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Summary 

The orbitofrontal cortex (OFC) and hippocampus (HC) are both implicated in forming the 

cognitive or task maps that support flexible behavior.   Previously, we used the dopamine 

neurons as a sensor or tool to measure the functional effects of OFC lesions (Takahashi et al., 

2011).  We recorded midbrain dopamine neurons as rats performed an odor-based choice task, in 

which errors in the prediction of reward were induced by manipulating the number or timing of 

the expected rewards across blocks of trials.  We found that OFC lesions ipsilateral to the 

recording electrodes caused prediction errors to be degraded consistent with a loss in the 

resolution of the task states, particularly under conditions where hidden information was critical 

to sharpening the predictions.   Here we have repeated this experiment, along with computational 

modeling of the results, in rats with ipsilateral HC lesions.  The results show HC also shapes the 

map of our task, however unlike OFC, which provides information local to the trial, the HC 

appears to be necessary for estimating the upper-level hidden states based on the information that 

is discontinuous or separated by longer timescales.   The results contrast the respective roles of 

the OFC and HC in cognitive mapping and add to evidence that the dopamine neurons access a 

rich information set from distributed regions regarding the predictive structure of the 

environment, potentially enabling this powerful teaching signal to support complex learning and 

behavior.  
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Introduction 

The orbitofrontal cortex (OFC) and hippocampus (HC) are both implicated in learning the states, 

and relationships between them, that define the world around us (Eichenbaum,	2000;	O'Keefe	

and	Nadel,	1978;	Wilson	et	al.,	2014).  These so-called cognitive or task maps are fundamental 

to the process by which we predict impending events, particularly valuable outcomes (Behrens	

et	al.,	2018;	Tolman,	1948).  Both areas are also well-positioned to provide information, either 

directly or indirectly, to the midbrain dopamine neurons, which generate teaching signals that 

reflect discrepancies between actual and expected outcomes (Mirenowicz and Schultz, 1994; 

Schultz, 2016; Starkweather and Uchida, 2021).    

Several years ago, we capitalized on this arrangement by using the dopamine neurons as a sensor 

or tool to measure the functional effects of OFC lesions (Takahashi et al., 2011).  We recorded 

midbrain dopamine neurons as rats performed an odor-based choice task, in which errors in the 

prediction of reward were induced by manipulating the number or timing of the expected 

rewards across blocks of trials.  We found that OFC lesions ipsilateral to the recording electrodes 

caused prediction errors to be degraded.   In particular, the response to reward omission was 

largely abolished, while the response to unexpected reward was both diminished and slower to 

adapt with learning across trials.  Activity to the predictive cues was also less closely tied to high 

and low values.   Critically, these results were not consistent with our hypothesis going in that 

the OFC provided information about the value of expected outcomes, and instead a 

computational modeling approach showed it was best understood as a loss in the resolution of 

the task states, particularly under conditions where hidden information was critical to sharpening 

the predictions.   Notably these data led to the hypothesis that the OFC is a critical part of the 

cognitive mapping circuit (Wilson et al., 2014). 

Here we have repeated this experiment, along with computational modeling of the results, to test 

the hypothesis that HC provides similar information to the dopamine neurons regarding the 

layout of the task space.  The results show that this is indeed the case, however unlike the OFC, 

which provides information local to the trial, the HC appears to be necessary only for estimating 

the upper-level hidden states based on the information that is discontinuous or separated by 

longer timescales.   The results provide novel data contrasting the respective roles of the OFC 

and HC in cognitive mapping and how these areas interact to support learning.  Additionally, 
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they add to evidence that the dopamine neurons access a rich information set from distributed 

regions regarding the predictive structure of the environment, potentially enabling this powerful 

teaching signal to support complex learning and behavior.  

Results 

We recorded single-unit activity in the VTA of rats with ipsilateral sham (n = 5) or neurotoxic (n 

= 9) lesions targeting the HC and resulting in visible loss of neurons in 54% (49-60%) of this 

region across subjects (Figure S1).  Single-unit activity was recorded as rats performed an odor-

guided choice task identical to the one we previously used to characterize signaling of reward 

predictions and reward prediction errors in rats with ipsilateral OFC lesions (Takahashi et al., 

2011).  On each trial, rats sampled one of three different odor cues at a central port and then 

responded at one of two adjacent fluid wells (Fig. 1a).  One odor signaled the availability of 

sucrose reward only in the left well (forced left), a second odor signaled sucrose reward only in 

the right well (forced right), and a third odor signaled the reward was available at either well 

(free choice).  To induce errors in reward prediction, we manipulated either the timing or the 

number of rewards delivered in each well across 4 blocks of trials (Fig. 1b).  Positive prediction 

errors were induced by making a previously delayed reward immediate (Fig. 1a, 2sh and 1st bolus 

in 3bg) or by adding more reward (Fig. 1b, 2nd bolus in 3bg and 4bg), whereas negative prediction 

errors were induced by delaying a previously immediate reward (Fig. 1b, 2lo) or by decreasing 

the number of reward (Fig. 1b, 4sm).   

Control rats changed their choice behavior across blocks in response to the changing rewards, 

choosing the higher value reward more often on free-choice trials (ANOVA, F1,127 = 575.1, p < 

0.01, Fig. 1c) and responding more quickly (ANOVA, F1,127 = 57.9, p < 0.01, Fig. 1d) and 

accurately (ANOVA, F1,127 = 67.0, p < 0.01, Fig. 1e) on forced-choice trials when the earlier or 

larger reward was at stake.  Rats in the HCx group also showed similar effects of value on 

behavior (percent choice, ANOVA, F1,160 = 961.8, p < 0.01, Fig. 1c; percent correct, F1,160 = 

42.7, p < 0.01, Fig. 1e; reaction time, F1,160 = 25.8, p < 0.01, Fig. 1d).  Inclusion of group as a 

factor revealed no effects of lesions on free choice trials (F’s < 1.87, p’s > 0.10), however there 

were significant interactions between group x value on forced-choice trials (F’s > 4.54, p’s < 

0.05).   
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We identified putative dopamine neurons by means of a waveform analysis like that used to 

identity dopamine neurons in primates (Bromberg-Martin et al., 2010; Fiorillo et al., 2008; 

Hollerman and Schultz, 1998; Kobayashi and Schultz, 2008; Matsumoto and Hikosaka, 2009; 

Mirenowicz and Schultz, 1994; Morris et al., 2006; Waelti et al., 2001).  This analysis isolates 

neurons in rat VTA whose firing is sensitive to intravenous infusion off apomorphine or 

quinpirole (Jo et al., 2013; Roesch et al., 2007) and which are selectively eliminated by infusion 

of a Casp3 neurotoxin (AAV1-Flex-TaCasp3-TEVp) into VTA of TH-Cre transgenic rats 

(Takahashi et al., 2017). 

This approach identified as putatively dopaminergic 72 of 390 and 117 of 510 neurons recorded 

from VTA in control and HCx rats, respectively (Fig. S2a).  These proportions did not differ 

between groups (Chi-square = 2.67, p > 0.10) nor were there any effects of lesions on the 

waveform characteristics of these neurons (Fig. S2b, t-test; Ps > 0.20). Of these, 44 neurons in 

control and 66 in HCx rats increased firing in response to reward (Fig. S2c, t-test, p < 0.05, 

compared with a 400 ms baseline taken during the inter-trial interval before trial onset).  Average 

baseline activity was similar between the two groups for these neurons (F1,108 = 1.05, p > 0.10) as 

well as for the non-responsive dopamine neurons (F1,77 = 0.03, p > 0.10) and the neurons that 

were classified as non-dopaminergic ( F1,709 = 1.45, p > 0.10).   

 

Dopamine neurons signal prediction errors in response to manipulations of reward in 

controls 

Prediction error signaling was readily observed in response to changes in reward in dopamine 

neurons recorded in control rats.  The activity of these neurons was elevated in response to 

delivery of an unexpected reward and suppressed in response to an omission of expected reward 

(Fig.2a). To quantify these changes in firing, we computed difference scores for each neuron by 

comparing the average firing at the beginning versus the end of the blocks at the time of reward 

delivery or omission.  The distributions of these scores were shifted above zero when unexpected 

reward was delivered (left in Fig. 2c) and below zero when expected reward was omitted (right 

in Fig. 2c), reflecting that changes in firing (elevation or suppression) were maximal at the start 

of the block and then diminished with learning of the new contingencies as the block proceeded 

(Fig 2d).   
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Ipsilateral hippocampal lesions disrupt error signaling to reward manipulations by 

dopamine neurons 

HC lesions had a marked effect on the changes in the firing of dopamine neurons caused by 

changes in reward.  In particular, dopamine neurons recorded in rats with ipsilateral HC lesions 

did not increase firing when reward was delivered unexpectedly (left in Fig. 2b) nor did they 

suppress firing when an expected reward was omitted (middle in Fig. 2b). These effects were 

again quantified by analyzing the difference scores between early versus late trials in relevant 

blocks.  The difference scores were not different from zero when an unexpected reward was 

delivered (Fig. 2e left) or an expected reward was omitted (Fig. 2e right), reflecting the relatively 

flat firing in early and late trials of each type (Fig. 2f).  

Consistent with these apparent differences, direct comparison data from control and HCx-

lesioned rats (ANOVA, group x reward/omission x early/late x trial, Fig. 2d versus Fig. 2f) 

revealed significant group interactions (group x reward/omission x early/late; F4,432 = 13.4, p < 

0.01), and the distributions of the difference scores comparing firing changes in reward delivery 

or omission (histograms, Fig. 2c versus 2e) were significantly different between the group 

(Wilcoxon rank-sum test; ps < 0.05).  Thus dopamine neurons recorded in rats with ipsilateral 

HC lesions failed to show normal bidirectional changes in firing – presumed to be reward 

prediction errors - in response to manipulations of reward. 

 

Ipsilateral hippocampal lesions had no effects on cue-firing in VTA dopamine neurons 

The activity of dopamine neurons in control rats also differed during sampling of the odor cues 

according to the expected value of the cue in the different blocks.  On forced-choice trials, these 

neurons exhibited higher firing during the presentation of the high-valued cue than during 

presentation of the low valued cue, a difference that reversed in each block early in learning (Fig. 

3a).  To quantify this, we computed the difference scores comparing each neuron’s firing to the 

high- versus low-value cues in early versus late trials. Distribution of these scores was shifted 

significantly above zero (Fig. 3b) in controls, indicating an increase/decrease in activity to the 

high/low value cues across trials, respectively.   
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Somewhat surprisingly, similar effects were also evident in dopamine neurons recorded in rats 

with ipsilateral HC lesions (Fig. 3c-d).  A direct comparison of the data between control and 

lesioned groups (group x value x early/late x trial) revealed a significant main effect of value 

(F1,108 = 19.8, p < 0.01) and significant interactions between value x early/late (F1,108 = 12.7, p < 

0.01), value x trial (F4,432 = 3.87, p < 0.01) and value x early/late x trial (F4,432 = 2.64, p < 0.05).  

However, there were no significant main effects nor interactions involving group (F’s < 1.5, p’s 

> 0.10).   Thus dopamine neurons recorded from rats with ipsilateral HC lesions showed normal 

changes in firing in response to presentation of the differently-valued cues. 

 

Hippocampal lesions disrupt hierarchical segregation of states available in different blocks 

The neural results showed that HC was necessary for normal error signaling by VTA dopamine 

neurons; dopamine neurons recorded in rats with ipsilateral HC lesions failed to signal prediction 

errors to changes in reward, while at the same time showing roughly normal error signals to the 

presentation of the predictive cues in our task.  To better understand what hippocampus might 

contribute to cause this pattern of results, we developed temporal-difference reinforcement 

learning models to describe the task and then monitored the error output of the model caused by 

changes in several parameters in an attempt to recreate these neural findings.  

We modeled a learning agent that represents the behavioral task as serial transitions between 

hidden states within a partially-observable semi-Markov process (Daw et al., 2006). In this 

model, states were each associated with a finite duration, captured by a distribution over possible 

“dwell” times within a given state. States were also probabilistically associated with unique 

observations made during the task (for example, the onset of a cue, or entry into one of the 

reward wells), such that these events mark the start of the dwell time within a state.  While 

observations unambiguously signal transitions between states, transitions could also happen 

without observations. As in other partially-observable settings, a belief state—that is, a 

probability distribution over state occupancy—tracks the agent’s understanding of their current 

position within the various possible states of the task (Starkweather et al., 2018). In order to 

estimate the current state and learn about its value (i.e. the expected future reward), the agent had 

to combine task observations (i.e. the odor presented, number of rewards), the duration of delays 

since the last observation (i.e. whether short or long), and their current knowledge of the 
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underlying map of the task (i.e. transitions between states and their associated dwell time 

distributions). If the agent inferred that a state transition had occurred, then a prediction error 

was calculated based on the states’ current estimated value, the reward feedback, and the 

probability of that state transition having just occurred.  The value of the previous state was then 

updated through a temporal-difference learning rule, and, in parallel, the dwell time distribution 

was updated to reflect the time spent in that state.  

Using this basic architecture, we developed two different models to explain the effects of HC 

lesions.  The first model was simpler, reflecting only the states and dwell time distributions the 

rats experienced when performing the task (Fig. 4a-b, model 1).  In this model, the agent learned 

the value and dwell times of each state through experience, to minimize the deviation between 

expectations and observations.  This resulted in a pattern of reward prediction errors at the time 

of reward delivery and cue sampling very similar to that observed in dopamine neurons recorded 

from control rats (Fig. 4c). 

To model the effects of HCx in this setting, we elected to blur the ability of the model to 

maintain internal information about the transition probabilities between the odor cues and the 

correct well states (pink arrows in Fig. 4a). This reflected the hypothesis that HC lesions would 

disrupt the maintenance of hidden information during the period after a response had been made, 

while the rats were waiting for reward, an effect like that caused by lesions of OFC in this task 

(Takahashi et al., 2011).   In the context of the model, this change caused the agent to rely more 

heavily on external observations and dwell time than on the transition matrix when estimating 

the current state. As a result, the agent was more likely to respond to unexpected external input 

regarding events or timing – like the unexpected appearance of reward (Fig. 1b, 2sh or 4bg) or its 

unexpected delay or omission (Fig. 1b, 2lo or 4sm) - by changing its estimate of the current state 

to the opposite well (Fig. 4b, light pink shading). This reevaluation resulted in the loss of 

prediction error signaling by the agent in these blocks, since it essentially brought their belief 

state and its predictions into alignment with external events (Fig. 4c, left panel). This result 

aligns well with main effects of lesions on dopamine neuron firing in the task – specifically the 

apparent loss of responsivity to unexpected reward and reward omission (Fig. 2). 

However, this model predicted something very different at the transition between blocks 2 and 3. 

Because block 3 is the first block in the session that involves two drops of reward, there is no 
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internal state at the end of block 2 whose value estimate can predict the delivery of the second 

reward (Fig 1b., 3bg).  As a result, the lesioned model produced a strong positive prediction error 

to the second reward on these trials (Fig 6a).  This effect was not evident in the activity of 

dopamine neurons recorded in the HCx rats (Fig. 6a). Further the lesioned model also failed to 

produce the apparently normal error responses to the odor cues observed in the dopamine 

neurons recorded in HCx rats (Fig 4d, right panel). 

Given the poor match between the output of the simplified lesion model and the data, we 

developed a second model, based on the same semi-Markov process but a more complex and 

more realistic state space that recognized the extensive training history of the rats on the task by 

creating separate clusters of states for each of the different blocks, reflecting the unique reward 

contingencies of each block.  This resulted in a multi-level or hierarchical state space in which 

lower-level states described the underlying process within individual trials and upper-level states 

controlled the probabilities of transitions to different blocks based on recent reward history (Fig. 

5a).  As with the simpler model, this model did a good job reproducing the pattern of reward 

prediction errors evident at the time of reward delivery and cue sampling in dopamine neurons 

recorded from control rats (Fig. 5c). 

Using this more complex state space, we again modeled the effect of hippocampal lesions as a 

blurring of transitions, but this time between the upper-level states describing the trial blocks 

(Fig. 5b). This reflected the hypothesis that hippocampus might differ from OFC in that it would 

be necessary for maintaining hidden information only when events were discontinuous or 

separated by longer timescales. To implement this, we introduced larger uncertainty in the 

transition probabilities between the upper-level states (Fig. 5b), which were updated based on 

recent reward history in the lesioned model. Though counterintuitive at first glance, the 

imprecise transition probabilities caused the lesioned model to again be more heavily influenced 

by external observations about events and dwell times, in this case affecting its estimate about 

the current block.  As a result, the lesioned model was again able to quickly adapt to changes in 

reward number or timing by altering its estimated state rather than adjusting through error 

signaling, but unlike the prior model, this ability now included the third block where two rewards 

were introduced (Fig. 6b). 
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This model also captured the relative preservation of error signals in response to the odor cues 

observed in the HCx rats (Fig 3).  This was possible because the lesioned model updated the 

transition probabilities based on reward history, leading to an update in the estimated belief state 

behind the odor cues after the initial trial in a block and resulting in changes in cue-evoked 

activity (Fig. 5d, right panel). Interestingly, the lesioned model also exhibited clear differences in 

the cue-evoked errors that arguably mirrored minor but apparent differences in the preserved 

responses in HCx rats; in particular, while not significant, the cue-evoked response in these rats 

seemed weaker and to change more completely after the initial trial than the response in controls 

(Fig. 3).   Overall, this second model based on blurring of upper-level internal information about 

the states available in different blocks effectively captured the characteristics of dopamine 

neurons' firing, suggesting that HC-lesioned animals may be deficient in maintaining and 

updating higher-order state representations that capture longer timescale task structure within a 

cognitive map. 

 

Discussion 

In the current study, we utilized the well-characterized dopaminergic reward prediction error as a 

tool to investigate the critical role of the HC in the development of cognitive or task maps for 

guiding learning from direct experience of rewards, repeating an approach used previously to 

characterize the role of OFC in cognitive mapping (Takahashi et al., 2011; Wilson et al., 2014).  

We recorded the activity of midbrain dopamine neurons during the induction of prediction errors 

in an odor-based choice task and compared activity in controls with the activity in rats with 

ipsilateral HC lesions.  Combined with computational modeling, this allowed us to gain insight 

into the specific effects of HC removal on the structure of the internal task representation being 

used for learning and compare them to the effects of OFC lesions.   The results show that HC, 

like OFC, contributes to representation of the appropriate state structure in this task, at least with 

regard to the information available to midbrain dopamine neurons, and appears to be especially 

important for properly representing information that is hidden or at least partially observable.  

However, unlike OFC, this contribution is not required for properly segregating states within the 

trial but instead becomes important at longer timescales, across trials, where it is critical to 

organizing information about the context or current block.   
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In evaluating these results, it is worth noting that the models used in the current study are largely 

the same as the model used previously to understand the effects of OFC lesions in this task 

(Takahashi et al., 2011), aside from the addition of a semi-Markov process added to allow the 

model to learn about reward timing and selectively disrupted by ventral striatal lesions 

(Takahashi et al., 2016).  The current models inherited the basic task architecture from the prior 

work on OFC, although the second model was extended with a HC-dependent hierarchical 

element to accommodate separate representations of the states available in different blocks of 

trials.  Critically, by modifying either the transition matrix or dwell time distribution in the basic 

model used here, we can replicate the changes in dopamine neuron firing observed in prior work 

after OFC or ventral striatal lesions (see Figure S3).  Thus, the results here are not due to 

idiosyncratic differences between the models and do not alter conclusions drawn in those prior 

studies. 

The current findings are significant both for contrasting the roles of HC and OFC in cognitive 

mapping as well as for revealing the complexity of information afferent to the midbrain 

dopamine neurons.   With regard to HC and OFC function, the results are consistent with the 

idea that both areas are critical for constructing maps of complex task spaces, but within the 

constraints of our task they point to different contributions.  The OFC was particularly important 

for segregating states – in this case the left and right wells – significant to reward (i.e., one 

direction is rewarded, and one is not on forced-choice trials, and one is always better on free 

choice) and negligible external differences (both wells are identical).   This function is consistent 

with evidence in other settings that the OFC is particularly critical for representing latent, hidden, 

or partially observable information of potential behavioral relevance (Costa et al., 2023; Schuck 

et al., 2016; Wilson et al., 2014).  By contrast, the HC was not necessary for maintaining this 

information, however it played a key role in properly representing the current context or trial 

block.  Information identifying the different trial blocks is also hidden or partially observable 

(i.e. there are no unique events that identify different blocks in the ITI or even during the trial 

until actual reward), however properly maintaining information about trial block has a strong 

temporal component requiring memory, thus the dependence on HC is clearly consistent with the 

historical role of HC in episodic memory and contextual information (Duvelle et al., 2022; 

Farovik et al., 2015; Smith and Bulkin, 2014), as well as more recent evidence that the HC 

encodes time as well as parsing statistical regularities that are critical to constructing hierarchical 
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task spaces (Schapiro et al., 2016; Stachenfeld et al., 2017).   Which one of these features is 

critical for the involvement of the HC in our task is difficult to say, however it is tempting to 

suggest it is the hierarchical, reward-orthogonal organization (Farovik et al., 2015).  In complex 

environments with an overwhelming number of states, agents – humans or rats – are theorized to 

organize the cognitive map and plan actions hierarchically for efficient behavior (Botvinick, 

2012). Yet most behavioral tasks used in behavioral neuroscience are not obviously hierarchical 

nor are the results analyzed to consider possible hierarchical solutions.  This makes it difficult to 

ascertain whether the HC encodes states at all orders equally or exhibits greater encoding of 

upper-level states. Although our findings indicate that the HC lesion disrupts the clear 

delineation of transitions between upper-level states, we do not intend to suggest that the HC is 

not involved in encoding other lower-level states or their transitions. Rather, other brain regions 

such as the OFC may perform similar functions allowing compensation. 

With regard to dopamine function, these results highlight the potential complexity of sources and 

information available to this powerful teaching system.  VTA dopamine neurons receive 

information from numerous brain areas, both directly and indirectly (Watabe-Uchida et al., 

2012).  Although these various inputs may be redundant when behavioral demands are low 

(Watabe-Uchida et al., 2012), as the dopamine firing pattern can still be well reconstructed even 

when input from a single area is removed in silico, the current results add to a growing body of 

data indicating that redundant coding may be limited to these simple situations, in which hidden 

structure is not important in determining the internal cognitive map according to which predicted 

values are calculated.  In more complex situations, the unique contributions of different brain 

regions would be expected to – and clearly do – start to emerge.  This points to the importance of 

studying the specific contributions of brain regions in behavioral contexts sufficiently complex to 

test their unique contributions. 

Having access to rich sources of information regarding the task structure is also important 

because, though it is much ignored, the complexity of the internal state representation can have a 

dramatic influence on what sorts of behaviors can be supported by both the actual dopamine 

system and by the temporal difference learning rule which has been mapped onto it (Akam et al., 

2015).   While much work in the field focuses on showing that current accounts either can or 

cannot explain certain findings, it is perhaps worthwhile considering whether much of the 

uncertainty or contradictory results could be explained by a better understanding of how 
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individual animal subjects represent the state space of a task, along with the biases and 

idiosyncrasies that are native to volitional behavior.  For instance, it has been suggested that 

contingency degradation provides an insurmountable challenge to the temporal difference 

reinforcement learning algorithms (Dezfouli and Balleine, 2012), since an agent armed with a 

very simple state space that considers only the cue will learn the value of a cue based on its 

contiguity with reward, without impact of non-contingent reward delivery during periods when 

the cue is not present (Garr et al., 2023; Jeong et al., 2022).  However, if this agent has access to 

a state space in which the context is considered and allowed to be a target and compete for 

learning – including when the cue is present – then a temporal difference rule will in principle 

reproduce the known effects of contingency degradation (i.e. delivery of rewards during non-cue 

periods) on behavior and dopamine release to a degraded cue.   

Indeed, the ability of the dopamine system to support learning and behavior in the real world, 

which is fantastically complicated compared to even our task, likely depends entirely on the 

complexity and detail of the input the system receives.   A teaching signal is only as good as the 

information it receives about the world.  This is increasingly being recognized by the 

incorporation of channels, features, and bases into temporal difference learning models (Lee et 

al., 2022; Millidge et al., 2023; Takahashi et al., 2023) and in research positing that dopamine 

neurons are influenced by internal information, inference, and dynamically evolving beliefs 

(Hennig et al., 2023; Lak et al., 2017; Nomoto et al., 2010; Papageorgiou et al., 2016; Sadacca et 

al., 2016; Starkweather et al., 2017; Starkweather et al., 2018; Wassum et al., 2011).  Yet these 

findings are likely only the tip of the iceberg; the results here and in the related studies show 

experimentally that information from even high-level association cortices is utilized by these 

neurons. 
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Methods 

Lead Contact: Geoffrey Schoenbaum (geoffrey.schoenbaum@nih.gov). 

Data and Code Availability:  The dataset and all scripts used in this study will be made 

available in an appropriate data archive upon publication. 

Experimental Model and Subject Details: Data from fourteen male Long-Evans rats (Charles 

River Labs, Wilmington, MA) contributed to this study; this does not include two rats that 

expired post-operatively during recording whose data were not used. Rats were tested at the 

NIDA-IRP in accordance with NIH guidelines.  

Method Details 

To allow direct comparisons to be made to prior work, all equipment and procedures used were 

substantially the same to those used in a prior study in which dopamine neurons were recorded in 

rats with ipsilateral lesions of the OFC (Takahashi et al., 2011).  In particular, the approach to 

recording dopamine neurons, the electrode design, recording systems, general task, specific task 

and training procedures, strain, age and sex of rat used were all identical to the prior study. 

Stereotaxic Surgery:  All surgical procedures adhered to guidelines for aseptic technique. For 

electrode implantation, a drivable bundle of eight 25-um diameter formvar insulated nichrome 

wires (A-M systems, Carlsborg, WA) chronically implanted dorsal to VTA in the left or right 

hemisphere at 5.3 mm posterior to bregma, 0.7 mm laterally, and 7.5 mm ventral to the brain 

surface at an angle of 5° toward the midline from vertical.  Some rats (n = 9) also received 

neurotoxic lesion of ipsilateral hippocampus by the infusion of NMDA (20 mg/ml) at seven sites 

in each hemisphere (see Fig. S1 for the surgical coordinates).  Controls (n = 5) received sham 

lesions in which burr holes were drilled and the pipette tip lowered into the brain but no solution 

delivered.  Cephalexin (15 mg/kg p.o.) was administered twice daily for two weeks post-

operatively. 

Histology:  All rats were perfused at the end of the experiment with phosphate-buffered saline 

(PBS) followed by 4% paraformaldehyde (Santa Cruz Biotechnology Inc., CA).  Brains were cut 

in 40 µm sections and stained with thionin.   

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 21, 2023. ; https://doi.org/10.1101/2023.07.19.549728doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549728


Odor-guided choice task:  Recording was conducted in aluminum chambers approximately 18” 

on each side with sloping walls narrowing to an area of 12” x 12” at the bottom.  A central odor 

port was located above two fluid wells (Fig. 1a).  Two lights were located above the panel.  The 

odor port was connected to an air flow dilution olfactometer to allow the rapid delivery of 

olfactory cues. Odors were chosen from compounds obtained from International Flavors and 

Fragrances (New York, NY).  Trials were signaled by illumination of the panel lights inside the 

box.  When these lights were on, nosepoke into the odor port resulted in delivery of the odor cue 

to a small hemicylinder located behind this opening. One of three different odors was delivered 

to the port on each trial, in a pseudorandom order.  At odor offset, the rat had 3 seconds to make 

a response at one of the two fluid wells.  One odor instructed the rat to go to the left to get 

reward, a second odor instructed the rat to go to the right to get reward, and a third odor 

indicated that the rat could obtain reward at either well.  Odors were presented in a 

pseudorandom sequence such that the free-choice odor was presented on 7/20 trials and the 

left/right odors were presented in equal numbers.  In addition, the same odor could be presented 

on no more than 3 consecutive trials.  Once the rats were shaped to perform this basic task, we 

introduced blocks in which we independently manipulated the size of the reward or delay 

preceding reward delivery (Fig. 1b).  For recording, one well was randomly designated as short 

and the other long at the start of the session (Fig. 1b, 1sh and 1lo).   In the second block of trials, 

these contingencies were switched (Fig. 1b, 2sh, 2lo).  The length of the delay under long 

conditions followed an algorithm in which the side designated as long started off as 1 s and 

increased by 1 s every time that side was chosen until it became 3 s. if the rat continued to 

choose that side, the length of the delay increased by 1 s up to a maximum of 7 s. If the rat chose 

the side designated as long less than 8 out of the last 10 choice trials, then the delay was reduced 

by 1 s to a minimum of 3 s.  The reward delay for long forced-choice trials was yoked to the 

delay in free-choice trials during these blocks.  In the third and fourth blocks we held the delay 

preceding reward constant while manipulating the number of reward (Fig. 1b, 3bn, 3sm, 4bg and 

4sm). The reward was a 0.05ml bolus of 10% sucrose solution.  The reward number used in delay 

blocks was the same as the reward used in the small reward blocks.  For big reward, an 

additional bolus was delivered after gaps of 500ms. The blocks were more than 60 trials long and 

block switches occurred when rats chose high value side more than 60% in last 10 free-choice 

trials. 
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Single-unit recording:  Wires were screened for activity daily; if no activity was detected, the 

rat was removed, and the electrode assembly was advanced 40 or 80 µm.  Otherwise active wires 

were selected to be recorded, a session was conducted, and the electrode was advanced at the end 

of the session.  Neural activity was recorded using Plexon Multichannel Acquisition Processor 

systems (Dallas, TX).  Signals from the electrode wires were amplified 20X by an op-amp 

headstage (Plexon Inc, HST/8o50-G20-GR), located on the electrode array.  Immediately outside 

the training chamber, the signals were passed through a differential pre-amplifier (Plexon Inc, 

PBX2/16sp-r-G50/16fp-G50), where the single unit signals were amplified 50X and filtered at 

150-9000 Hz.  The single unit signals were then sent to the Multichannel Acquisition Processor 

box, where they were further filtered at 250-8000 Hz, digitized at 40 kHz and amplified at 1-

32X.  Waveforms (>2.5:1 signal-to-noise) were extracted from active channels and recorded to 

disk by an associated workstation  

Data analysis:  Units were sorted using Offline Sorter software from Plexon Inc (Dallas, TX).  

Sorted files were then processed and analyzed in Neuroexplorer and Matlab (Natick, MA).  

Dopamine neurons were identified via a waveform analysis.  Briefly cluster analysis was 

performed based on the half time of the spike duration and the ratio comparing the amplitude of 

the first positive and negative waveform segments.  The center and variance of each cluster was 

computed without data from the neuron of interest, and then that neuron was assigned to a cluster 

if it was within 3 s.d. of the cluster’s center. Neurons that met this criterion for more than one 

cluster were not classified.  This process was repeated for each neuron. The putative dopamine 

neurons that showed increase in firing to reward compared to baseline (400ms before reward) 

were further classified as reward-responsive (t-test, p< 0.05).  To analyzed neural activity to 

reward, we examined firing rate in the 400 ms beginning 100 ms after reward delivery.  

Computational models:  We utilized a temporal-difference reinforcement learning (TDRL) 

algorithm within a partially-observable semi-Markov framework to simulate the evolution of 

reward prediction, and reward prediction errors, with experience on the behavioral task (Daw et 

al., 2006; Takahashi et al., 2016). In this model, states 𝑠 are not observable (i.e., directly 

accessible to the behavioral agent), rather they are probabilistically associated with a set of 

observations corresponding to task events, such as the onset of the odor cue or the delivery of the 

reward. Each state is also probabilistically associated with a finite duration, 𝑑, that initiates at the 

time of the observation/s associated with a given state. We assumed that task events, modeled as 
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non-empty observations, reliably signal transition to a new state, but that transitions may also 

occur with no corresponding event, i.e. an empty observation. Similar to other models in a 

partially observable setting, the conditional probabilities of each observation given a hidden state 

are specified by an observation function 𝑂, and the probability of one state following another by 

a transition matrix, 𝑇. As rats were trained extensively on the odor-guided choice task, we 

assumed that they had learned a cognitive model for these aspects of the task, and therefore, 

function 𝑂 and transition matrix 𝑇 were known.  

 

In this partially observable semi-Markov TDRL model, credit assignment requires estimating the 

current hidden state, which we model using an inference process that tracks the probability of 

having just transitioned out of state s at time t, given the sequence of observations up to t+1, 𝛽!,# 

(Daw et al., 2006). As state transitions occur irregularly (as opposed to on every time point), 

performing this inference depends critically on an estimate of the likely duration d of each state, 

captured by the dwell time distribution, 𝐷 = 𝑃(𝑑|𝑠). To compute 𝛽!,#, we rewrited it using 

Bayes’ Rule: 

𝛽!,# = 𝑃(𝑠# = 𝑠, 𝜙# = 1|𝑜$, … , 𝑜#%$)         (1) 

												= &((!"#|!!*!,+!*$)∗&.𝑠# = 𝑠, 𝜙# = 1/𝑜$, … , 𝑜#%$0
&((!"#|(#,…,(!)

,      (2) 

where the dummy variable, 𝜙#, indicates whether a state transition happened at time 𝑡. 

According to the Markov property, the first term of the numerator in Eq. 2 is equal to the 

integration over state 𝑠#, i.e., 𝑃(𝑜#%$|𝑠# = 𝑠, 𝜙# = 1) = 	∑ 𝑇!,!$𝑂!$,(!"#!$∈3 . Leveraging the 

assumption that 𝛽!,# = 1 if 𝑜#%$ is non-empty, the second term of the numerator, denoted 𝛼!,#, 

can be computed by integrating over all possible dwell times in state 𝑠, since the last non-empty 

observation: 

𝛼!,# = 𝑃(𝑠# = 𝑠, 𝜙# = 1|𝑜$, … , 𝑜#)         (3) 

								= ∑ 𝑃(𝑠# = 𝑠, 𝜙# = 1, 𝑑# = 𝑑|𝑜$, … , 𝑜#)
#%
4*$        (4) 

								=

∑ &.𝑜#54%$, … , 𝑜#/𝑠# = 𝑠, 𝜙# = 1, 𝑑# = 𝑑, 𝑜$, … , 𝑜#540	&.𝑠#54%$ = 𝑠, 𝜙#54 = 1/𝑜$, … , 𝑜#540
&.𝑜#54%$, … , 𝑜#/𝑜$, … , 𝑜#540

#%
4*$

 (5) 

								= ∑
	7&,(!)*"# 	8&,*	&.𝑠#54%$ = 𝑠, 𝜙#54 = 1/𝑜$, … , 𝑜#540

&.𝑜#54%$, … , 𝑜#/𝑜$, … , 𝑜#540
#%
4*$ ,     (6) 
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where 𝑡9 is the time that passed since the last non-empty observation. The last term of the 

numerator in Eq. 6 is the probability that the process left state 𝑠 at time 𝑡 − 𝑑 weighted by the 

transition probability from 𝑠#54 to 𝑠#54%$, which is 𝛼!,#54. Thus, 𝛼!,# can be computed 

recursively, 

𝑃(𝑠#54%$ = 𝑠, 𝜙#54 = 1|𝑜$, … , 𝑜#54) = ∑ 𝑇!,!$ ∗ 𝑃(𝑠#54 = 𝑠:, 𝜙#54 = 1|𝑜$, … , 𝑜#54)!$∈3   (7) 

																																																																						= ∑ 𝑇!,!$ ∗ 𝛼!$,#54!$∈3 .     (8) 

The denominator in Eq. 2,	𝑃(𝑜#%$|𝑜$, … , 𝑜#), is computed by conditioning on state and 𝜙#: 

𝑃(𝑜#%$|𝑜$, … , 𝑜#) = ∑ ∑ 𝑃(𝑜#%$|𝑜$, … , 𝑜# , 𝜙# = 𝜙, 𝑠# = 𝑠:) ∗ 𝑃(𝜙# = 𝜙, 𝑠# =!$∈3+∈{9,$}

𝑠:|𝑜$, … , 𝑜#) (9) 

																																	= ∑ 𝑃(𝑜#%$|𝜙# = 1, 𝑠 = 𝑠:) ∗ 𝛼!,# + ∑ 𝑃(𝑜#%$|𝑠#%$ = 𝑠:) ∗!$∈3!$∈3

(𝑃(𝑠# = 𝑠|𝑜$, … , 𝑜#) − 𝛼!,#) (10) 

																																	= ∑ 𝑇!,!$ 	𝑂!$,(!"# ∗ 𝛼!,# + ∑ 𝑂!$,(!"# ∗ (𝑃(𝑠# = 𝑠|𝑜$, … , 𝑜#) − 𝛼!,#)!$∈3!$∈3 , 

(11) 

where the belief 𝑃(𝑠# = 𝑠|𝑜$, … , 𝑜#) is computed recursively as Eq. 6 by replacing 𝐷!,4 with 

𝑃(𝑑# > 𝑑|𝑠# = 𝑠). 

 

Vectorized prediction errors are gated by the probability of having just exited a state according to  

𝛿!,# =	𝛽!,#	:𝑒=	>?4&,!@𝑟#%$ + 𝑒=	>?4&,!@𝐸>𝑉@!!"#A − 𝑉@!!B.       (12) 

Here, the future reward,	𝑟#%$, and expected value of the successor state at time 𝑡 + 1, 𝐸>𝑉@!!"#A are 

each exponentially discounted by the expected dwell time spent in state 𝑠 before transition, 

𝐸>𝑑!,#A. To regulate the strength of temporal discounting, we used a discount factor of 𝜏 = 0.05. 

The expecation 𝐸>𝑉@!!"#A is computed by conditioning on the hypothesis that the process 

transitioned out of state 𝑠 at time 𝑡 and integrated over successor states 𝑠:: 

𝐸>𝑉@!!"#A = ∑ 𝑉@!$ ∗ 𝑃(𝑠#%$ = 𝑠:|𝑠# = 𝑠, 𝜙# = 1, 𝑜#%$)!$∈3 	 	 	 	 	  (13)	

																= ∑ 𝑉@!$ ∗
A&,&$ 	7&$,(!"#

∑ A&,&$$ 	7&$$,(!"#&$$
!$∈3 .	 	 	 	 	 	 	  (14) 

The dwell time is unknown owing to the nature of partial observability, but it can be estimated 

by integrating over duration spent in state 𝑠 as for the computation of 𝛼. The sum is taken out 

until the last non-empty observation is observed since the dwell time could not be longer. 

𝐸>𝑑!,#A = ∑ 𝑑 ∗ 𝑃(𝑑# = 𝑑|𝑠# = 𝑠, 𝜙# = 1, 𝑜$, … , 𝑜#%$)
#%
4*$ 	 	 	 	 	 	(15)	
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														= ∑ 𝑑 ∗ 𝑃(𝑑# = 𝑑|𝑠# = 𝑠, 𝜙# = 1, 𝑜$, … , 𝑜#)
#%
4*$       (16) 

														=
∑ 4∗&(4!*4,!!*!,+!*$,|(#,…,(!)
!%
*+#

C&,!
.        (17) 

Values for each state are updated with the total prediction error over all states, ∑ 𝛿!,#!∈3 , at each 

time point, 

𝑉! ← 𝑉! + 𝜂D ∗ 𝐸!,# ∗ ∑ 𝛿!,#!∈3 ,         (18) 

where 𝜂D = 0.5 is the learning rate and controls the speed of learning the state value. The 

eligibility trace, 𝐸!,#, records the visiting of each state from the start of a trial,  

𝐸!,# = max:𝛾 ∗ 𝐸!,#5$, 𝛽!,#B,          (19) 

where 𝛾 = 0.95	is a temporal decay parameter, determining how far the prediction error could 

backpropagate to the states preceeding the current state.  

When a non-empty observation is observed, the dwell time distribution is updated by a Gaussian 

density function that centers on the time that passed since the last non-empty observation. 

𝐷! ← 𝐷! + 𝜂4 ∗ 𝛽! ∗ (𝐾4 − 𝐷!).        (20) 

Here, 𝜂4 = 0.3 is the learning rate for these dwell distributions. 𝐾4 is a Gaussian kernel with 

mean 𝑑, and standard deviation, 𝐶𝑉4 ∗ 𝑑, with coefficient of variation 𝐶𝑉4 = 0.05. To keep 

𝑃(𝑑|𝑠) non vanishing for all reasonable dwell times, we fixed the baseline probability to 𝐷E =

105F for all 𝑑. 

 

Reward prediction error and neural firing 

It has been suggested that dopamine neurons encode reward prediction error. We converted the 

total prediction error over all states, ∑ 𝛿,,∈. , into equivalent firing rate and compared it with the 

averaged firing rate of dopamine neurons:  

𝑓𝑖𝑟𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 = V𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑘1 ∗ ∑ 𝛿𝑠𝑠∈𝑆 ,∑ 𝛿𝑠𝑠∈𝑆 ≥ 0
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑘2 ∗ ∑ 𝛿𝑠𝑠∈𝑆 ,∑ 𝛿𝑠𝑠∈𝑆 < 0

.       (23) 

Baseline firing was set to 3Hz. 𝑘1 = 5 and 𝑘2 = 	−2 were the scale factor for positive and 

negative prediction errors, respectively. Different scale factors were used to reflect the fact that 

negative errors were underrepresented in vivo. 

 

We did not formally fit the parameters to dopamine neurons’ activities. Instead, we chose 

parameters manually to ensure that the reward prediction error signals quantitively match the 
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neural activities. The results were robust and quantitively invariant across a wide range of 

parameter values. In addition, the results were not sensitive to the initial state value or dwell time 

distribution. The simulations mimicked the task event timing used in the animal experiment. To 

reduce any potential variance caused by the initialization and inaccurate estimation of state 

values and dwell distributions, we excluded the first 10 sessions from the analysis shown in the 

results, and all results were averaged across 20 independent simulations.  

For simplicity, we did not include free-choice trials but treated them similarly to forced-trials on 

the same side. We assumed that the model always selected the fluid well that led to the reward, 

since rats exhibited high accuracy (>80%) during the forced-choice trials. Fully modeling the 

free-choice trials and the corresponding choice did not change any of the reported results. 

 

Model 1 

The task state space in model 1 was designed to reflect rats’ physical location and observation 

when performing the task, composing seven different states, i.e., trial start, left cue, right cue, left 

well, right well, left reward 1, left reward 2, right reward 1, right reward 2 and inter-trial interval 

(Fig. 1a). The transition matrix, shown in the left panel of Fig. 4b, controlled the transitions 

between states. We included observations that rats indeed observed during the task, i.e., light 

onset, odor cues signaling the left and right choice, rewards, light offset, and a null (i.e., empty) 

observation (Fig. 4b, right panel). Each state brought about a non-empty observation that 

indicated a transition into that state. We assigned a high probability (0.95) to the only non-null 

observation and 0.05 to the null observation for each state. The remaining possible observations 

each was assigned a background probability of 10-4 to avoid the vanishing of probabilities, and 

the observation probabilities for each state were normalized by dividing their sum to ensure that 

the summation of observation probabilities for each state was 1. 

 

We hypothesized that the HP-lesioned animals had difficulty in maintaining the hidden 

information after making choices, as what was observed in the OFC-lesioned animals. Therefore, 

we simulated an HC lesion by reducing the lesioned model’s ability to retain information when 

choices were made. Specifically, we set the probabilities of transitions from cue states to the well 

state on the same side to 0.55, and the probabilities of the transitions to the other well to 0.45 

(Fig. 4b, left panel).  
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Model 2 

We constructed a hierarchical task space for model 2, with the lower-level describing the process 

happening in each trial and upper-level controlling the transition between blocks. The states in 

the lower-level were defined similarly to the states in model 1, except that separate states were 

introduced to describe the reward contingency in each block (Fig, 5a). The probabilities of 

transitions from the inter-trial state to each trial start states were updated with a learning rule,  

𝑇GAG,	E1 ← 𝑇GAG,	E1 + 𝜂# ∗ (
A((#,…,(4|61)∗A848,	61

∑ A((#,…,(4|6:)∗A848,	6:
;
:+#

− 𝑇GAG,	E1),      (24) 

where	𝑇((#,…,(4|E1)	was	the	probability	of	observing	the sequence of observations, 𝑜$, … , 𝑜A, in 

block n. The probability of transition from inter-trial interval to the block 𝑛 trial start state, 

𝑇GAG,	E1, would become larger if 𝑜$, … , 𝑜A were more likely to be observed in block n, and 𝜂# 

controlled the learning speed. Other transition probabilities were also not updated (i.e. those 

describing transitions between lower-level states within a trial) since they were not changed 

through training.  

 

Task observations and their probabilities were assigned similarly to those in the model 1. Unlike 

state dwell distributions in model 1, which were updated to reflect the changing timing of the 

reward, the dwell distribution in the model 2 was fixed during the training process. This was 

because different temporal reward contingencies were represented by separate states in model 2. 

As a result, estimates of state durations did not change, so we fixed dwell distributions for model 

2 according to the mean delay to reward in the actual task. 

 

Hippocampus is widely recognized as an important brain region for representing cognitive states, 

which reflect an agent's location within a cognitive map. Therefore, we hypothesized that HCx 

rats failed to update and track their current block in a session. To simulate the effect of HC 

lesion, we introduced a higher variance between transitions in the top layer of the state space in 

our model (Fig, 5b). Specifically, 𝑇GAG,	E1 was set to 0.15 whenever it was smaller than 0.15. 
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Figure 1: Task design and behavior.  (a) Picture of apparatus used in the task, showing the odor port (~2.5 cm 
diameter) and two fluid wells.  (b) Deflections indicate the time course of stimuli (odor and reward) presented 
to the animal on each trial.  Dashed lines show when a reward was omitted, and solid lines show when reward 
was delivered.  At the start of each recording session, one well was randomly designated to deliver a single drop 
of reward after a short delay (0.5 sec).  In the other well, one drop of reward was delivered after a long delay (a 
1-7 sec). In the second block, these contingencies was switched.  In third and forth blocks, delay was held 
constant while the number of the rewards delivered was manipulated; one well was designated as big reward in 
which a second bolus of the reward was delivered (big reward) and a single bolus of reward was delivered in the 
other well (small reward).  Blue arrows, unexpected reward delivery; Red arrows, unexpected reward omission.  
(c) Choice behavior in last 3 trials before the block switch, first 8 and last 8 trials after the block switch. Bar 
graphs indicate average percentage of choice for high valued reward in first 8 and last 8 trials after block switch.  
In both groups, rats chose high valued well more often on later trials than earlier trials (F’s < 861.8, p’s < 0.01).  
(d) Reaction time in response to high and low valued reward on last 10 forced trials. Both groups showed faster 
reaction time when the high valued reward was at stake (Control, F1,127 = 57.9, p<0.01; HCx, F1,160 = 25.8, 
p<0.01). (e) percentage of correct in response to high and low valued reward on last 10 forced trials. Both 
groups showed higher accuracy when the high valued reward was at stake (Control, F1,127 = 67.0, p<0.01; HCx, 
F1,160 = 42.7, p<0.01). 
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Figure 2: Changes in reward-evoked activity of reward-responsive dopamine neurons to changes in reward value.  
(a and b) Population responses of reward-responsive dopamine neurons in Control (a) and HCx (b) groups.  Left 
panels show changes in firing to reward delivery on the first (dark-blue) and last (light-blue) trials.  Middle panels 
show changes in firing to reward omission on the first (dark-red) and last (light-red) trials.  Right panels show the 
difference in firing between first and last trials in response to reward delivery (blue) and omission (red).  (c and e)  
Distributions of difference scores comparing firing to unexpected reward delivery (left) and omission (right) in the 
early and late trials in control (c) and HCx (e) groups. The numbers in each panela indicate results of Wilcoxon singed-
rank test (p) and the average difference score (u).  (d and f)  Average firing in response to reward delivery (black) and 
omission (gray) in the first 5 and last 5 trials in control (d) and HCx (f) groups.  ANOVA (Reward x Early/Late x Trial) 
revealed significant main effects of Reward (Control, F1,43 = 13.0, p<0.01; HCx, F1,65 = 23.0, p<0.01) and Trial (Control, 
F1,43 = 2.57, p<0.05 ; HCx, F1,65 = 5.09, p<0.01) in both control and HCx.  and a significant interaction of Reward x 
Early/Late in control (F4,172 = 44.1, p<0.01), but not in HCx (F4,260 = 1.95, p>0.10).  A step down in each plot revealed a 
significant main effect of Early/Late in reward delivery in both groups (control, F1,43 = 27.0, p<0.01; HCx, F1,65 = 4.85, 
p<0.05) and reward omission in control (F1,43 = 14.8, p<0.01), but not in HCx ( F1,65 = 0.08, p>0.10).  Dashed lines 
indicate baseline firing.  Error bars, S.E.M.   
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Figure 3: Changes in reward-evoked activity of reward-responsive dopamine neurons to reward 
predictive odor cues. (a and b)  Average firing in response to high- (black) and low-valued (gray) cues in the 
first 5 and last 5 trials in control (a) and HCx (b) groups.  ANOVA (group x value x early/late x trial) revealed a 
significant main effect of value (F1,108 = 19.8, p<0.01) and significant interactions of value x early/late (F1,108 
= 12.7, p<0.01), value x trial (F4,432 = 3.87, p<0.01), and value x early/late x trial (F4,432 = 2.64, p<0.05).   
Error bars, S.E.M. (b and d)  Distributions of difference scores between high- and low-valued cues in early 
and late trials in control (b) and HCx (d) groups. The numbers in each panela indicate results of Wilcoxon 
singed-rank test (p) and the average difference score (u).  
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Figure 4: Modeling the effect of hippocampal lesions as a blurring of transitions between trials.  (a) 
Conventional state space representation of the task. Possible transitions between states are depicted by 
arrows. Green arrows represent transitions available to the control model, while pink arrows represent 
transitions available to the lesion model. (b) The transition matrix (left panel) shows the probability of each 
successor state given each state, and the observation matrix (right panel) shows the probability of each 
observation given each state. The darker color indicate higher probabilities. Green and pink indicate the 
transitions available to the control and lesioned models, respectively.  The characteristic observation is 
emitted with p = 0.95. States also emit a null (empty) observation (p = 0.05) or any of the other five possible 
observations (with p = 1e-4 each). The observation probabilities for each state were normalized by dividing 
their sum. (c) Simulated average prediction errors in the control model during the 2nd and 4th blocks. In the 
left panel, the black and grey lines represent the prediction error in response to reward delivery and reward 
omission, respectively. In the right panel, the dark and light line represents the prediction error in response to 
odor cue paired with high and low reward, respectively. (d) The same format as Fig. 4c, but for the lesion 
model. 
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Figure 5: Modeling the effect of hippocampal lesions as a blurring of transitions between blocks.  (a) Multi-level 
or hierarchical state space representation of the task.  The upper-level contains the transition from intertrial 
interval to each block, with the trial start state in each block leading to the lower-level states, describing the state 
space of individual trials . Available transitions between states are marked by arrows. Dashed arrows indicated 
plastic transitions, whose probabilities are updated during learning. Solid arrows are transitions with fixed 
probabilities. (b) The transition probabilities in the upper-level of the task space are updated according to reward 
history. The control model learns the transition probabilities perfectly and with low uncertainty (top panel), while 
the lesioned model has greater residual uncertainty (bottom panel). The darker color indicate higher probabilities. 
(c) Simulated average prediction errors in the control model during the 2nd and 4th blocks. In the left panel, the dark 
and light line represents the prediction error in response to reward delivery and reward omission, respectively. In 
the right panel, the black and grey lines represent the prediction error in response to odor cue paired with high and 
low reward, respectively. (d) The same format as Fig. 5c, but for the lesion model. 

Figure 5 and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 21, 2023. ; https://doi.org/10.1101/2023.07.19.549728doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549728


Figure 6: The model 2 with a hierarchical task space provides a better explanation for dopamine neuron 
activities. (a) Comparison of activities evoked by the 2nd drop of reward in the first 5 trials of the 3rd block in both 
animals and the model 1 with a flat task space. The control animals' dopamine neurons exhibit a higher firing rate 
compared to the HCx animals. In contrast, the model 1 with a flat state space shows the opposite pattern. (b) Same 
format as the Fig. 6a, but for the model 2 with a hierarchical task space. The firing pattern in the model 2 is 
consistent with dopamine neuron activities.
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