on the ratite phylogeny 
(supplementary fig. S2, 
Supplementary Material online). 
For visualization only, (B–D) re
present collapsed versions of 
the tree in A with arbitrary 
branch lengths and tip labels re
presenting monophyletic clades. 
(B) A single monophyletic accel
eration. (C) Two independent 
accelerations. (D) Three inde
pendent accelerations. 
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previously described scenarios. We also tested the robustness 
of PhyloAcc-GT to θ mis-specifications.

Ratite and Marine Mammal Data
To further compare PhyloAcc-GT with PhyloAcc, we use 
data from two systems: birds and mammals. We previously 
analyzed these data with PhyloAcc and identified genomic 
loci associated with loss of flight in birds (ratites) and the 
transition to aquatic lifestyles in mammals (marine mam
mals) (Hu et al. 2019). The bird dataset consists of 43 spe
cies, including 9 flightless birds (ratites: ostrich, moa, 2 
species of rhea, emu, cassowary, and 3 species of kiwi), 
27 volant bird species, and 7 reptiles as outgroup species 
(supplementary fig. S2, Supplementary Material online). 
We used the alignment of 284,001 conserved noncoding 
loci, the species tree, and genome-wide estimates of neu
tral substitution rates from Sackton et al. (2019) and Hu 
et al. (2019).

For the mammal data, we previously used the align
ments of 283,369 conserved noncoding loci from 62 spe
cies (Hu et al. 2019), a species tree (supplementary fig. 
S3, Supplementary Material online), and genome-wide es
timates of neutral substitution rates from the UCSC 
100-way vertebrate alignment (Blanchette et al. 2004). 
We identified conserved noncoding loci using PHAST 
(Hubisz et al. 2011) and estimated neutral substitution 
rates from 4-fold degenerate sites using phyloFit (Hubisz 
et al. 2011); see Sackton et al. (2019) and Hu et al. (2019)
for full description of these methods. From these datasets, 
since we are interested in comparisons of PhyloAcc-GT 
with PhyloAcc, we limit our comparisons to the loci previ
ously inferred to be accelerated in either ratites (806 loci 
based on Bayes factor cutoffs of log BF1 > 20 and 
log BF2 > 0) or marine mammals (2,106 loci based on 
Bayes factor cutoffs of log BF1 > 5 and log BF2 > 5) (Hu 
et al. 2019).

For both datasets, we estimate Θ based on the species 
tree topology as described above, using gene trees from 
20,000 randomly selected loci. For each set of gene trees, 
we ran MP-EST 5 times and used the branch lengths from 
the run with the maximum likelihood. Θ̂ is then calcu
lated based on the branch lengths of the two trees 
(one with branch lengths in units of relative number of 
substitutions and one with branch lengths in coalescent 
units) as outlined in the section above (Estimating 
Population Size Parameters section). We repeated this 
process 50 times and averaged the θs as the population 
size parameters for each dataset. We used the estimates 
from the ratite data as Θ̂ for the simulated datasets de
scribed above.

We observe that the estimated θ’s exhibit small varia
tions across 50 estimations using different subsets of loci. 
For example, in the mammal data set, sample standard de
viations range from 0.94% to 5% of sample means in 11 
branches. Only 1 branch has larger variation: the standard 
error is 12.7% of the mean. Thus, with different runs of al
gorithms RAxML and MP-EST, we achieved θ estimates in 
the range [0.85θ̂, 1.15θ̂] most of the time.

Site Concordance Factors
Because our ILS-aware method requires significantly great
er computing time than PhyloAcc, we use site concord
ance factors (sCF) to determine on a locus-by-locus basis 
whether to use the PhyloAcc-GT method, which accounts 
for phylogenetic discordance in the input locus, or the ori
ginal PhyloAcc species tree method, which uses only a sin
gle species tree for all loci. Concordance factors (Ané et al. 
2007; Baum 2007) were first implemented on a per-site ba
sis by Minh, Hahn, et al. (2020) in IQ-TREE2 (Minh, 
Schmidt, et al. 2020) to summarize discordance among 
genes relative to a species tree. Briefly, sCF is calculated 
for a given branch in the species tree by first calculating 
concordance factors among sub-alignments of quartets 
of species sampled from that branch (CFq). For each quar
tet, we count the number of sites in the alignment of those 
species that match the topology in the species tree [e.g., 
((A,A),(G,G))] and divide that number by the total number 
of decisive alignment sites (see Minh, Hahn, et al. 2020, eq. 
2). In IQ-TREE-2 (Minh, Schmidt, et al. 2020), these values 
of CFq are calculated over all sites in every input alignment 
and averaged to obtain an overall summary of discordance 
in the dataset. Here, we re-implement the sCF calculation 
to be applied to each individual locus, resulting in a value 
for each branch in the species tree for each locus. We then 
use the sCF values for each locus to guide the selection of 
the PhyloAcc gene tree or species tree method. This can be 
specified in two ways by the user: 1) if the average of all sCF 
values for the locus are below some threshold this locus 
will be run with the gene tree method, otherwise it will 
be run with the species tree method and 2) if the propor
tion of branches with a sCF below some threshold exceeds 
another threshold, this locus will be run with the gene tree 
method, otherwise it will be run with the species tree 
method. Thresholds are specified with user inputs and 
are meant to limit the number of loci run with the compu
tationally more intensive gene tree method.

Benchmarking With Simulated Data
We benchmarked both the PhyloAcc-GT and PhyloAcc 
species tree algorithms by using simulated datasets. We si
mulated loci on species trees of various sizes (9, 13, or 17 
species). For each species tree, we simulated 100 sequences 
of various length (100, 200, 400, and 600 bp) and ran each 
locus through both programs in batches of 10 loci with 
each batch using 4 threads. We measured average run 
time and average maximum memory use on each batch 
and divided by batch size to get average resource use 
per locus. We ran these benchmarks on the Harvard 
Research Computing Cannon Cluster.

Results
The PhyloAcc-GT algorithm is implemented in a C++ co
debase that accounts for phylogenetic discordance in the 
input loci while estimating substitution rates across a phyl
ogeny. This algorithm, along with the original PhyloAcc co
debase, which uses a single species tree for all input loci, 
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and a newly implemented command-line user interface, 
are packaged together to form the PhyloAcc software 
(https://phyloacc.github.io/). The user interface is imple
mented in Python and provides the ability to easily batch 
input loci into separate runs for PhyloAcc, which can be 
partitioned between the species tree and gene tree meth
ods. These batches are then executed via an automatically 
generated Snakemake (Mölder et al. 2021) file that can 
submit batches in parallel as separate jobs to a high- 
performance computing cluster with job scheduling soft
ware (e.g., SLURM).

Model Performance With Correct Input Targets
To measure their ability to differentiate loci in the acceler
ated state from loci not in the accelerated state with re
spect to a set of target lineages, we input the correct 
(i.e., simulated) target set to PhyloAcc-GT and PhyloAcc, 
using three sets of simulated data (single accelerated clade; 
two independent accelerations; and three independent ac
celerations; see fig. 2). We then measure the AUPRC of 
logBF1 while varying the proportion of loci in the acceler
ated state. We find that PhyloAcc-GT has high precision 
and recall as measured by AUPRC (fig. 3). As the propor
tion of target-specific accelerated loci decreases, it be
comes harder to detect these loci from the remaining 
conserved ones because more conserved loci can be falsely 
identified as in the accelerated state at any fixed logBF1 
cutoff. However, the AUPRC for PhyloAcc-GT never falls 
below 95% regardless of the type of acceleration scenario 
or the fraction of input loci having target lineage in the ac
celerated state (fig. 3). By contrast, the original PhyloAcc 
always has a lower AUPRC, especially when lineages that 
are truly in the accelerated state are a subset of the input 
targets (e.g., fig. 3D). When the ratio of conserved to accel
erated loci is 100:1, PhyloAcc-GT can identify true positive 
cases more than 95% of time, while PhyloAcc’s perform
ance can drop to 75%. The precision-recall curves at ratio 
50:1 conserved to accelerated loci are also shown in figure 
3. In all three simulated cases, PhyloAcc-GT also estimate 
more accurate rates than PhyloAcc (supplementary 
material S5, Supplementary Material online).

In addition to assessing model selection accuracy by 
locus, we also check for accuracy of predicting lineages 
in the accelerated state by examining the posterior prob
ability of having the accelerated rate in each branch 
P(Z = 2 |Y) under the most favored models based on 
Bayes Factors. We find that both PhyloAcc-GT and 
PhyloAcc can precisely identify terminal branches that 
are in the accelerated state. However, PhyloAcc-GT is 
much better at identifying internal branches of the 
tree that are in the accelerated state than PhyloAcc 
(fig. 4). Under the multispecies coalescent, gene tree 
branch lengths for extant species are longer than the 
branches of the species tree, whereas the same is not ne
cessarily true for internal branches (fig. 1). As such, 
PhyloAcc tends to overestimate substitution rates along 
terminal branches more than along internal branches.

We also compare the ability of PhyloAcc-GT to detect 
lineages in the accelerated state to *BEAST2. We find that 
*BEAST2 reports lower posterior probabilities for being in 
the accelerated state for most positive branches (i.e., 
branches that are truly in the accelerated state) than 
both PhyloAcc-GT and PhyloAcc (fig. 4A, C, and E). The 
average estimated posterior probabilities of being in the ac
celerated state across positive branches are 0.62 for the sin
gle acceleration case, 0.59 for two accelerated clades, and 0.5 
for three accelerated clades. These values, while generally 
over 0.5, fall below a conservative threshold that one may 
use to identify accelerated lineages. Additionally, *BEAST2 
has less resolution in discerning positive lineages from the 
rest, with several lineages not in the accelerated states hav
ing an average posterior probability of being in the acceler
ated state above 0.5, which may lead to a higher false 
positive rate (FPR) in detecting loci in the accelerated state 
on a given branch (fig. 4B, D, and F).

Model Performance With Mis-specified Targets
To test the ability of PhyloAcc-GT to distinguish target- 
specific acceleration from acceleration in nontarget 
branches using logBF2, we consider three scenarios where 
the specified target lineages include only some or none of 
the lineages that are simulated to be in the accelerated 
state (fig. 5). In scenario 1, the input target species partially 
overlap species that are truly in the accelerated state: we 
simulate two independently accelerated clades, and spe
cify one of them as the target lineage and the other as a 
nontarget clade. In scenario 2, the input target species 
are a subset of species that are simulated to be in the ac
celerated state: we simulate three independently acceler
ated clades, and specify as targets only one of those 
clades. In scenario 3, the species that are simulated to be 
in the accelerated state do not intersect with input target 
species. Area under the ROC (AUROC) curve between 
PhyloAcc and PhyloAcc-GT are recorded in figure 5’s le
gend. We use AUROC to measure model performance be
cause the input set of targets and specified set of targets 
can be any two acceleration patterns. It is reasonable to 
not assume that loci in the accelerated state under one 
pattern (the input target set under model M1) are signifi
cantly more frequent than the other (the input target set 
under Model M2). Both methods are highly accurate in 
excluding nonspecific accelerated loci. AUROC are close 
to 1 as presented in table 1. We also compute the true 
positive rate (TPR) at 1% and 5% FPR cutoffs. In all scen
arios, PhyloAcc-GT has higher accuracy than PhyloAcc.

Next, we assess the inference of conservation states, spe
cifically P(Z = 2 |Y), or the probability of being in the accel
erated state along a given branch, of all branches by 
PhyloAcc-GT and PhyloAcc under the above scenarios of 
target mis-specification. Results using *BEAST2 are not pre
sented because it does not allow prior selection of targets.

We find that PhyloAcc-GT is more accurate in identifying 
branches in the accelerated state than PhyloAcc (fig. 6). 
Although PhyloAcc-GT produces a slightly wider range of 
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probabilities of being in the accelerated state across lineages 
that are truly in the accelerated state than PhyloAcc, almost 
all probabilities are still above 0.75. Consistent with the pre
vious analysis, PhyloAcc-GT performs much better than 
PhyloAcc in detecting internal branches in the accelerated 
state. For branches not in the accelerated state, both meth
ods tend to have higher estimated posterior probabilities of 
being in the accelerated state in clade C compared to other 
species that are not in the accelerated state (e.g., scenario 1). 
The higher probabilities are probably due to the shorter 
branch lengths of C1 and C2, and their proximity to 
branches that are truly in the accelerated state. 
Compared with the case of a single acceleration in figure 
4 when M1 is the true model, correctly identifying M1 
in PhyloAcc-GT or PhyloAcc can reduce the posterior prob
ability of being in the accelerated state in branches that are 
not in the accelerated state. However, as these posterior 
probabilities are still below 0.5 in most loci, the ability in in
ferring the correct acceleration pattern and the number of 
independent acceleration events is largely not affected by 
the input target species.

Identifying Accelerated Lineages With No Input 
Target Set
Although a model that tests for being in the accelerated 
state on specific target lineages may prove a better fit 
than a full model, often this information is unavailable, 
or we may want to ask general questions about our sample 
(e.g., “How many loci are in the accelerated state in any lin
eage?”, “Which lineages have the most loci that are in the 
accelerated state?”). To test PhyloAcc-GT’s performance 
under such scenarios, we use the same set of simulations 
as previously described (fig. 2), but now use logBF3 to iden
tify loci that fit M2, and then use P(Z = 2 ∣ Y) to recon
struct the patterns of acceleration.

We again find that PhyloAcc-GT more accurately 
identifies loci in the accelerated state than PhyloAcc in 
all scenarios (fig. 7). The differences in performance by 
the two methods are more pronounced as the percent
age of nonaccelerated loci in the data increases, and the 
performance gap is larger than when testing a set of tar
get lineages with logBF1 (fig. 3). We also find similar pat
terns in the distribution of P(Z = 2 ∣ Y) for branches that 
are truly in the accelerated state whether we input the 
correct target set or not (fig. 8 vs. fig. 4). However, 
when identifying lineages in the accelerated state for a 
given locus without specifying targets, we see larger vari
ation in P(Z = 2 ∣ Y) among branches that are not in the 
accelerated state but near those in the accelerated state 
on the species tree (fig. 8B, D, and F, compared to the re
sults when target branches are specified (fig. 4B, D, and 
F ), and branches with short branch lengths in the accel
erated state (e.g., clade A). However, these posterior 
probabilities generally do not exceed 0.5 for branches 
not in the accelerated state, and are mostly above 0.5 
for branches that are truly in the accelerated state. When 
only a single clade is truly in the accelerated state, we ob
serve more variation in posterior probabilities when an input 
set is not specified. In this case, when lineages in the accel
erated state are correctly specified in the input set, no false 
positives are observed among 17 branches that are not in 
the accelerated state under 100 simulations. When using 
P(Z = 2 ∣ Y,M2), the FPR is 4% and the false negative 
rate increases from 3% to 9%.

This result implies that specifying a target set is beneficial, 
and if one has logical target lineages in mind, we recom
mend using them to reconstruct patterns of acceleration 
using results from M1 for those selected loci, to achieve a 
slightly lower FPR. However, if an input set cannot be speci
fied, our method still reliably identifies loci that are in the 
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mulated. (A) Loci simulated 
with a single monophyletic ac
celeration. (B) Loci simulated 
with two independently acceler
ated clades. (C) Loci simulated 
with three independently accel
erated clades. (D) Loci simulated 
with two independently acceler
ated clades, but with additional 
target lineages provided to 
each method.
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accelerated state and infers patterns of acceleration using 
M2, with only minor reductions in accuracy.

Robustness to Phylogenetic Discordance
The amount of phylogenetic discordance present within 
the input loci affects the identification of both loci and 
lineages experiencing accelerated substitution rates. To as
sess how PhyloAcc-GT performs with varying levels of 
phylogenetic discordance due to ILS, we varied the popu
lation size parameter θ in each of our three simulation 
cases. We find that in each case when considering 
logBF1, as θ increases the AUPRC of PhyloAcc-GT de
creases depending on the fraction of loci that have 
branches in the accelerated state (fig. 9). However, in every 
case PhyloAcc-GT achieves a higher AUPRC than 

PhyloAcc, especially when the θs are large and the propor
tion of loci having branches in the accelerated state is low.

We also find that PhyloAcc-GT consistently outper
forms PhyloAcc in identifying lineages in the accelerated 
state while minimizing false positives, regardless of the ex
tent of ILS (figs. 10; supplementary material S40 and S41, 
Supplementary Material online). For PhyloAcc-GT, the 
posterior probabilities of branches in the accelerated state 
are mostly above 0.75 and in most cases close to 1, while 
the probabilities are close to 0 for branches not in the ac
celerated state. Again, we see that PhyloAcc also performs 
quite well when identifying acceleration on terminal 
branches of the species tree, but its performance on in
ternal branches is greatly affected by the amount of ILS. 
In many cases, the average posterior probability of being 
in the accelerated state on an internal branch that is truly 
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FIG. 4. Comparison of the identification of lineage-specific rate accelerations between three methods, PhyloAcc-GT (leftmost boxplot for each 
branch on the x-axis), PhyloAcc (middle boxplot for each branch on the x-axis), and *BEAST2 (rightmost boxplot for each branch on the x-axis) 
when the input target lineages match lineages that are truly in the acccelerated state. Each distribution corresponds to the estimated 
P(Z = 2 ∣ Y)s of a branch from 100 simulated loci. Branches are indicated on the x-axis of each plot and correspond to those in figure 2A. 
Distributions on the left correspond to lineages simulated to have accelerated sequence evolution in each of the three scenarios in figure 2, 
whereas distributions on the right correspond to those without accelerated sequence evolution. (A & B) The probability of being in the accel
erated state for each locus and lineage using sequences simulated with a single accelerated clade (fig. 2B). (C & D) Probability of being in the 
accelerated state for each locus and lineage using sequences simulated with two independently accelerated clades (fig. 2C). (E & F ) Probability of 
being in the accelerated state for each locus and lineage using sequences simulated with three independently accelerated clades (fig. 2D).
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in the accelerated state falls below 0.2 and even close to 0 
for very high levels of ILS. In general, *BEAST2’s perform
ance does not seem to be affected by varying amounts 
of ILS. Lineages in the accelerated state also consistently 
have an average probability of being in the accelerated 
state > 0.5 when analyzed with *BEAST2. However, in 
most instances this probability is less than 0.75 and has 
large variation. *BEAST2 also has a high variance in poster
ior probabilities of being in nonaccelerated states for 
branches that are not in the accelerated state, which are 
routinely between 0.25 and 0.5, and can be up to 0.75 in 
some branches, possibly leading to false positives.

Robustness to Mis-specification of Theta
Θ is a key input to PhyloAcc-GT. In simulation studies, we 
have assumed Θ is known, and is equal to the true Θ used 
to simulate the sequences. In practice, we do not know the 
true Θ, so we tested the performance of PhyloAcc-GT 
when Θ is mis-specified.

To test the robustness of our method to mis- 
specification of Θ, we conducted experiments using data 
simulated with both one acceleration and two independ
ent accelerations (see fig. 2B and C for acceleration pat
terns). Under each acceleration pattern, we tested 6 
cases of Θ mis-specifications. In the first 4 cases, we input 
θs that are systematically down-scaled or up-scaled from 
the true θs by a common scaling factor: 0.5, 0.8, 1.5, or 

2. In case 5 [Unif(0,2)], each input θ is a random scaling 
of the true θ, where the random number is sampled 
from the uniform distribution between 0 and 2. In the 
last case, we input Θ that is estimated by the procedure 
described in Estimating Population Size Parameters sec
tion. For each test case, we analyzed 100 loci.

Under mis-specification of θ, we still identify numerous 
loci that favor a model of target-specific acceleration with 
both BF1 and BF2 being positive. We find that 
PhyloAcc-GT correctly identifies accelerated loci over 
97% of the time when the scaling factor of θ is between 
0.5 and 2 (our tested cases). At 5% FPR, the TPRs are all 
above 0.98 across scenarios (table 2).

In addition to model selection, estimates of the con
served and accelerated substitution rates, r1 and r2 re
spectively, are influenced by θ as well, though in 
general the biases tend to be small. When we input un
derestimated θs, the model will overestimate r1 and r2 
and vice versa. When the input value of θ for each 
branch is a random scaling of the true θ, the direction 
of estimated bias depends on all the realized θ’s along 
the tree. When we use the estimated Θ as input, in 
both acceleration patterns, PhyloAcc-GT tends to 
underestimate r2.

Identifying Accelerated Loci in Ratites
We applied PhyloAcc-GT to the 806 conserved noncoding 
loci previously detected by PhyloAcc (Hu et al. 2019) to 
have strong evidence for ratite-specific acceleration 
(BF1>20 and BF2>0), possibly linking them to the loss of 
flight. When accounting for phylogenetic discordance with 
PhyloAcc-GT, we found that 88% (713) of the loci still favor 
M1, indicating ratite-specific acceleration, whereas 8% (67) of 
those loci previously identified now fall under M0 and do not 
show any rate acceleration. Examining the 67 loci favoring 
M0, we found that 11 of these loci do not have any target 
lineage with a high probability to be in the accelerated state 
[P(Z = 2 |Y) > 0.5] under PhyloAcc (see supplementary 
material S9, Supplementary Material online).

To determine which loci still show strong evidence of 
ratite-specific accelerations after accounting for phylogen
etic discordance with PhyloAcc-GT, we first determined 
new Bayes factor cutoffs for the ratite data based on 

FIG. 5. Scenarios for testing model performance with mis-specified targets, along with area under the ROC for both PhyloAcc-GT and PhyloAcc.

Table 1. Comparing TPR at Different FPR Cutoffs Using logBF2 to 
Distinguish Target-Specific Accelerated Loci From Nontarget-Specific 
Accelerated Loci Under Different Scenarios of Target Mis-specification 
Between PhyloAcc-GT and PhyloAcc.

Testing Method TPR TPR
Scenario @1%FPR @5%FPR

1 PhyloAcc-GT 0.89 0.96
PhyloAcc 0.76 0.84

2 PhyloAcc-GT 0.99 1
PhyloAcc 0.92 1

3 PhyloAcc-GT 0.97 0.98
PhyloAcc 0.94 0.97

NOTE.—Species that are truly in the accelerated state either overlap (rows 1 & 2), 
include (rows 3 & 4) or are completely different from input target species (rows 5 
& 6).

Yan et al. · https://doi.org/10.1093/molbev/msad195 MBE

12

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad195#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad195#supplementary-data


simulated data. We find that the ratio of BF1 between 
PhyloAcc and PhyloAcc-GT for data generated under M1 
(two accelerated clades) is 1.8, meaning that BF1 tends 
to be higher when using PhyloAcc. To account for this, 
we adjust our BF1 cutoff to identify ratite-specific accelera
tions when using PhyloAcc-GT from 20 down to 10. The 
BF2 cutoff remains 0. Using these cutoffs, we identify 509 
out of the original 806 loci (63%) with strong evidence 
for ratite-specific acceleration. The average estimated ac
celerated rate (r2) is 2.5, while the mean conserved rate 
(r1) is 0.16. Eighty-eight percent of these loci have acceler
ated rate greater than 1, and 56% are greater than 
2. Similar to PhyloAcc’s result, the rhea clade is most likely 
(60%) to experience acceleration among all lineages. 
Almost all accelerations in this clade are inferred to have 

occurred in the most recent common ancestor of the 
two extant rhea species, rather than two independent ac
celerations. The emu and cassowary branches are the se
cond most likely (40%) lineages to be accelerated, and 
80% of the accelerations occurred along their ancestral 
branch. The ostrich branch is the least likely extant species 
to have experienced accelerations.

Among accelerated loci, 291 are inferred to have accel
erated on only one branch by PhyloAcc-GT. Forty-three 
percent of these single-branch accelerations occur along 
the ancestral rhea branch, followed by 11% in moa and 
11% in the most recent common ancestor of cassowary 
and emu. The original PhyloAcc, without considering ILS, 
detected only 265 single-branch accelerations. In some 
cases, PhyloAcc inferred separate accelerations in sister 
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FIG. 6. Distributions of the probability of being in the accelerated state [P(Z = 2 ∣ Y)] for each branch in the input species tree when specified 
target lineages are mis-specified. Branches are indicated on the x-axis of each panel and correspond to those in figure 2A. Distributions on the left 
correspond to lineages simulated to have accelerated sequence evolution in each of the three scenarios in figure 2, and distributions on the right 
correspond to those without accelerated sequence evolution. Branches underlined on the x-axis are those that were specified as target lineages 
for M1 in each run of PhyloAcc or PhyloAcc-GT and the three scenarios correspond to those outlined in figure 5. Each point represents one 
simulated locus. (A & B) The probability of being in the accelerated state using sequences simulated with a single monophyletic acceleration 
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celerated state using sequences simulated with two independent accelerations (fig. 2C) and targets specified as a subset of lineages that are truly 
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branches, whereas PhyloAcc-GT infers only a single accel
eration in the ancestral branch of the two sibling branches. 
For example, PhyloAcc estimates locus mCE1745684 hav
ing two independent accelerations in cassowary and 
emu, whereas PhyloAcc-GT infers the acceleration to 
have occurred in their parent species.

Recently an alternative but weakly supported species 
tree for palaeognaths has been advocated, suggesting 
that rheas are sister to kiwis, emus, cassowaries, and tina
mous (Simmons et al. 2022). Re-running PhyloAcc using 
the alternative tree identifies 817 (log-BF1>20, 
log-BF2>0 as in Hu et al. 2019) loci being accelerated. 
Among these loci, 717 loci overlap with the 806 loci 
(89%) identified using the original tree. For the remaining 
loci that are detected under the original tree but not in al
ternative tree, 77 loci still have the maximum marginal 
likelihood under model M1, that is, favoring a pattern of 
ratite-specific acceleration over no acceleration or acceler
ation in nonratites. When running PhyloAcc-GT with the 
alternative tree, PhyloAcc-GT selects M1 as the optimal 
model in 713 loci. Six hundred and seventy-one loci 
(94%) show evidence of ratite-specific accelerations under 
both species tree specifications with PhyloAcc-GT, where
as only 89% of loci show the same pattern in both trees 
with PhyloAcc, indicating that PhyloAcc-GT is more ro
bust to different species tree topologies than PhyloAcc.

Identifying Accelerated Loci in Marine Mammals
We also re-ran PhyloAcc-GT on 1,276 conserved non
coding loci that were previously inferred to have marine 
mammal specific accelerations using the original 
PhyloAcc species tree model with BF1 and BF2 cutoffs of 
4 (Hu et al. 2019). We find that 1,034 (81%) loci still 
have the highest marginal likelihood under model M1, 

while 225 (17.6%) loci now favor the null model. Setting 
cutoff at 2 for both log Bayes factors, we estimate 882 
loci to have strong target lineage-specific acceleration. 
The average conserved rate is 0.17 and the average accel
erated rate is 2.66, with 761 loci having an accelerated 
rate greater than 1.

Using PhyloAcc-GT, we find that the branch leading to 
dolphins experiences the largest number of rate accelera
tions (606), followed by killer whale (539). Additionally, 
403 accelerations occurred in the ancestral cetacean branch. 
These results differ from using the original PhyloAcc model, 
which identified, only 279 accelerations in the ancestral cet
acean lineage. Among the loci identified as accelerated in 
this branch by PhyloAcc-GT, PhyloAcc is more likely to 
identify the acceleration in only one of the two extant spe
cies (dolphin or killer whale), with 26 loci actually identified 
as having independent accelerations in both. For example, 
for locus VCE173687, PhyloAcc estimates a posterior prob
ability of acceleration of 0.89 in the killer whale branch, but 
only 0.64 in dolphin. However, PhyloAcc-GT infers that 
there is an acceleration event the ancestral cetatcean 
branch, and the posterior probabilities of acceleration of 
the parent and child branches are all greater than 0.88. 
Other than this difference, inference of conservation states 
of other target species are the same: both PhyloAcc and 
PhyloAcc-GT infer an independent acceleration in manatee 
with posterior probability greater than 0.99, and posterior 
probabilities of being in the accelerated states for seal and 
walrus are all below 0.7.

The number of accelerations in manatee, seal, and wal
rus are 219, 205, and 235, respectively. As opposed to the 
cetacean clade which has many accelerations in the ances
tral branch, in the pinniped clade, most rate shifts happen 
independently in either the walrus or seal lineages. Only 77 
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FIG. 7. Comparing performance 
between PhyloAcc and 
PhyloAcc-GT without specifying 
target lineages. The top row 
shows AUPRC for both methods 
while varying the ratio of number 
of loci that are in nonaccelerated 
state to accelerated state. The 
bottom row shows a single 
precision-recall curve at a ratio 
of 50 loci in the nonaccelerated 
state per locus that is in the accel
erated state. (A) Loci simulated 
with a single, monophyletic accel
eration. (B) Loci simulated with 
two independent accelerations. 
(C) Loci simulated with three in
dependent accelerations.
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loci are estimated to have experienced one acceleration 
along the ancestral pinniped branch. This is similar to 
PhyloAcc’s result: there are 201, 190, and 235 loci acceler
ated in manatee, seal, and walus, and 65 accelerations in 
walrus and seal started in their parent species.

Benchmarking & Implementation
We benchmarked PhyloAcc-GT and the original PhyloAcc 
by running the programs on loci simulated on species trees 
of various sizes with sequences of varying length. We found 
that run times for both programs varied depending on 
both the number of species in the input phylogeny and 
the length of the input alignment. However, for the gene 
tree model, sequence length was the more important fac
tor, with simulated datasets with more than 9 species hav
ing roughly the same run times, though this result likely 

depended on which branches species are added to. We 
found that for short sequences (100 bp), average run times 
per locus ranged from 14–46 min depending on the num
ber of species in the phylogeny (fig. 11A). However, as se
quence length increases, run times also increase 
substantially. A sequence length of 400 bp, on a tree 
with 9 species yielded an average run time per locus of 
155 min, but a tree with 13 species averaged 460 min 
(fig. 11A). For the species tree model, run times were still 
correlated with both sequence length and tree size, but 
are substantially reduced compared to the gene tree mod
el. With the species tree model, average times per locus 
ranged from just 1.5 s in a tree with 9 species and loci 
100 bp to 17 s on a tree with 17 species and sequences 
600 bp long (fig. 11A). The ratite dataset contains 
284,001 noncoding DNA loci with a median length of 
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FIG. 8. Comparison of the identification of lineage-specific rate accelerations between three methods, PhyloAcc-GT (leftmost boxplot for each 
branch), PhyloAcc (middle boxplot for each branch), and *BEAST2 (rightmost boxplot for each branch), when no target lineages are provided 
(i.e., from M2). Each distribution corresponds to the estimated P(Z = 2 ∣ Y)s of a branch from 100 simulated loci. Branches are indicated on the 
x-axis of each plot and correspond to those in figure 2A. Distributions on the left correspond to lineages simulated to have accelerated sequence 
evolution in each of the three scenarios in figure 2, whereas distributions on the right correspond to lineages simulated without accelerated 
sequence evolution. (A & B) The probability of being in the accelerated state for each locus and lineage using sequences simulated with a single 
accelerated clade (fig. 2B). (C& D) Probability of being in the accelerated state for each locus and lineage using sequences simulated with two 
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with three independent accelerations (fig. 2D).
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only 103 bp, meaning that real datasets should be mostly 
confined to these lower run time estimates (fig. 11B). 
Memory use also scaled with tree size and sequence length, 
but always remains below 200MB.

As these benchmarks show, the sampling of locus trees 
implemented in the gene tree model is a computationally 
intensive process, requiring substantial CPU time to infer 
substitution rates even for a single locus compared to 
the species tree model. To address this, we have implemen
ted an adaptive model selection procedure in the user 
interface that uses site concordance factors (sCF) calcu
lated on each locus to determine whether or not they 
need to be run with the computationally intensive 
PhyloAcc-GT, or if the original species tree model in 
PhyloAcc will suffice. Users provide cutoff values to deter
mine which loci will be run through which model. We 
show that for the ratite dataset, the average sCF per locus 
is above 0.5, meaning for most loci, more than 50% of sites 
support the relationships inferred in the species tree (fig. 
11C). We varied the average sCF cutoff for these data to 
see how many loci would be run through PhyloAcc-GT 
as opposed to the PhyloAcc species tree model and the 
subsequent effect on estimated run time (assuming linear 
scaling with increased threads) for the loci that are input 
to PhyloAcc-GT (fig. 11D and E). We find that both the 
number of loci and the estimated run time both increase 
as the average sCF cutoff is increased, sometimes becom
ing excessive with run times over 1 year. However, with a 

low enough cutoff (e.g., below 0.4), we achieve more rea
sonable run times when only using PhyloAcc-GT on loci 
with many discordant sites in many branches of the tree.

With the user interface we also provide summary statis
tics for the input alignments as well as the option to pre
batch files for submission to a compute cluster via 
Snakemake. This batching further reduces run time as 
batches can be run in parallel.

Discussion
Detecting complex patterns of substitution rate variation 
in specific lineages of a phylogeny is an important task 
that may facilitate the association between small-scale se
quence evolution with other biological processes, such as 
structural variation, habitat or environmental shifts, or 
even phenotypic evolution (Partha et al. 2019; Smith 
et al. 2020). However, most tests for rate variation across 
the tree are usually restricted to protein-coding regions 
(Yang 1997b; Pond and Muse 2005) and nearly all such 
methods for detecting such shifts, whether designed for 
coding or noncoding regions, do not account for ILS and 
deep coalescence, which can arise in many commonly en
countered situations and can induce false signatures of 
rate variation when ignored (Mendes and Hahn 2016). 
Here, we present PhyloAcc-GT, which extends PhyloAcc 
to detect shifts in substitution rate of noncoding loci on 
phylogenetic trees in the presence of deep coalescence. 
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Through simulation we have shown that accounting for 
gene tree variation significantly reduces FPRs when detect
ing rate acceleration on specific branches. PhyloAcc-GT 
has higher AUPRC than PhyloAcc, especially when the 
number of conserved loci significantly outnumbers the 
number of accelerated loci. PhyloAcc-GT is also superior 
to PhyloAcc and *BEAST2 in identifying patterns of accel
eration along a phylogenetic tree and their associated 
rates. Compared to *BEAST2, PhyloAcc-GT is more confi
dent in identifying all branches in the accelerated state, for 
both terminal and internal branches. Compared to 
PhyloAcc, PhyloAcc-GT has better power in identifying in
ternal branches that are in the accelerated state, resulting 
in more accurate estimation of substitution rates and in
ference of whether a locus experienced multiple 
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PhyloAcc (middle boxplot for each branch), and *BEAST2 (rightmost boxplot for each branch) while scaling the population size parameter, Θ. 
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Table 2. Test Sensitivity of PhyloAcc-GT to θ Mis-specifications.

No. Indep. Scaling TPR@ TPR@ Average Average
Acceleration Factor 1%FPR 5%FPR r̂1 − r1 r̂2 − r2

1 0.5 0.98 0.98 0.019 0.063
0.8 0.98 0.99 0.014 0.027
1.5 0.97 0.98 0.001 −0.037
2 0.90 0.98 −0.001 −0.047

Unif(0,2) 0.94 0.97 0.019 −0.015
Estimated θ 0.98 0.98 0.012 −0.038

2 0.5 0.99 1 0.016 0.075
0.8 0.98 0.99 0.008 0.008
1.5 0.97 1 −0.002 −0.040
2 0.97 1 −0.008 −0.047

Unif(0,2) 0.99 0.99 0.001 0.047
Estimated θ 0.96 0.99 −0.004 −0.045

NOTE.—TPRs at the two FPR cutoffs are computed based on logBF1 among null loci 
and accelerated loci.
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independent accelerations or a single acceleration in an 
ancestral species. With the introduction of logBF3, which 
tests support for a model that allows rate acceleration 
on any lineage, PhyloAcc and PhyloAcc-GT can also be 
used to test more general hypotheses about molecular 
evolution in a given phylogeny, such as quantifying which 
loci are accelerated across the most lineages or which 
lineages contain the most accelerated loci.

PhyloAcc-GT also provides flexibility in allowing differ
ent stationary distributions of DNA substitution models 
across the genome by inferring the distribution for each lo
cus from the data. Simulations (see supplemantary 
material S8, Supplementary Material online) show that 
modeling the stationary distribution of each locus leads 
to better inference of substitution rates than PhyloAcc, 
which uses a fixed stationary distribution across all loci 
and can show poor performance when this global distribu
tion differs significantly from the distribution of a given lo
cus. Here, we have assumed the strand-symmetry model of 
DNA substitution π; however, the model is easily extend
able to other substitution models and priors, such as the 
Dirichlet distribution. Applying PhyloAcc-GT to acceler
ated loci in genome-wide bird and mammal datasets, we 
find that nearly 20% of the loci previously identified by 
PhyloAcc as accelerated in specific target lineages are likely 
spurious due to false signatures of acceleration induced by 
ILS. Thus, for these two datasets, both of which are known 
to experience ILS, PhyloAcc results in substantial improve
ments in our ability to identify truly accelerated loci.

An important challenge in considering gene tree vari
ation in the PhyloAcc framework is obtaining parameters 
of population size θ for each branch of the species tree. 
Estimating θ for each branch from sequence data or 
from gene trees is challenging in part because rate vari
ation among loci can mimic variation in coalescence times 
among loci, sometimes causing identifiability problems 
(Yang 1997a; Zhu and Yang 2021). Currently, our approach 
uses separate estimates of branch lengths in substitutions 
per site (via concatenation) and in coalescent units (via a 
species tree method such as MP-EST: Liu et al. 2010 or 
ASTRAL: Mirarab et al. 2014) on a prespecified species 
tree to obtain estimates of θ, which can therefore vary 
from branch to branch. This approach likely incurs biases, 
because, even when working with the same species tree 
topology, the branch lengths obtained via concatenation 
are likely mis-estimated and do not precisely correspond 
to branch lengths in a species tree obtained via coalescent 
approaches (Edwards 2009; Edwards et al. 2016; Rannala 
et al. 2020). Additionally, it is well known that methods 
such as ASTRAL and MP-EST that rely on estimating spe
cies tree branch lengths from fixed gene trees estimated in 
a separate, previous step, result in overestimates of ances
tral θ (Yang 1997a, 2002). Still, our analysis of the bird and 
mammal datasets shows that θs obtained in this manner 
yields reasonable values of θ, with small differences in θ 
for most branches, as expected. Additionally, our simula
tions shows that PhyloAcc-GT is robust to mis- 
specification of θ when model selection is the focus. 
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However, it can overestimate substitution rates when θs 
are consistently underestimated, and underestimate 
them when θs are consistently overestimated. When work
ing with data generated from the null model, using under
estimated θs leads to PhyloAcc-GT detecting more false 
positive cases, while using overestimated θs do not seems 
to result in more false positive. Adjusting the stringency of 
model selection via the Bayes Factors will be useful in 
modulating the FPR in PhyloAcc-GT.

PhyloAcc and PhyloAcc-GT together provide a flexible 
framework to identify changes in substitution rates along 
phylogenetic trees with or without deep coalescence. 
Our current implementation (https://phyloacc.github.io/) 
also incorporates many improvements in ease of installa
tion (through bioconda) and use. Although the increased 
model complexity of the gene tree model (PhyloAcc-GT) 
provides increased accuracy in the presence of ILS, it also 
incurs increased use of computational resources, some
times becoming realistically intractable (fig. 11). This nat
urally comes with the additional cost of higher energy 
use and a larger carbon footprint when running the 
more complex model, which is becoming an increasing 
concern for bioinformatics software developers (Grealey 
et al. 2022). Considering the tradeoff between the in
creased accuracy of a more complex model and the in
creased resource use those models require, it is valuable 
to develop novel heuristics to guide users to the appropri
ate method for the given data – in essence not every locus 
may need to be analyzed with the most complex model. In 
our case, we developed an adaptive method selection 
(PhyloAcc vs. PhyloAcc-GT) for different loci within a da
taset using site concordance factors (sCF; Minh, Hahn, 
et al. 2020) to determine the loci that may be most im
pacted by phylogenetic discordance. By varying the cutoffs 
for sCF required to run a locus with the PhyloAcc-GT mod
el, we can drastically reduce run time and energy use with 
minimal impact on analytical results (fig. 11), though some 
post-hoc analyses may be required to assess rates of error.

Going forward, accurate detection of loci across the gen
ome undergoing rate changes in specific target lineages 
must eventually grapple with well-known complexities of 
the genome. For example, our current models assume a single 
neutral substitution rate across all loci in the genome. 
However, different regions of the genome likely experience dif
ferent neutral substitution rates, thereby requiring greater 
model complexity (Hodgkinson and Eyre-Walker 2011; 
Eyre-Walker and Eyre-Walker 2014). One way to improve 
the accuracy of estimation of substitution rates with 
PhyloAcc might be to use the regions flanking each conserved 
locus to estimate the local neutral substitution rate for a given 
locus. Additionally, here we have assumed that all branches in 
the accelerated rate class share a single substitution rate. This 
constraint can easily be relaxed to allow independent accelera
tions on a tree to have different rates. However, we also show 
in the supplementary material S7, Supplementary Material on
line that the current PhyloAcc-GT with only three rate values 
still performs well on data that are generated using more than 
three rate values. Throughout our manuscript, we assume 

Dollo’s irreversibility condition such that after an acceleration 
event occurs on a branch for a given locus, all descendent spe
cies remain in the accelerated state. This assumption could be 
relaxed by allowing for some probability of reverting from an 
accelerated to a conserved state via the Z matrix; in our soft
ware implementation, whether to assume the Dollo model is a 
user-specified option.

PhyloAcc and PhyloAcc-GT currently focus on conserved 
noncoding loci that use standard models of nucleotide sub
stitution. Arguably, the much large number of conserved 
noncoding loci than genes or exons in genomes and their 
likely widespread role in driving phenotypic evolution 
make a focus on noncoding variation a profitable place to 
start (Mattick 2005; Marcovitz et al. 2016; Lewis et al. 2019; 
Sackton et al. 2019). However, we can extend this model 
to detect rate shifts in protein-coding regions as well. 
Finally, for M1, PhyloAcc, and PhyloAcc-GT currently focus 
on sets of target lineages that are in or not in a designated 
target set or are characterized by a binary trait. We have rela
tively few models that explicitly model associations of gen
omic substitution rates with continuous phenotypes 
(Kowalczyk et al. 2019, 2020, 2022; Lartillot and Poujol 
2010). Such continuous phenotypes likely better characterize 
many traits, and may provide additional power to link geno
type and phenotype via phylogenetic trees.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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