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ABSTRACT 
The mesoscale organization of molecules into membraneless biomolecular 
condensates is emerging as a key mechanism of rapid spatiotemporal control in 
cells1. Principles of biomolecular condensation have been revealed through in 
vitro reconstitution2. However, intracellular environments are much more 
complex than test-tube environments: They are viscoelastic, highly crowded at 
the mesoscale, and are far from thermodynamic equilibrium due to the constant 
action of energy-consuming processes3. We developed synDrops, a synthetic 
phase separation system, to study how the cellular environment affects 
condensate formation. Three key features enable physical analysis: synDrops are 
inducible, bioorthogonal, and have well-defined geometry. This design allows 
kinetic analysis of synDrop assembly and facilitates computational simulation of 
the process. We compared experiments and simulations to determine that 
macromolecular crowding promotes condensate nucleation but inhibits droplet 
growth through coalescence. ATP-dependent cellular activities help overcome 
the frustration of growth. In particular, actomyosin dynamics potentiate droplet 
growth by reducing confinement and elasticity in the mammalian cytoplasm, 
thereby enabling synDrop coarsening. Our results demonstrate that mesoscale 
molecular assembly is favored by the combined effects of crowding and active 
matter in the cytoplasm. These results move toward a better predictive 
understanding of condensate formation in vivo. 
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Cells are highly crowded, with up to 40% of cellular volume excluded by 

macromolecules4,5. This high excluded volume can inhibit molecular motion, but on the 

other hand can entropically favor assembly through depletion attraction forces6,7. The 

majority of cytoplasmic volume is taken up by mesoscale (10 - 1000 nanometer 

diameter) particles5. This means that the effects of crowding strongly affect the behavior 

of mesoscale particles and assemblies, while having less impact on nanoscale 

processes because nanoscale particles can move relatively freely between mesoscale 

crowders, but mesoscale particles cannot. Studies have shown that macromolecular 

crowding can change biochemical reaction kinetics, protein conformations, and motor 

functions7–9. 

The cell also contains elastic networks that constrain and organize the cell 

interior. These include the actomyosin cytoskeleton in the cytoplasm10 and chromatin in 

the nucleus11. The presence of these networks and the high concentration of particles 

together make the intracellular environment viscoelastic. This contrasts with simple 

buffer solutions, which are only viscous.  

Finally, cells are non-equilibrium open systems, and use adenosine triphosphate 

(ATP)-dependent cellular activities to maintain a non-equilibrium steady state by 

exchanging energy, information and material with the extracellular environment, thereby 

locally reducing entropy12. Overall, the intracellular environment is highly complex, and 

its impact on the assembly of membraneless biomolecular condensates remains largely 

unexplored. 

The assembly of membraneless biomolecular condensates bridges length scales 

between the nanoscale and mesoscale, where nanometer diameter molecules come 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


3 

together to form higher-order structures of tens to thousands of nanometers in 

diameter13. This wide range of length- and time-scales makes it difficult to predict how 

the crowded, active cellular environment will affect biomolecular condensate formation. 

Several studies have focused on the impact of elastic mechanical properties on 

condensate growth14–17. For example, elastic chromatin mechanics has been shown to 

frustrate the growth of nuclear condensates16,17. However, the combined impacts of 

macromolecular crowding, elastic networks, and non-equilibrium cellular activities on 

condensate formation are less well understood. 

It is difficult to derive general physical principles from the study of endogenous 

condensates because these systems are formed through complex coacervation of many 

molecules. Furthermore, these components are often dynamically altered by post-

translational regulation, the details of which are typically unknown. Thus, when 

perturbing intracellular environments, it is difficult to fully attribute structural changes in 

endogenous condensates to only biophysical cues, since biological functional changes 

associated with perturbations can also lead to structural changes in endogenous 

condensates. To overcome these issues, we developed an orthogonal synthetic 

intracellular condensate system called synDrops. synDrops adapted a previous 

approach to create a molecular condensate of well-defined geometry18, but adds the 

ability to chemically induce the interaction of components.  

We successfully induced synDrop formation in both budding yeast S. cerevisiae 

cells and mammalian cervical cancer HeLa cells. Complementary to the experimental 

system, we also developed two independent agent-based molecular dynamics models 

to simulate synDrops within cellular environments from first principles. Combining 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


4 

experiments and simulations, we show that macromolecular crowding facilitates the 

nucleation process while inhibiting the growth phase of condensate dynamics. However, 

ATP-dependent cellular activity promotes growth by assisting long-range structural 

rearrangements. In conclusion, we found that the assembly of mesoscale biomolecular 

condensates is favored by the crowded and active cellular environment. 

  

Droplet dynamics can be captured using inducible synDrops in cells and in-silico 

SynDrops are composed of two protein components, each of which has three modular 

domains. We based our design on the Flory-Stockmeyer theory19, which governs 

polymer network growth. Multivalency is essential for the formation of mesoscale 

condensates through phase separation20–24. We used homomultimerizing domains to 

create multivalency in our system (Fig 1a). One component uses a homohexamer 

multimerization domain (PDB: 3BEY), and the other uses a homodimer domain (PDB: 

4LTB). The two components interact in trans through two halves of an inducible 

heterodimeric binding interaction, enabling kinetic analysis. Importantly, the dimerization 

domain is a 19 nm long, stiff, antiparallel coiled-coil. Since the distance between 

interaction surfaces on the hexamer is approximately 6 nm, the dimer is sterically 

prevented from interacting with the same hexamer component more than once. Thus, 

geometric constraints strongly favor the expansion of synDrop molecular networks, 

which greatly simplifies simulation and physical analysis compared to other synthetic 

systems22–24 (Fig 1a). 
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Fig. 1 synDrops enable the analysis of condensate formation kinetics in S. cerevisiae and 
mammalian cells, and are amenable to simulation. a, synDrops are inducible synthetic 
condensates composed of two proteins. Top) Gene and crystal structures of the two 
components. Each protein has three domains: an oligomerization domain (3BEY: Hexamer or 
4LTB: Dimer), an inducible interaction domain (GAI or GID) and a fluorescent protein (BFP or 
GFP). Gibberellin (GA) induces binding between GAI and GID favoring the formation of a 
mesoscale molecular network (middle cartoon), as shown in representative images of both S. 
cerevisiae yeast cells and mammalian HeLa cells (bottom). b, GA addition leads to synDrop 
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Fig.1: synDrops enable the analysis of condensate formation kinetics in S. cerevisiae and mammalian cells, and are amenable to simulation.
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formation. Time course of synDrop formation in hog1∆ S. cerevisiae yeast cells, and 
mammalian HeLa cells. Scale bar, 10 𝜇𝑚 c, Schematic of molecular dynamics model for 
synDrop assembly. The hexamer component is represented by a sphere with six uniformly-
distributed binding sites; the dimer component is represented as a rod-like structure formed 
from three overlapping spheres with two binding sites positioned on opposite ends. A third 
component with no binding sites mimics ribosomes as macromolecular crowders. d, 
Representative images from HOOMD-blue MD simulations of synDrops system over time 
without crowders (top) and with 35% volume fraction of crowders (bottom). 
 
 

The inducible binding domains are the plant GAI (Gibberellin insensitive DELLA 

proteins) and GID (Gibberellin Insensitive Dwarf 1) domains. These domains undergo a 

heterotypic interaction that is potentiated in the presence of the plant hormone 

Gibberellin (GA)25 (Fig. 1a). GAI is truncated to a minimum dimerization domain26. 

Adding GA increases the affinity between the two synDrop components and triggers 

synDrop formation. 

We co-expressed these two proteins, in yeast cells by integrating two plasmids 

into the genome or in mammalian HeLa cells through transient transfection. Since the 

ratio between these two proteins is essential for condensate formation18, we adapted 

our plasmid design for expression in mammalian cells by combining the two genes onto 

the same plasmid and separating them by a P2A self-cleavage sequence (Extended 

data Fig. 1a). P2A self-cleavage peptide can trigger ribosome skipping forming a glycyl-

prolyl peptide bond at the C-terminus of P2A sequence during translation, resulting in 

two independent proteins27 at equal expression levels. After the proteins were 

expressed within cells, we added GA into the cell media and observed synDrop 

dynamics at different time points after GA addition (Fig. 1b). Similar to the previous 

reports18, synDrops were spherical and were observed to fuse suggesting they had 

liquid-like material properties (Extended data Fig. 1b).  
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Our in vivo system enables detailed analysis of mesoscale assembly, but cannot 

easily report on the microscopic protein interactions that underpin this process. 

Therefore, we developed two independent agent-based molecular dynamics (MD) 

platforms to provide complementary information in silico. The first simulation setup used 

a HOOMD-blue engine28,29 combined with a dynamic bonding plugin that we previously 

developed30 (Fig. 1c and 1d), and the second used a custom-developed Java program 

(Extended data Fig. 1c and 1d). In MD simulations with HOOMD-blue, we modeled the 

hexamer as a single sphere with six uniformly-distributed binding sites, and the dimer as 

a rod-like structure formed from three spheres with two binding sites positioned on 

opposing sites of the two outer spheres (Fig. 1c). In the Java MD simulations, we 

modeled the hexamer and dimer as spheres with 6 or 2 binding sites respectively 

(Extended data Fig. 1c).  The sizes of these simulated structures were chosen based on 

crystal structure information. In addition, we included a third agent to mimic ribosomes, 

which are the dominant macromolecular crowders in the cytoplasm. This agent was a 

30 nm diameter sphere with no binding interactions. The formation of synDrops was 

simulated with or without crowders under equilibrium conditions (Fig. 1d and Extended 

data Fig. 1d). There is a discrepancy in the time scales of synDrops formation in 

experiments and simulations. This may be for several reasons, including that the cell is 

around 200 times larger than our simulated system. In summary, we have developed 

the synDrop system both in cells and in silico, allowing us to address how the 

intracellular environment affects the assembly of mesoscale condensates. 

  

Macromolecular crowding promotes nucleation but inhibits droplet growth 
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We examined synDrop kinetics within cells under various conditions using fluorescence 

microscopy. We first characterized GA induced droplet dynamics in yeast cells by 

quantifying the average number of droplets per cell, as well as droplet total intensity 

(see methods). Changes in droplet total intensity are indicative of changes in cluster 

size and/or its molecular density. Droplet growth occurred in two phases. First, there 

was a nucleation phase, during which the average droplet number per cell increased. 

Subsequently, droplets grew by fusion and coarsening, leading to a decrease in droplet 

number and an increase in droplet intensity.  

Under control conditions, we observed an increase in droplet number within the 

first 10 minutes after inducing binding interactions by the addition of GA (gray curve, 

Fig. 2a). However, the total intensities of those newly formed droplets did not grow in 

this period (Fig. 2b). This suggests that droplets initially nucleate locally but do not grow 

substantially. After 10 minutes, the droplet number started to decrease and the intensity 

started to increase. This corresponds to a growth phase where droplet sizes become 

larger, mainly through droplet coalescence. Thus, the synDrops system forms droplets 

by nucleation and growth, which has been suggested as the most common mechanism 

of endogenous condensate formation31,32.  
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Fig. 2 Increasing molecular crowding promotes synDrop nucleation but inhibits growth. 
a, Averaged number of droplets per cell (hog1∆ S. cerevisiae) for one hour after synDrop 

a

Fig. 2: Increasing molecular crowding promotes synDrop nucleation but inhibits growth.  
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induction with GA for control and two osmotic compression conditions. Error bars are standard 
error of mean (SEM). b, Total intensities of droplets normalized to the averaged value of control 
cells at 0 min. Data are mean ± SEM. c, Averaged number of droplets per cell and d, 
normalized droplet total intensity over one hour comparing control (DMSO) and decreased 
molecular crowding (Rapamycin, RAPA) conditions, as well as RAPA treatment with recovered 
molecular crowding (RAPA + 700 mM sorbitol). Data are mean ± SEM e, Median diffusivity of 
droplets at different time points post-induction in the same conditions as a & b. Error bars are 
SEM. f, Density plot of droplet diffusivity versus total intensity at all time points post-induction. 
(g-i), synDrops formed in mammalian HeLa cells after 1-2 hours of induction comparing control 
to osmotic compression conditions (100 mM or 150 mM sorbitol). g, Representative images, 
scale bar 10 𝜇𝑚. h, Phase diagram of synDrop formation as a function of BFP and GFP total 
intensities. i, Histogram of droplet GFP total intensities. (j-n), Analyses of MD simulations using 
HOOMD-blue comparing conditions with 0%, 35% and 50% volume fractions of crowder: j, 
Graph theory analyses (left) of cluster formation at early and later times with corresponding 
simulation renderings (right). k, Number of molecules within the largest cluster over time from 
five replicate simulations, denoted by different colors. l, Averaged cluster size (number of 
molecules) over time from five replicate simulations. The dashed line represents the power law 
fit for the initial 0.5 s, exponent denoted as 𝛼. Error bars are standard deviation (SD) of the 
averaged values of the five repeats. m, Cluster diffusivity versus cluster size (number of 
molecules) on the log-log scale. The black data points represent the mean of averaged values 
from five repeats, and the error bars correspond to the SD among these averaged values. The 
dashed black line represents the linear fit on the log-log scale and the fitted slope is labeled as 
the exponent. n, Effective dissociation constants (Kd) of a simplified monovalent system as a 
function of crowder volume fraction. Error bars are SD from five repeats. 
 
 

We next explored the effects of macromolecular crowding on synDrop formation. 

Osmotic compression of cells can increase macromolecular crowding. However, wild-

type yeast can rapidly balance external osmotic pressure by producing glycerol33. To 

circumvent the osmo-adaptation in yeast cells, we used hog1𝛥 yeast cells (Fig. 1b). 

Hog1p is a key regulator kinase, required for rapid glycerol accumulation in yeast 

cells33. Therefore, deletion of the HOG1 gene prevents rapid osmo-adaptation allowing 

us to more precisely tune molecular crowding; we used hog1𝛥 S. cerevisiae cells in this 

study unless otherwise stated. 

After osmotic compression, the initial number of droplets nucleated was 

increased compared to control (yellow and red curve, Fig. 2a). However, the 

subsequent increase in droplet intensities was suppressed (yellow and red curve, Fig. 
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2b). Similar results were also obtained in WT yeast cells before osmo-adaptation started 

to have an effect (Extended data Fig. 2a). This suggests that macromolecular crowding 

promotes synDrop nucleation but inhibits growth.  

Besides increasing macromolecular crowding, osmotic compression also 

increases the concentrations of the protein components (Extended data Fig. 2b). We 

took advantage of the noise in protein expression levels in single cells to evaluate the 

relative importance of increased protein concentration versus increased molecular 

crowding in changing synDrop dynamics. We first grouped cells in each condition 

(control and osmotic compression conditions) into four quantiles based on their cellular 

mean pixel intensities before GA induction, indicating protein expression levels. By 

quantifying the average number of droplets per cell within different cell quantiles for 

each condition, we observed that, in all conditions, the number of droplets per cell was 

higher in cell groups with higher intensities (4th quartile) and lower in cell groups with 

lower intensities (1st quartile) when compared to the overall average for all cells 

(Extended data Fig. 2c). This confirms that protein concentrations affect synDrop 

formation. However, if we selected control and compressed cells with the same range of 

protein concentrations, we obtained qualitatively similar results to Fig. 2a and Fig. 2b 

(Extended data Fig. 2d). These results indicate that the effects of osmotic compression 

on synDrop assembly kinetics is mainly due to increased macromolecular crowding. 

We next sought additional means to change macromolecular crowding. It has 

been shown that ribosome concentrations are tuned through the TORC1 (target of 

rapamycin complex 1) pathway5. Inhibition of TORC1 using rapamycin reduces 

ribosome biogenesis and increases ribosome degradation, leading to lower ribosome 
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concentration and therefore reduced macromolecular crowding. We treated yeast cells 

with either rapamycin or DMSO (solvent control) for 2 hours. We found rapamycin-

treated cells did not form droplets after GA induction (Fig. 2c, 2d and Extended data Fig. 

2e). However, GFP signal was reduced after rapamycin treatment (Extended data Fig. 

2g). Thus, rapamycin treatment reduced the concentration of the dimer component, 

likely due to increased cell size and decreased protein translation upon TORC1 

inhibition34. We again wished to determine how changes in macromolecular crowding 

and in protein concentration each impacted synDrop assembly. To achieve this, we 

sought to restore normal macromolecular crowding in rapamycin-treated cells. We 

leveraged a microrheology approach with Genetically Encoded Multimeric nanoparticles 

(GEMs) to quantify crowding5. We found that macromolecular crowding was decreased 

in rapamycin-treated cells, consistent with previous reports5 (Extended data Fig. 2f). We 

then osmotically compressed (Extended data Fig. 2f), and found that 0.7M sorbitol 

restored macromolecular crowding of rapamycin-treated cells to the level of control cells 

(Extended data Fig. 2f). However, this level of osmotic compression barely altered 

protein concentrations (Extended data Fig. 2g). In these conditions, we found that 

synDrop formation was recovered (Fig. 2c, 2d and Extended data Fig. 2e), but was 

somewhat less robust compared to control. These results further indicate that 

macromolecular crowding is crucial for synDrop assembly and protein concentrations 

are also important.  

We next examined the mechanisms underlying the inhibition of droplet growth by 

macromolecular crowding. Droplets can grow in two ways: the first is through droplet 

coalescence35 and the other is through Ostwald ripening36. However, droplet 
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coalescence has been suggested as the dominant mechanism for droplet growth in 

biological systems16. In this mechanism, the rate of droplet growth depends on the 

collision rate between two smaller droplets, which in turn depends on the diffusivities of 

these droplets16,35. We therefore hypothesized that macromolecular crowding inhibits 

droplet growth by reducing droplet diffusivities. To test this hypothesis, we quantified 

synDrop diffusivities through particle tracking in both control conditions and after 

increasing macromolecular crowding. Since droplet size increases with time, we 

analyzed droplet diffusivities at different time points after induction. Similar to previous 

results (Fig. 2b), droplet intensity profiles showed the same trends: droplet intensities 

were lower in conditions of increased macromolecular crowding (Extended data Fig. 

2h). We also found that droplets diffused more slowly after osmotic compression 

compared to control (Fig. 2e). Droplet diffusivity depends upon the environment and 

droplet size. However, average droplet total intensities were lower in osmotic 

compression conditions, indicating that the reduction in droplet diffusivities was not due 

to increased droplet size (Fig. 2f). These results support our hypothesis that 

macromolecular crowding reduces droplet diffusivities and thus inhibits droplet growth. 

We next wished to confirm that these effects of the cellular environment were 

conserved in human cells. To achieve this, we transfected plasmids encoding the two 

synDrop components into HeLa cells, and observed the formation of droplets (Fig 2g). 

The amount of DNA delivered to cells is highly variable in transient transfection and, as 

a result, protein expression levels were highly variable in these experiments. Since 

protein concentration affects the kinetics of droplet formation, this heterogeneity in 

protein expression levels across the population made it challenging to study averaged 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


14 

droplet kinetics effectively. Instead, we took advantage of this heterogeneity to define a 

phase diagram based on the total intensities of two protein components at a fixed time 

point (Fig 2h). 

First, we tested the effects of increasing molecular crowding through osmotic 

compression. Similar to yeast, we observed a decrease in droplet size and an increase 

in droplets number per cell after osmotic compression (Fig. 2g, h). We found the 

synDrops formed in the same region of the phase diagram regardless of experimental 

condition, suggesting that a specific amount and ratio of protein components is required 

for synDrop formation, as predicted for a process driven by phase separation (Fig. 2h). 

However, droplet intensities were lower after osmotic compression compared to control 

(Fig. 2h, i). Therefore, we conclude that macromolecular crowding inhibits droplet 

growth in both human and yeast cells.  

Next, we employed our agent-based (MD) models to simulate synDrops. These 

models allowed us to investigate molecular details that are not easily accessible from 

experimental data. The well-defined structures and binding interactions between the two 

synDrop components enabled us to quantify droplet network structures with graph-

theory based analyses. Here, we defined each synDrop component as a node and the 

bond between two components as an edge. We calculated the topological shortest 

distances between each pair of components and mapped out bond connectivity to 

define each molecular cluster. The distance matrix from this analysis was then used for 

hierarchical clustering. Within the resulting clustergram, squares along the diagonal 

correspond to clusters of interacting molecules. Each pixel on the x and y axes 

represents an interaction between two individual molecules in the simulation system 
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and is colored according to the topological distance between them (e.g., molecules that 

are directly connected are dark blue, while molecules that are indirectly connected 

through a chain of interactions are a lighter hue). Blank pixels indicate that there is no 

path connecting the two corresponding molecules (Fig. 2j and Extended data Fig. 3a).  

When there were no crowders in the system, there was very limited cluster 

formation (Fig. 2j, k - top; Extended data Fig. 3a, b - top; Supplementary Movie). In 

contrast, large clusters formed when a 30 or 35% volume fraction of crowder was added 

to mimic the excluded volume typically present in the cytoplasm, suggesting that 

macromolecular crowding is crucial to nucleate and stabilize synDrop mesoscale 

networks (Fig. 2j - middle; Extended data Fig. 3a - middle; Supplementary Movie). 

However, when we further increased the crowder volume fraction to 50% (mimicking 

crowder concentrations in osmotically compressed cells), we observed a larger number 

of smaller droplets (Fig. 2j - bottom; Extended data Fig. 3a - bottom; Supplementary 

Movie). Similar results were also obtained by tracking the number of molecules within 

the largest cluster (Fig. 2k and Extended data Fig. 3b) and by plotting the cluster size 

distribution at the end time point (Extended data Fig. 3d). The initial growth rate of 

average cluster size increased with crowder volume fraction (Fig. 2l and Extended data 

Fig. 3c), suggesting that nucleation was promoted by macromolecular crowding. 

However, under high crowding conditions (e.g., 50% volume fraction) cluster size was 

limited at late time points.  These results are consistent with our experimental data that 

physiological crowding (~30-35%) appears to be optimal for synDrop assembly. 

Molecular crowding plays contrasting roles in droplet nucleation and growth. While it is 

crucial for droplet nucleation, it also inhibits droplet growth. 
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We next wondered if MD simulations could provide further insights into the 

molecular basis of the frustration of synDrop growth when there is excessive 

macromolecular crowding. We plotted the average diffusivity for each cluster as a 

function of the cluster size and found that diffusivities decrease as a function of cluster 

size as expected, and were reduced overall when crowder volume fractions were 

increased (Fig. 2m and Extended data Fig. 3e), consistent with our hypothesis that 

crowding frustrates coalescence by reducing cluster diffusivities. This effect is 

particularly pronounced under conditions of excess macromolecular crowding. 

Finally, we investigated the molecular basis of the promotion of droplet 

nucleation by macromolecular crowding. We hypothesized that increased 

macromolecular crowding could favor binding interactions, as previously reported8. To 

assess this idea, we performed MD simulations on a simplified system where two 

protein components each had only a single available binding site (1,1) (Extended data 

Fig. 3f). We then extracted the effective dissociation rate (Kd) under different volume 

fractions of crowders by quantifying the number of bonds formation at equilibrium. The 

effective Kd was indeed reduced (affinity was increased) in simulations with increased 

crowder volume fractions (Fig. 2n and Extended data Fig. 3g). Furthermore, we 

determined the unbinding rate (koff) by allowing the system to reach equilibrium, 

switching the binding rate to zero, and then measuring the rate at which bonds 

dissociate (Extended data Fig. 3f). Calculation of effective Kd and koff allowed us to infer 

the effective binding rate (kon), which is koff divided by Kd. Interestingly, when comparing 

conditions with 30% volume fraction crowder to those with no crowders, we found koff 

did not change (Extended data Fig. 3f).  This indicates that the decrease in effective Kd 
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is mainly attributed to an increase in effective kon, potentially facilitated by the increase 

in effective concentration. 

In conclusion, our combination of in vivo experiments and simulations support the 

model that macromolecular crowding promotes droplet nucleation by reducing the 

effective Kd of chemical bond formation, but also inhibits droplet growth by reducing 

droplet diffusivity, therefore kinetically frustrating coalescence of small droplets into 

larger structures. 

  

ATP-dependent cellular activities promote droplet growth 

We next wondered if other features of the cytoplasmic environment could impact 

synDrop assembly. In addition to being crowded, the cytoplasm is also far from 

equilibrium due to ATP-dependent activities. Cellular metabolism was previously shown 

to strongly affect the motion of mesoscale particles37. We therefore hypothesized that 

ATP-dependent cellular activities might affect synDrop formation by promoting their 

motion and therefore driving coalescence of small droplets into larger structures.  

We used metabolic inhibitors: 2-deoxyglucose (2-DG) and antimycin to deplete 

intracellular ATP in yeast cells, taking care to maintain neutral pH within cells and 

isotonic conditions to avoid osmotic perturbations to cell volume38. We depleted ATP at 

different time points to assess the importance of ATP during different phases of 

synDrop assembly. We observed that synDrop growth was inhibited within 10 min of 

ATP depletion (Fig. 3a, top), and synDrop diffusivity was also reduced immediately after 

ATP depletion (Fig. 3a, bottom). These effects were most apparent when ATP was 
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depleted early during synDrop assembly (Fig. 3b). Therefore, cellular active matter is 

crucial for both synDrop diffusivity and growth in yeast cells. 
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Fig. 3 ATP depletion inhibits synDrop growth. a, Droplet formation in hog1∆ S. cerevisiae 
yeast cells in control conditions and after ATP depletion with isotonic buffer using 80mM 
sorbitol. ATP was depleted at two time points (indicated by arrows), 20 min and 40 min after 
synDrop induction with GA: (Top) Droplet total intensity, mean ± SD; (bottom) Median droplet 
diffusivity ± SEM. b, Density plot of individual droplet diffusivity versus its total intensity 50-60 
min after induction. c, Properties of droplets that were pre-formed by one hour of GA induction 
with DMSO (solvent control) in mammalian HeLa cells and subsequently treated with the 
following conditions for one hour: ATP depletion, or the JLY cocktail (which freezes actomyosin 
dynamics): (Top) Median droplet diffusivity ± SEM; (bottom) Density plot of diffusivity versus 
total intensity for individual droplets. d, Droplet formation in hog1∆ S. cerevisiae yeast cells 
comparing control conditions to ATP depletion with a hypo-osmotic buffer: (Top) Median droplet 
diffusivity. Error bars are SEM; (bottom) Droplet total intensity: averaged values ± SD. e, 
Density plot of diffusivity versus total intensity for individual droplets at all time points post-
induction. f, MD simulations using HOOMD-blue keeping a constant 30% crowder volume 
fraction but varying crowder effective temperatures. Values are shown relative to room 
temperature in units of Kelvin: 0.5, 1, 1.1, 1.2, 2: (Top) Number of molecules within the largest 
synDrop cluster over time from five replicate simulations; (bottom) Cluster diffusivity versus 
cluster size (number of molecules). The black data points are the mean of five replicate 
simulations, error bars are SD, dashed black line is the linear fit in log space with exponent 
(slope) labeled. 
 
 

We repeated this experiment in HeLa cells, and found that droplet diffusivity was 

greatly reduced after we removed all metabolic activity by ATP depletion (Fig. 3c). The 

dynamics of the actomyosin cytoskeleton are an important source of cellular motion39. 

We therefore hypothesized that actomyosin contractility might agitate the cytoplasm and 

increase synDrop motion. To test this idea, we inhibited actomyosin dynamics using the 

JLY drug cocktail, which simultaneously prevents actin depolymerization, 

polymerization, and myosin II-based restructuring40. This treatment reduced diffusivity 

almost as much as total ATP-depletion, suggesting that actomyosin dynamics is a 

dominant factor that increases mesoscale diffusivity in the cytoplasm of mammalian 

cells (Fig. 3c). Depletion of ATP or freezing of actomyosin dynamics using JLY 

decreased both droplet diffusivity and droplet total intensity (Fig. 3c, bottom); however, 

there was no clear relationship between droplet local diffusivity and droplet size. In 
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conclusion, actomyosin activity is the dominant ATP-dependent activity that increases 

synDrop motion in mammalian cells and is required for the formation of large synDrops.  

We next wondered if reduced diffusivity of synDrops is the main cause of growth 

inhibition upon ATP depletion. To test this, we used hypo-osmotic shock to drive water 

influx and reduce crowding until the diffusivity of synDrops in ATP-depleted cells was 

the same as that of untreated cells (Fig. 3d above and Fig 3e). However, droplet growth 

was still inhibited in ATP-depleted cells, even when diffusivity was restored (Fig. 3d, 

bottom, and Fig. 3e). This result suggested that increasing droplet local diffusivity was 

insufficient to rescue synDrop growth. Therefore, additional ATP-dependent cellular 

activities are necessary to promote synDrop growth. 

Next, we attempted to model the role of cellular active matter using our MD 

simulations. To achieve this, we used a simple approximation of altered environmental 

motion by adding frequency-independent isotropic noise to crowders by varying the 

effective temperatures of the crowders41,42, while keeping the temperature of the 

synDrop components constant. We observed a positive correlation between the largest 

cluster size and the effective temperature of the crowders (Fig. 3f, top). When we 

plotted cluster diffusivity versus cluster size on a log-log scale, we observed individual 

cluster diffusivities were slightly higher at higher crowder effective temperature 

conditions and the rate of decrease in cluster diffusivity with increasing cluster size was 

also slightly slower (Fig. 3f, bottom). However, this increase in cluster diffusivity was 

relatively modest, implying that other factors may contribute more significantly to the 

increased mesoscale assembly at higher crowder effective temperature, supporting the 

experimental results within cells.  
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ATP-dependent cellular activities facilitate droplet growth by promoting long-

range cellular structural reorganization 

Given that coalescence dominates synDrop growth, the growth process is intrinsically 

linked to droplet motion. Multiple intracellular factors can influence droplet motion, 

including macromolecular crowding, viscoelasticity, and poroelasticity43. Non-equilibrium 

ATP-dependent cellular activities can modify all of these factors. At small length-scales 

(< 100 nm), ATP-dependent cellular activities may change the spatial distribution and 

dynamics of macromolecular crowders. At larger length-scales (> 100 nm), larger 

cellular structures including membranes and the actomyosin cytoskeleton, both of which 

undergo dynamic ATP-dependent fluctuations, have strong impacts on mesoscale 

confinement and elasticity39,44. We therefore examined droplet trajectories more closely 

to gain insight into how longer-range confinement and elasticity relate to synDrop 

growth. 

The average distributions of angles between two vectors that connect 

subsequent steps in particle tracks can indicate whether particles are driven by active 

motion, or confined. The angle correlation function is calculated from the ensemble- and 

time-averaged cosine values of droplet trajectories angles at various time lags45. If the 

average angle between steps is in the range of (𝜋/2 to 𝜋) the angular correlation 

function will be less than zero (-1 to 0). This indicates anti-persistent motion in particle 

trajectories, suggesting confined or caged particle movement. Conversely, if the 

averaged angle between steps falls in the range of (0 to 𝜋/2), the angular correlation 

function will be larger than zero (0 to 1). This implies persistent motion in particle 
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trajectories, suggesting motion driven by active processes. We analyzed droplet 

trajectories at three time points after synDrop induction in control conditions or after 

ATP depletion in an isotonic buffer in yeast cells (Fig. 4a). In general, we observed 

negative angle correlations at all time scales, indicating confined motion. This 

confinement was most apparent at short time-scales. These angle correlation values 

were further reduced when ATP was depleted, suggesting particles experienced higher 

confinement. The effect was particularly dramatic when ATP was depleted at later times 

after synDrop induction when droplets were larger. We conclude that ATP-dependent 

activities reduce confinement in the cytoplasm and this effect is especially important for 

larger particles. 

We next selected droplets present at 50-60 min after synDrop induction that had 

similar total intensities. Analyzing this subset of droplets enabled more precise 

comparison between conditions, and to avoid the concern that the distribution of 

synDrop sizes changes in different conditions (Extended data Fig. 4a). This approach 

gave similar results in our angular correlation analyses; ATP depletion led to a reduction 

in the values of the angular correlation function at all time scales, with more prolonged 

ATP depletion leading to larger reductions (Extended data Fig. 4b).  Therefore, 

increased confinement after ATP depletion is not a consequence of differences in 

synDrop size. 
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Fig. 4 ATP-dependent cellular activity facilitates droplet growth by promoting long-range 
cellular structural reorganization. a, Angle correlation analyses on droplet trajectories at 0-10 
min, 30-40 min and 50-60 min after synDrop induction with GA in hog1∆ S. cerevisiae yeast 
cells comparing control conditions to ATP depletion at 20 min and 40 min. Lower angle 
correlation values indicate greater confinement. b, Normalized velocity autocorrelation for 
droplet trajectories in hog1∆ S. cerevisiae yeast cells. Droplets were analyzed 50-60 min after 
synDrop induction. c, Histogram of droplet GFP total intensity for droplets that had formed after 
one hour of induction in mammalian HeLa cells comparing control (DMSO) to 1-hour ATP 
depletion or 1-hour JLY treatment (to freeze actin dynamics) conditions. Droplets with total 
intensities≤ 900 (blue dashed line) were used in subsequent analyses. d, Angle correlation 
analyses droplets that had formed after one hour of induction in mammalian HeLa cells. 
Droplets with total intensity ≤ 900 were analyzed after one hour of SynDrop induction. e, 
Normalized velocity autocorrelation for droplets that had formed after one hour of induction in 
mammalian HeLa cells. f, Phase diagram of synDrop BFP and GFP total intensities. Droplets 
were induced for 1-2 hours in the presence of control (DMSO) or JLY treatment. g, Histogram of 
droplet GFP total intensities (log scale). h, Model for how ATP-dependent cellular activities may 
influence droplet growth. 
 

Fig. 4: ATP-dependent cellular activity facilitates droplet growth by promoting long-range cellular structural reorganization.  
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Finally, we used hypo-osmotic shock to investigate whether equalizing local 

diffusivity between control and ATP-depleted conditions would also equalize 

confinement. We found similar patterns of confinement after hypo-osmotic shock; 

although local diffusivity was equalized, ATP depletion still increased confinement 

(Extended data Fig. 4c). 

Together, these results are consistent with a model where diffusivity of droplets is 

influenced not only by macromolecular crowding5 but also by additional factors that 

define a longer-range confinement. 

We next investigated cytoplasmic elasticity using the velocity autocorrelation 

function46 of the droplet trajectories. We focused on larger droplets that formed 50-60 

minutes after synDrop induction. We compared control conditions to ATP-depletion, 

both in an isotonic buffer (Fig. 4b) and in the hypo-osmotic buffer that normalized local 

diffusivity (Extended data Fig. 4d). We observed a negative peak, corresponding to anti-

persistent particle motion, which is a signature of elastic materials. The magnitude of 

this negative peak increased after ATP depletion, and this elasticity further increased 

after longer periods of ATP depletion (Fig. 4b, inset). This suggests that ATP depletion 

increases the elasticity of the cytosol. This elasticity may impede mesoscale droplet 

motion and thus impose a longer-range confinement.  We conclude that ATP-dependent 

cellular activities help reduce cellular elasticity, fluidize the cytosol and constantly 

remodel the cytosol to reduce confinement, leading to increased mesoscale droplet 

motion, which promotes droplet growth. 

We next examined droplet trajectories in mammalian HeLa cells. We focused on 

a subset of synDrops of smaller size to avoid concerns about differences in droplet size 
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between conditions (Fig. 4c and Extended data Fig. 4e). Similar to the results in yeast 

cells, angular correlation values were reduced compared to control after ATP depletion 

(Fig. 4d, red line). Therefore, ATP-dependent activities are required to reduce 

confinement in mammalian cells. 

Next, we inhibited actomyosin dynamics with JLY (Fig. 4d, blue line). Again, we 

found that droplets were more confined at all time-scales (Fig. 4d). We conclude that 

actomyosin cytoskeleton dynamics is the dominant ATP-dependent activity that reduces 

confinement in mammalian cells.  

In addition to driving ATP-dependent motion, the cytoskeleton also plays a critical 

role in determining cellular elasticity10.  Therefore, we also analyzed velocity 

autocorrelation before and after ATP depletion or JLY treatment. We found that both 

treatments led to an increase in the magnitude of the negative peak corresponding to 

anti-persistent particle motion. Thus, either loss of ATP or inhibition of actomyosin 

dynamics increases the elasticity of the mammalian cytoplasm (Fig. 4e).  

Finally, we examined the effect of JLY treatment on droplet formation in HeLa 

cells. We compared the droplet phase diagram of control cells to that of cells treated 

with the JLY cocktail at the same time as synDrop induction. We found that droplet 

intensities were smaller in JLY-treated cells compared to the DMSO control (Fig. 4f and 

4g). Overall, these results support a model in which the actin cytoskeleton promotes 

long-range structural rearrangements and thereby reduces elasticity and confinement in 

the cytoplasm. The consequent increase in synDrop motion would promote droplet 

growth through coalescence (Fig. 4h). 
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Discussion 

Membraneless organelles carry out many essential cellular functions within cells1. 

Therefore, it is important to understand the spatial and temporal information associated 

with membraneless organelles formation and dissolution – how cells regulate and 

coordinate this information. Many studies have focused on specific chemical signals47; 

however, few studies have looked at physical cues, which are indispensable but often 

neglected. Here, we demonstrated that intracellular macromolecular crowding promotes 

droplet nucleation by reducing effective dissociation constants of binding reactions but 

inhibits droplet growth by reducing droplet diffusivities, while ATP-dependent cellular 

activity promotes droplet growth by fluidizing cellular environment through promoting 

long-range structural rearrangements.  

 Macromolecular crowding has several effects on molecular assembly. First, it 

increases the local concentrations of molecules due to excluded volume occupied by 

macromolecular crowders7. Second, it imposes depletion-attraction forces that increase 

the propensity of molecular assembly6. The cytoplasmic excluded volume is dominated 

by mesoscale particles, in particular ribosomes, therefore this entropic effect is most 

prominent at the mesoscale. Both effects can affect binding interactions, leading to 

reduced effective dissociation constants8. Crowding agents have been shown to lower 

the critical concentrations for several in vitro reconstituted phase separation 

systems48,49. However, the inhibition of the kinetics of droplet growth by excess 

macromolecular crowding is less studied due to the limited availability of controlled in 

vivo phase separation systems. 
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 synDrops have a unique combination of features that make them an ideal 

platform to investigate how intracellular biophysical environments affect condensates 

assembly. Droplet nucleation and growth dynamics can be studied on a reasonable time 

scale (minutes - 1 hour). In contrast to endogenous condensates, the synDrops 

components were designed to minimize non-specific interactions with endogenous 

molecules within cells, including ATP-consuming enzymes. Moreover, the well-defined 

protein structures and network geometry make synDrops highly amenable to simulation 

and analysis with graph-theoretical approaches.  

Our study highlights how the intracellular environment modulates mesoscale 

molecular assembly through a combination of macromolecular crowding and cellular 

active-matter. Notably, the intracellular environment is highly heterogeneous in 

mesoscale diffusivity50, reflecting local heterogeneity in macromolecular crowding and 

cellular activity. These physical variations may underlie the distinct behavior of droplet 

formation within cells compared to the theoretical prediction that droplets should 

thermodynamically fuse into a single entity. By actively modulating local 

macromolecular crowding and cellular activity levels, cells could potentially control the 

formation of endogenous condensates at different locations via biophysical signals. For 

example, increased cellular activity, such as actin dynamics near the cell cortex, could 

facilitate endogenous condensate formation, which might in turn contribute to the 

nucleation and growth of the cytoskeleton network. 

We speculate that changes in the biophysical properties of cells could be sensed 

by their impacts on condensate assembly. Indeed, a synthetic droplet can modulate the 

rates of kinase reaction in response to changes in macromolecular crowding, 
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demonstrating the feasibility of this idea in cells51. On the other hand, the biophysical 

properties of the cell interior may also change during disease progression, leading to 

aberrant phase separation of endogenous condensates. Our study provides a 

framework to guide future investigations into the effects of intracellular biophysical 

properties on endogenous condensate formation and dissolution and their relevance to 

normal biology and disease pathology. 
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Methods 
 
Plasmid construction 
For yeast plasmids, open reading frames (ORF) encoding full length Gid and Gai 1-9226, 
dimer (PDB 4LTB) and hexamer (PDB 3BEY)18, Green fluorescent protein (Superfolder 
GFP) and blue fluorescent protein (mTagBFP) were first amplified using PCR. Using 
Gibson assembly, we then fused each ORF: Gai-BFP-3BEY and Gid-4LTB-GFP with a 
strong yeast promoter TDH3, an N-terminal nuclear export signaling sequence, and a 
yeast terminator CYC1, and subsequently assembled into yeast backbone vectors 
pRS304 and pRS306 respectively. For mammalian plasmids, we codon optimized yeast 
ORFs based on codon usage of Homo sapiens (Twist bioscience, CA). We then 
introduced P2A sequence between two ORFs through oligo overhangs and combined 
Gai-BEY-3BEY and Gid-4LTB-GFP using Gibson assembly onto the same mammalian 
lentiviral pLVX plasmid with a CMV promoter. 
  
Yeast transformation 
Two yeast synDrops plasmids were first linearized using restriction enzyme cutting 
within auxotrophic marker region. The linearized plasmids were then transformed into 
W303 yeast strains (MATa leu2-3, 112 trip1-1 can1-100 ura3-1 ade2-1 his3-11-,15) 
sequentially using a LiAc based protocol52. Single yeast cell colony was selected based 
on whether condensates were able to form after one hour of 300 𝜇M GA induction. 
  
Mammalian cell transient transfection 
Mammalian HeLa cells were plated on a six-well plate in high glucose Dulbecco’s 
Modified Eagle Medium (DMEM) with L-glutamine (Gibco) supplemented with 10% fetal 
bovine serum (FBS; Gemini Bio), penicillin (100 U/ml) and streptomycin (100 g/ml) 
(Gibco). Cells were incubated at 37 with 5% CO2 in a humidified incubator and grown to 
approximately 60-80% confluency after one day of plating. On the next day, cells were 
transiently transfected using 1g of plasmid and 3ul of FuGENE HD transfection reagent 
(Promega) based on manufacturer’s protocol. After 24 hours, cells were ready for 
imaging by replacing with fresh supplemented DMEM. Induction of synDrops in HeLa 
cells were performed by adding GA till 100 M final concentration. 
 
Drug treatment 
To deplete ATP, S. cerevisiae cells were treated with 20 mM 2-deoxyglucose (2-DG) 
and 10 μM antimycin A in Synthetic Complete (SC) media without glucose53. The media 
was further supplemented with either 80mM sorbitol for isotonic buffer condition or 
10mM sorbitol for hypo-osmotic buffer condition. Additionally, the pH was balanced to 
7.5 using a 50mM Tris-HCl buffer. For ATP depletion in mammalian HeLa cells, a 
mixture of 6 mM 2-deoxyglucose (2-DG) and 1 μM carbonyl cyanide-trifluoromethoxy 
phenylhydrazone (FCCP) in CO2-independent medium supplemented with L-glutamine 
were added to cells for 1 hour54. 
 
To inhibit TOC1 signaling, S. cerevisiae cells were treated with 1 μM rapamycin for 2 
hours in Synthetic Complete Dextrose (SCD) media5. For JLY treatment, mammalian 
HeLa cells were first treated with 10 μM y27632 for 10 min, followed by the addition of 
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jasplakinolide and latrunculin B to final concentrations of 10 μM y27532, 8 μM 
jasplakinolide, and 5 μM latrunculin B40 for 1 hour in CO2-independent medium 
supplemented with L-glutamine. 
 
Microscope imaging of yeast cells 
Yeast cells were imaged using TIRF Nikon TI Eclipse microscope with a 100x oil 
objective (100x phase, NA = 1.4, part number = MRD31901) and a sCMOS camera 
(Zyla, Andor, part number = ZYLA-4.2p-CL10). Epifluorescence LED light source 
(Spectra X, part number = 77074160) was used for imaging yeast cells with synDrops. 
The GFP channel was imaged through GFP filter set (EF-EGFP (FITC/Cy2), Chroma, 
part number = 49002), while the BFP channel was imaged through quad-band filter set 
(ET – 405/488/561/640 nm, Chroma, part number = TRF89901). Z stacks were taken 
for each channel with an interval of 0.5 𝜇𝑚 and total distance of 3 𝜇𝑚  (7 slices). 
Average projection of Z stacks was used for subsequent imaging analyses. Droplet 
movies were also recorded using GFP channel with 50 ms frame rate without delay for 
a total of 20 s (total 400 frames). 100% power of 488 nm laser light source (OBIS 
100mW LX 488 nm, Coherent, part number = 1236444) with GFP filter set (EF-EGFP 
(FITC/Cy2), Chroma, part number = 49002) was used for imaging yeast cells with 40 
nm diameter Genetically Encoded Multimeric nanoparticles (GEMs). To record GEM 
movement, we used Highly inclined thin illumination (HILO) mode. Each GEM movie 
was imaged on a single focal plane at 10 ms frame rate with no delay (100 Hz) for a 
total of 4 s (total 400 frames). 
  
Microscope imaging of mammalian cells 
Mammalian cells with synDrops were imaged using confocal Nikon TI Eclipse 
microscope with a spinning disk unit (CSU-X1 spinning disk, Yokogawa, part number = 
99459), under a 60x oil objective (60x, NA = 1.49, part number = MRD01691) and a 
sCMOS camera (Prime 95B, Teledyne Photometrics). The GFP channel was excited 
through laser light source (OBIS 100mW LX 488 nm, Coherent, part number = 
1236444) and imaged through GFP emission filter (EF525/36m, Chroma, part number = 
77014803). The BFP channel was excited through LED light source (X-Cite 120LED, 
Excelitas, part number = 010-00326R) and imaged through DAPI filter set (ET-DAPI, 
Chroma, part number = 49028). Z stacks were taken for each channel with an interval of 
0.5 𝜇𝑚 and total distance of 6 𝜇𝑚 (13 slices). Average projection of Z stacks was used 
for subsequent imaging analyses. Droplet movies were also recorded using GFP 
channel with 50 ms frame rate without delay for a total of 20 s (total 400 frames). 
  
Image analyses 
To characterize synDrops’ properties within cells, images after average Z projections 
were analyzed using the Trackmate plugin55 on ImageJ56,57. Due to higher signal-to-
noise ratio in GFP channel compared to BFP channel as well as droplets overlap in 
GFP and BFP channels, droplets were then only detected using GFP channel. We 
applied a LoG (Laplacian of Gaussian filter) detector on Trackmate to identify the 
droplets, with one micron ‘Estimated object diameter’ and a fixed ‘Quality threshold’ 
across all different conditions in each experiment.  To determine the droplet total 
intensity, we employed a circular particle detection algorithm that identified each droplet 
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with a fixed circular region larger than the droplet itself. Subsequently, we computed the 
mean pixel intensity within this identified region and subtracted the background mean 
pixel intensity. We denoted this measurement as the droplet total intensity because it 
reflects both the number of molecules and molecular concentration within the 
condensate. Results of particle detection from Trackmate included all time points and 
were then saved as xlm files. Using home-written MATLAB (2019a) code, we 
subsequently extracted and compiled droplets information, including droplet raw mean 
pixel intensities and their locations in the images. We also determined the background 
mean pixel intensity by randomly selecting 20 circles with the same one-micron 
diameter in each image from areas away from droplets. Thus, final droplet total 
intensities were calculated by subtracting the background mean pixel intensity from 
droplet raw mean pixel intensities identified above. Yeast-Spotter58 were used to identify 
single yeast cells, which generated ImageJ mask files indicating locations of each 
individual yeast cell. By combining with droplets’ location information, we computed the 
number of droplets per cell using home-written MATLAB code. 
 
To obtain droplet diffusivities, we used simple linear assignment problem (LAP) particle 
tracking function on Trackmate in addition to particle detection, with max linking and 
gap-closing distance of 390 nm and maximal gap-closing frame interval of 1. Only 
trajectories with more than 10 time points were included for subsequent mean squared 
displacement analyses using home-written MATLAB code. 
 
To determine GEM diffusivities, GEM trajectories were detected using the Mosaic 
plugin59 on ImageJ56,57 with particle detection parameters of radius 3, cutoff 0, per/Abs 
(percentile) 0.1 and particle linking parameters of link range 1, displacement 5 with 
Brownian dynamics. We only selected trajectories with more than 10 time points for 
subsequent mean squared displacement analyses using home-written MATLAB code. 
 
To generate density plots based on the scattered data points, the data space was 
separated into 25 x 25 different regions based on the minimum and maximum values on 
both x and y axis. By counting the number of data points within each region, 2D density 
matrices were generated and smoothed using the MATLAB function scattercloud60. The 
contour lines were further obtained using MATLAB function contour. 
  
MD simulation analyses 
We used graph-theory based methods for analyzing MD simulations. Each molecule 
within MD simulations had a unique number identifier and was treated as the node for 
the graph. Bonds formed at each time point were recorded based on molecule pairs that 
formed each bond, and were treated as the edges for the graph. The graph at each time 
point was then constructed by providing both node and edge information inputs using 
the igraph61 package in python. To identify clusters, a distance matrix was first 
calculated based on the topological shortest path that links each pair of molecules. 
Subsequently, a hierarchical clustering algorithm was employed on the distance matrix. 
This led to the reordering of molecule sequences, with molecules within each cluster 
being grouped together. Cluster size was then determined based on the number of 
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molecules that were within each cluster. Locations of each molecule were also recorded 
at each time point.  
 
To calculate cluster diffusivity, clusters with size larger than 10 molecules were first 
identified at each time point. Pairwise clusters from consecutive time points were 
connected from the last time point by determining the largest number of same nodes, 
thus forming trajectories. If a cluster’s size changed by 20 within a time interval, it was 
considered as a new cluster and tracked as a distinct trajectory. Only trajectories with 
more than 10 time points were selected for calculating cluster diffusivities, where mean 
squared displacement of the cluster’s center of mass for each trajectory was fitted over 
the first 10 time intervals. All analyses were performed using home-written python3 
code. 
 
To determine the effective dissociation constants (Kd) of the chemical bonds, we 
analyzed the kinetics of bond formation in monomeric MD simulations until equilibrium 
was achieved. In the monomeric system (where the dimers and hexamers are in a 1:1 
stoichiometric ratio), we reduced the available binding sites of two components from 6 
and 2 to 1 and 1 each. By fitting the data to an exponential decay function, we extracted 
the number of bonds formed at equilibrium. Subsequently, Kd was calculated based on 
the concentration of all species at equilibrium, using the formula for a dimerization 
reaction 𝐴 + 𝐵 ↔ 𝐴𝐵, 
 
𝐾!	 =

[$][&]
[$&]

= '!'"
'!"(

, where V is the volume of the simulation box. 
 
To roughly match simulation time scales to experimental ones, the mean-squared 
displacement of 40 nm GEM particles in simulation were fit to the Einstein diffusion 
relation in 3d 𝑀𝑆𝐷(𝑡) = 6𝐷𝑡 for long times, and D was obtained in the units of 𝜇𝑚2/𝜏. 
The unit of time 𝜏 = 𝟕.𝟓 × 𝟏𝟎−𝟖 seconds was then obtained by matching this D to an 
approximate cellular value of 𝜇𝑚2/s.   
 
Simulations set up using HOOMD-blue 
An agent-based molecular dynamics (MD) simulation approach has been developed to 
study the synDrops system. MD Simulations were performed using HOOMD-blue v2.9.6 
28,29, making use of a single graphics processing unit (GPU) to achieve considerable 
acceleration in simulation speeds. We use coarse-grained (CG) representations of each 
synDrops component—(i) a sphere with six rigid evenly distributed binding sites to 
represent the hexamer and (ii) 3 spheres in a rod-like arrangement with two 
complementary binding sites at two ends to represent the rigid coiled-coil dimer. We 
have 1170 dimers and 390 hexamers within a cubic box with 860 nm sides (maintaining 
a 3:1 stoichiometric ratio of dimers and hexamers to have 1:1 ratio of complementary 
binding sites). This results in concentrations of 3 𝜇𝑀 for dimers and 1 𝜇𝑀 for hexamers, 
similar to our estimated values in experiment. Finally, 20 spheres of diameter 40 nm are 
added to mimic the trace presence of GEMs in the experiment. 
 
In addition, spherical components of various sizes without any binding site are added in 
the system to mimic the crowded cellular environment. For the initial configuration, the 
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CG components are arranged in a lattice whose positions are generated from a CsCl-
type lattice generator using the ‘lattice’ module from the ASE (Atomic Simulation 
Environment) 62 package. We ran MD simulations with varying volume fractions of 
ribosomes to study the effect of crowding in synDrops assembly. We also varied the 
effective temperatures that only govern the ribosome movements to study how cellular 
activities affect synDrops assembly.  
 
Binding occurs through complementary interaction sites between dimers and hexamers. 
We modeled such covalent interactions by developing an open-source C++ plugin, 
called the Dynamic Bond Updater 30 in HOOMD-blue that builds upon a model for epoxy 
binding developed in 63. The Bond Updater, for every n steps during the MD simulation, 
stochastically adds or removes dynamic bonds. Binding events occur with a fixed 
probability Pon at a critical distance dbind between interaction sites, while unbinding 
events occur with a probability Poff. Using our dynamic bonding framework, we thus 
have controls over our binding and unbinding rate constants kon and koff respectively; the 
bond affinity ε is defined by 
 

△ 𝐺	 = 𝑘𝐵	𝑇	𝑙𝑛+𝑘𝑜𝑛/𝑘𝑜𝑓𝑓, 	≡ 𝜀		 
 
and can be increased by lowering the unbinding rate constant koff. We ensure that the 
dynamic bonding model satisfies detailed balance using a particular Metropolis-like 
criterion 64–66, so that the system moves towards an equilibrium ensemble as bonds 
form and dissolve dynamically. We use the cell neighbor list 67 to accelerate non-
bonded agents’ calculations and possible bonding pairs’ constructions. 
 
Interactions between crowders and synDrops proteins occur via a soft repulsion 
potential 30 defined by 
 
𝑈0123(𝑟) 	= 	 𝜀0123	(1 −	(𝑟/𝑟453)6)   if 𝑟		 < 𝑟453    and 
 
𝑈0123(𝑟) 	= 	0																																									if 𝑟 ≥ 	 𝑟453 
 
, where smoothing was applied using HOOMD-blue’s XPLOR 29 smoothing function. 
The soft potential was implemented by using HOOMD-blue’s tabulated potential option 
(with 1000 interpolation points between rmin = 0 and rmax = 1.5σ, where σ is the sum of 
the radii of the particles). Here, ron is chosen as the point at which the smoothing starts. 
We set  
ron = 0.95rcut for our simulations, and rcut = σ. There is no soft repulsion between 
complementary binding interaction sites on hexamers and dimers, where we 
implemented a Lennard-Jones (LJ) 68–71 attraction between the hexamer and dimer rigid 
bodies, with a cut-off distance equal to 2.5σ. 

All objects in the system undergo thermal fluctuations using Langevin 72 dynamics, with 
drag forces proportional to the diameter. The dimensions of every CG component 
approximate their respective crystal structures. Within our MD simulations, we typically 
use periodic boundary conditions (PBC). However, we also have the option of adding 
‘walls’ to confine our system in a ‘closed box’. For volume fractions up to 35%, we are 
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able to place ribosomes in the box without overlaps through random sequential 
insertion. For higher concentrations, we first set up initial simulation box size using 
lengths of 1400 nm on a side (4.3x the target volume) and the appropriate number of 
ribosomes, and then compress the system to the target size of 860 nm linearly over 5 × 
105 simulation steps (using the ‘hoomd.variant’ module of HOOMD-blue), and finally turn 
on dynamic bonding in the system to record synDrops dynamics. 

To study how non-thermal cellular activity41,42 impacts formation of synDrops via MD 
simulations, we assign the crowders a different effective temperature Tc from the rest of 
the system, which can be achieved through separate Langevin ‘thermostats’ in 
HOOMD-blue. We ran a different set of MD simulations at a fixed volume fraction of 
ribosomes (= 30%) but varying the crowder effective temperatures Tc. 

 

Table of parameters for the MD Simulations using HOOMD-blue: 

Parameter (with description) Value used in simulations  

Simulation timestep (𝑑𝑡) 0.002 

Crowder Temperature  𝑇4 relative to 𝑇7118 = 298.15𝐾 0.5 - 1.0  

Simulation box length (in nm) 860 (for the actual system) 
400 (for the monomeric 
system to obtain Kd) 

Number of rod proteins 1170 (for the actual system) 
200 (for the monomeric 
system) 

Number of hexamers 390 (for the actual system) 
200 (for the monomeric 
system) 

Number of GEMs 20 

Number of binders on each hexamer  6  

Number of binders on each rod  2 

Volume fraction of ribosomes (crowders) 0.0 - 0.5 

Diameter of inner rod particle (in nm) 11.7  

Diameter of the two outer rod particle(s) (in nm) 13.45  

Diameter of hexamer (in nm) 12.6  

Diameter of ribosome (in nm) 30.0  
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Diameter of GEM (in nm) 40.0 

Diameter of binders on rods and hexamers (in nm) 2.0  

Maximum binding distance  𝑑9:;! (in nm) 1.0  

Repulsion for soft quartic potential (in 𝑘&𝑇) 500  

𝜀 for Lennard-Jones potential (in 𝑘&𝑇) 0  

Rate constant for dynamic binding 𝑘1; (in units of 1/𝜏)  50.0 

Rate constants for dynamic unbinding 𝑘122 (in units of  
1/𝜏)  

0.001, 0.0001 

Binding affinity 𝜀 (in 𝑘&𝑇) 10.8, 13.1  
 
Simulations set up using custom-developed Java program 
A custom 3-dimensional agent-based Java program was developed to simulate 
aggregation and cluster formations of proteins in a cellular environment.  All objects in 
these simulations are spheres, or spherical aggregates, that move in space as a result 
of applied forces.  These forces arise in three distinct ways: through collisions with other 
spheres and with the boundaries of the simulation, through bonds to other spheres, and 
through a random force and torque applied to approximate the Brownian motion of each 
object.  The movements of all molecules then follow Langevin dynamics with a defined 
effective temperature.  
 
Collisions are resolved with a simple rule: at a low-Reynolds number we can calculate 
the exact force to resolve any pairwise collision.  This method is described in detail in 
Alberts & Odell (2004)73.  All the pairwise forces are summed and then attenuated for 
numerical stability such that collisions resolve over several time-steps (not 
instantaneously).  Translational bond forces are resolved in the same way: by 
calculating the force required to bring a stretched bond back to its relaxed position.  By 
contrast, torques are calculated with a linear torsional spring.  Brownian forces and 
torques are randomly taken from a Gaussian distribution with a mean of zero and 
variance of 2D𝛥t, where D is the diffusivity of the object (which can differ in all three 
translational and rotational degrees of freedom) and 𝛥t the time-step. 
 
The two protein components of the synDrops system were modeled as spheres having 
6 or 2 uniformly distributed binding sites on their surface (Extended data Fig. 1c). The 
size of each sphere was determined based on its experimental correspondence with 
known protein crystal structures. Bond kinetics in the model arise by prescribing binding 
and unbinding rates, with binding occurring between available sites only when they are 
within a minimum distance of each other. The unbinding rate is assumed to be 
independent of any strain in the bond. After selecting appropriate values for minimum 
binding distance and unbinding rate, we ensured that the dissociation constant for the 
chemical bond ranged between 1 to 10 𝜇𝑀. As in the HOOMD-Blue system, we use 
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1170 dimers, 390 hexamers, and varying numbers of ribosomes in a box with side 
length 860 nm. 
 

Table of parameters for the MD Simulations using custom-developed Java 
program: 

Parameter (with description) Value used in simulations  

Simulation timestep (𝑑𝑡) (in second) 10<= 

Crowder Temperature  𝑇4 relative to 𝑇7118 =
298.15𝐾 

1 

Viscosity (in 𝑃𝑎 ∙ 𝑠) 0.03 

Simulation box length (in nm) 860 (for the actual system) 
400 (for the monomeric system 
to obtain Kd) 

Number of rod proteins 1170 (for the actual system) 
200 (for the monomeric 
system) 

Number of hexamers 390 (for the actual system) 
200 (for the monomeric 
system) 

Number of binders on each hexamer  6  

Number of binders on each rod  2 

Volume fraction of ribosomes (crowders) 0.0 - 0.5 

Diameter of rod (in nm) 23.4 

Diameter of hexamer (in nm) 12.6  

Diameter of ribosome (in nm) 30.0  

Maximum binding distance  𝑑9:;! (in nm) 2.3  

Rate constants for dynamic unbinding (𝑘122) (in 𝑠<>) 26 

 

References 

1. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


38 

functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 

215–235 (2021). 

2. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: 

organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017). 

3. Bonucci, M., Shu, T. & Holt, L. J. How it feels in a cell. Trends Cell Biol. (2023) 

doi:10.1016/j.tcb.2023.05.002. 

4. van den Berg, J., Boersma, A. J. & Poolman, B. Microorganisms maintain crowding 

homeostasis. Nat. Rev. Microbiol. 15, 309–318 (2017). 

5. Delarue, M. et al. mTORC1 Controls Phase Separation and the Biophysical 

Properties of the Cytoplasm by Tuning Crowding. Cell 174, 338–349.e20 (2018). 

6. Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of 

macromolecules. J. Polym. Sci. 33, 183–192 (1958). 

7. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends 

Biochem. Sci. 26, 597–604 (2001). 

8. Zhou, H.-X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: 

biochemical, biophysical, and potential physiological consequences. Annu. Rev. 

Biophys. 37, 375–397 (2008). 

9. Nettesheim, G. et al. Macromolecular crowding acts as a physical regulator of 

intracellular transport. Nat. Phys. 16, 1144–1151 (2020). 

10. Pegoraro, A. F., Janmey, P. & Weitz, D. A. Mechanical Properties of the 

Cytoskeleton and Cells. Cold Spring Harb. Perspect. Biol. 9, (2017). 

11. Pierro, M. D., Potoyan, D. A., Wolynes, P. G. & Onuchic, J. N. Anomalous diffusion, 

spatial coherence, and viscoelasticity from the energy landscape of human 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


39 

chromosomes. Proceedings of the National Academy of Sciences 115, 7753–7758 

(2018). 

12. Fang, X. & Wang, J. Nonequilibrium Thermodynamics in Cell Biology: Extending 

Equilibrium Formalism to Cover Living Systems. Annu. Rev. Biophys. 49, 227–246 

(2020). 

13. Hyman, A. A. & Brangwynne, C. P. Beyond stereospecificity: liquids and mesoscale 

organization of cytoplasm. Dev. Cell 21, 14–16 (2011). 

14. Rosowski, K. A. et al. Elastic ripening and inhibition of liquid-liquid phase 

separation. Nat. Phys. 16, 422–425 (2020). 

15. Biswas, S., Mukherjee, B. & Chakrabarti, B. Thermodynamics predicts a stable 

microdroplet phase in polymer-gel mixtures undergoing elastic phase separation. 

Soft Matter 18, 8117–8123 (2022). 

16. Lee, D. S. W., Wingreen, N. S. & Brangwynne, C. P. Chromatin Mechanics Dictates 

Subdiffusion and Coarsening Dynamics of Embedded Condensates. Preprint at 

https://doi.org/10.1101/2020.06.03.128561. 

17. Zhang, Y., Lee, D. S. W., Meir, Y., Brangwynne, C. P. & Wingreen, N. S. 

Mechanical Frustration of Phase Separation in the Cell Nucleus by Chromatin. 

Phys. Rev. Lett. 126, 258102 (2021). 

18. Heidenreich, M. et al. Designer protein assemblies with tunable phase diagrams in 

living cells. Nat. Chem. Biol. 16, 939–945 (2020). 

19. Flory, P. J. Principles of Polymer Chemistry. (Cornell University Press, 1953). 

20. Banani, S. F. et al. Compositional Control of Phase-Separated Cellular Bodies. Cell 

166, 651–663 (2016). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


40 

21. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically 

disordered linkers determine the interplay between phase separation and gelation 

in multivalent proteins. Elife 6, (2017). 

22. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. 

Nature 483, 336–340 (2012). 

23. Bracha, D. et al. Mapping Local and Global Liquid Phase Behavior in Living Cells 

Using Photo-Oligomerizable Seeds. Cell 176, 407 (2019). 

24. Shin, Y. et al. Spatiotemporal Control of Intracellular Phase Transitions Using Light-

Activated optoDroplets. Cell vol. 168 159–171.e14 (2017). 

25. Murase, K., Hirano, Y., Sun, T.-P. & Hakoshima, T. Gibberellin-induced DELLA 

recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008). 

26. Miyamoto, T. et al. Rapid and orthogonal logic gating with a gibberellin-induced 

dimerization system. Nat. Chem. Biol. 8, 465–470 (2012). 

27. Donnelly, M. L. L. et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ 

mechanism indicates not a proteolytic reaction, but a novel translational effect: a 

putative ribosomal ‘skip’. J. Gen. Virol. 82, 1013–1025 (2001). 

28. Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular 

dynamics simulations fully implemented on graphics processing units. J. Comput. 

Phys. 227, 5342–5359 (2008). 

29. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: A Python package for 

high-performance molecular dynamics and hard particle Monte Carlo simulations. 

Comput. Mater. Sci. 173, 109363 (2020). 

30. Mitra, G. et al. A coarse-grained simulation model for colloidal self-assembly via 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


41 

explicit mobile binders. Soft Matter (2023) doi:10.1039/d3sm00196b. 

31. Riback, J. A. et al. Stress-Triggered Phase Separation Is an Adaptive, 

Evolutionarily Tuned Response. Cell 168, 1028–1040.e19 (2017). 

32. Lee, D. S. W. et al. Size distributions of intracellular condensates reflect 

competition between coalescence and nucleation. Nat. Phys. 1–11 (2023). 

33. Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. & Gustin, M. C. An 

osmosensing signal transduction pathway in yeast. Science 259, 1760–1763 

(1993). 

34. Saxton, R. A. & Sabatini, D. M. mTOR Signaling in Growth, Metabolism, and 

Disease. Cell 169, 361–371 (2017). 

35. Siggia, E. D. Late stages of spinodal decomposition in binary mixtures. Phys. Rev. 

A 20, 595–605 (1979). 

36. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated 

solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961). 

37. Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized 

by metabolic activity. Cell 156, 183–194 (2014). 

38. Xie, Y., Gresham, D. & Holt, L. J. Increased mesoscale diffusivity in response to 

acute glucose starvation. MicroPubl Biol 2023, (2023). 

39. Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nat. 

Mater. 4, 557–561 (2005). 

40. Peng, G. E., Wilson, S. R. & Weiner, O. D. A pharmacological cocktail for arresting 

actin dynamics in living cells. Mol. Biol. Cell 22, 3986–3994 (2011). 

41. Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active matter. Phys. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


42 

Rev. E Stat. Nonlin. Soft Matter Phys. 77, 051111 (2008). 

42. Caragine, C. M., Kanellakopoulos, N. & Zidovska, A. Mechanical stress affects 

dynamics and rheology of the human genome. Soft Matter 18, 107–116 (2021). 

43. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic 

material. Nat. Mater. 12, 253–261 (2013). 

44. Turlier, H. et al. Equilibrium physics breakdown reveals the active nature of red 

blood cell flickering. Nat. Phys. 12, 513–519 (2016). 

45. Harrison, A. W., Kenwright, D. A., Waigh, T. A., Woodman, P. G. & Allan, V. J. 

Modes of correlated angular motion in live cells across three distinct time scales. 

Phys. Biol. 10, 036002 (2013). 

46. Weber, S. C., Thompson, M. A., Moerner, W. E., Spakowitz, A. J. & Theriot, J. A. 

Analytical tools to distinguish the effects of localization error, confinement, and 

medium elasticity on the velocity autocorrelation function. Biophys. J. 102, 2443–

2450 (2012). 

47. Leung, A. K. L. Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate 

Formation. Trends Cell Biol. 30, 370–383 (2020). 

48. Yang, P. et al. G3BP1 Is a Tunable Switch that Triggers Phase Separation to 

Assemble Stress Granules. Cell 181, 325–345.e28 (2020). 

49. Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and Maturation of 

Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol. Cell 60, 208–219 

(2015). 

50. Garner, R. M., Molines, A. T., Theriot, J. A. & Chang, F. Vast heterogeneity in 

cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


43 

simulations. Biophys. J. 122, 767–783 (2023). 

51. Sang, D. et al. Condensed-phase signaling can expand kinase specificity and 

respond to macromolecular crowding. Mol. Cell 82, 3693–3711.e10 (2022). 

52. Amberg, D. C., Burke, D. J. & Strathern, J. N. High-efficiency transformation of 

yeast. CSH Protoc. 2006, db.prot4145 (2006). 

53. Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-

like state promotes entry into dormancy. Elife 5, (2016). 

54. Zidovska, A., Weitz, D. A. & Mitchison, T. J. Micron-scale coherence in interphase 

chromatin dynamics. Proc. Natl. Acad. Sci. U. S. A. 110, 15555–15560 (2013). 

55. Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-particle 

tracking. Methods 115, 80–90 (2017). 

56. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. 

Methods 9, 676–682 (2012). 

57. Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: 

An open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 

(2015). 

58. Lu, A. X., Zarin, T., Hsu, I. S. & Moses, A. M. YeastSpotter: accurate and 

parameter-free web segmentation for microscopy images of yeast cells. 

Bioinformatics 35, 4525–4527 (2019). 

59. Shivanandan, A., Radenovic, A. & Sbalzarini, I. F. MosaicIA: an ImageJ/Fiji plugin 

for spatial pattern and interaction analysis. BMC Bioinformatics 14, 349 (2013). 

60. Etoc, F. et al. Publisher Correction: Non-specific interactions govern cytosolic 

diffusion of nanosized objects in mammalian cells. Nat. Mater. 17, 1048 (2018). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


44 

61. Csardi, G., Nepusz, T. & Others. The igraph software package for complex network 

research. InterJournal, complex systems 1695, 1–9 (2006). 

62. Larsen, A. H. et al. The atomic simulation environment—a Python library for 

working with atoms. J. Phys. Condens. Matter 29, 273002 (2017). 

63. Thomas, S., Alberts, M., Henry, M. M., Estridge, C. E. & Jankowski, E. Routine 

million-particle simulations of epoxy curing with dissipative particle dynamics. J. 

Theor. Comput. Chem. 17, 1840005 (2018). 

64. Metropolis, N. & Ulam, S. The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–

341 (1949). 

65. Maxian, O., Donev, A. & Mogilner, A. Interplay between Brownian motion and 

cross-linking controls bundling dynamics in actin networks. Biophys. J. 121, 1230–

1245 (2022). 

66. Marbach, S. & Miles, C. E. Coarse-grained dynamics of transiently-bound fast 

linkers. arXiv [cond-mat.soft] (2022). 

67. Howard, M. P., Anderson, J. A., Nikoubashman, A., Glotzer, S. C. & 

Panagiotopoulos, A. Z. Efficient neighbor list calculation for molecular simulation of 

colloidal systems using graphics processing units. Comput. Phys. Commun. 203, 

45–52 (2016). 

68. Tee, L. S., Gotoh, S. & Stewart, W. E. Molecular Parameters for Normal Fluids. 

Lennard-Jones 12-6 Potential. Ind. Eng. Chem. Fundam. 5, 356–363 (1966). 

69. Hansen, J.-P. & Verlet, L. Phase Transitions of the Lennard-Jones System. Phys. 

Rev. 184, 151–161 (1969). 

70. Nicolas, J. J., Gubbins, K. E., Streett, W. B. & Tildesley, D. J. Equation of state for 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/


45 

the Lennard-Jones fluid. Mol. Phys. 37, 1429–1454 (1979). 

71. Smit, B. Phase diagrams of Lennard-Jones fluids. J. Chem. Phys. 96, 8639–8640 

(1992). 

72. Phillips, C. L., Anderson, J. A. & Glotzer, S. C. Pseudo-random number generation 

for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU 

devices. J. Comput. Phys. 230, 7191–7201 (2011). 

73. Alberts, J. B. & Odell, G. M. In silico reconstitution of Listeria propulsion exhibits 

nano-saltation. PLoS Biol. 2, e412 (2004). 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558334doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558334
http://creativecommons.org/licenses/by/4.0/

