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Abstract
Glioblastoma (GBM) is the most aggressive type of central nervous system tumor. Molecular targeting may be important 
when developing efficient GBM treatment strategies. Sequencing of GBMs revealed that the receptor tyrosine kinase (RTK)/
RAS/phosphatidylinositol-3-kinase pathway was altered in 88% of samples. Interestingly, AXL, a member of RTK, was 
proposed as a promising target in glioma therapy. However, the molecular mechanism of AXL modulation of GBM genesis 
and proliferation is still unclear. In this study, we investigated the expression and localization of hypoxia-inducible factor-1 
alpha (HIF-1α) by AXL in GBM. Both AXL mRNA and protein are overexpressed in GBM. Short-interfering RNA knock-
down of AXL in U251-MG cells reduced viability and migration. However, serum withdrawal reduced AXL expression, 
abolishing the effect on viability. AXL is also involved in hypoxia regulation. In hypoxic conditions, the reduction of AXL 
decreased the level and nuclear localization of HIF-1α. The co-expression of HIF-1α and AXL was found in human GBM 
samples but not normal tissue. This finding suggests a mechanism for GBM proliferation and indicates that targeting AXL 
may be a potential GBM therapeutic.
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Introduction

Malignant gliomas, including anaplastic astrocytomas and 
glioblastomas (GBM), are aggressive tumors that confer a 
poor prognosis [1–5]. Glioblastoma was the first cancer to 
be systematically analyzed by The Cancer Genome Atlas 
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(TCGA) network [6, 7]. Sequencing of these tumors revealed 
that the receptor tyrosine kinase (RTK)/RAS/phosphati-
dylinositol-3-kinase (PI3K) pathway was altered in 88% 
of samples [6, 7]. Interestingly, a receptor tyrosine kinases 
(RTK), AXL displayed a promising target in glioma therapy 
in previous studies [8–10], and may modulate GBM genesis 
and proliferation.

AXL involved in the regulation of multiple aspects of 
tumorigenesis. Originally, AXL was cloned from patients 
with chronic myelogenous leukemia and it exhibited trans-
forming potential when overexpressed [11]. AXL overex-
pression has been reported in a variety of human cancers 
[12–17]. The upregulation of AXL is associated with inva-
siveness and metastasis in lung [16], head and neck cancer 
[17], prostate [18], breast [19] and gastric cancers [20] as 
well as in renal cell carcinoma [21] and glioblastoma [9]. 
AXL overexpression via a ‘tyrosine kinase switch’ leads 
to resistance to imatinib in gastrointestinal stromal tumors 
[22]. AXL expression is induced by chemotherapy drugs 
and overexpression of AXL confers drug resistance in acute 
myeloid leukemia [23]. AXL was also suggested as a marker 
for the prediction of prognosis in several cancers [8, 24–26].

Hypoxia is known as a stimulus for angiogenesis, mainly 
via hypoxia-inducible factor-1 alpha (HIF-1α) [27, 29], 
which regulates the transcription of several genes medi-
ating tumor responses to hypoxia such as tumor cell pro-
liferation, survival, migration and angiogenesis [27, 29]. 
During tumor hypoxia, HIF-1α is a regulator of vascular 
endothelial growth factor (VEGF) and modulates angiogen-
esis by upregulating the VEGF gene [27, 28, 30]. Sustained 
angiogenesis is one of the hallmarks of cancer [31] and is 
a complex multi-step process essential for tumor growth, 
invasion and metastatic spread [27, 32, 33]. Interestingly, 
AXL has been identified as a direct HIF-1α target gene in 
breast and renal cancer. HIF-1α has been shown to act as a 
tumor suppressor, as elevated expression of HIF-1α reduces 
tumor size, while HIF-1α knockdown increases cell prolif-
eration [34–37]. AXL, on the other hand, can promote the 
stabilization and activation of HIF-1α in hypoxic conditions, 
leading to increased expression of HIF-1α target genes. This 
occurs through several mechanisms, including promoting 
the translocation of HIF-1α to the nucleus and enhancing 
the activity of HIF-1α transcriptional activity. Conversely, 
HIF-1α can also regulate the expression of AXL. HIF-1α 
can induce the expression of AXL in hypoxic conditions, 
and this upregulation of AXL expression is thought to con-
tribute to the invasive and metastatic behavior of cancer cells 
[34, 35, 37, 38]. This complex and bidirectional relationship 
between AXL and HIF-1α requires further research to fully 
understand the molecular mechanisms involved and their 

implications for cancer biology and therapy. In this study, 
we investigated the role of AXL in the expression and locali-
zation of HIF-1α in GBM. Our findings suggest that AXL 
plays a crucial role in promoting GBM proliferation, and 
targeting AXL expression may hold therapeutic potential for 
treating GBM. Overall, this study provides new insights into 
the intricate interplay between AXL and HIF-1α in cancer 
biology, and highlights the importance of investigating these 
relationships for developing effective cancer therapies.

Materials and methods

Antibodies and reagents

Anti-actin antibody was purchased from Sigma–Aldrich 
(St. Louis, MO, USA). Horseradish peroxidase-conjugated 
anti-mouse IgG or anti-rabbit IgG secondary antibodies 
were purchased from Komabiotech (Seoul, Korea), Anti-
AXL antibody was purchased from Santa Cruz Biotechnol-
ogy (Dallas, TX, USA).

Patient samples

The study was approved by the Hospital Institutional 
Review Board (approval number CNUH 2018‑03‑014) 
according to the Declaration of Helsinki at Chungnam 
National University Hospital (Daejeon, Korea). The bio-
specimens and data used for this study were provided by 
the Biobank of Chungnam National University Hospital, 
a member of the Korea Biobank Network.

Cell culture

The glioblastoma cells (U87-MG, U251-MG and 
U343-MG) were maintained in medium (RPMI) sup-
plemented with 10% fetal bovine serum (FBS), 25 mM 
HEPES (Thermo Scientific, Waltham, MA, USA), 1% 
Antibiotics-Antimycotics (Life Technologies, Carlsbad, 
CA, USA).

Immunoblot analysis

The western blot analysis was performed as the previously 
described [39, 40]. Briefly, cells were placed on ice and 
extracted with lysis buffer containing 50 mM Tris–HCl, 
pH 7.5, 1% v/v Nonidet P-40, 120 mM NaCl, 25 mM 
sodium fluoride, 40 mM β-glycerol phosphate, 0.1 mM 
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sodium orthovanadate, 1 mM phenylmethylsulfonyl flu-
oride, 1 mM benzamidine, and 2 μM microcystin-LR. 
Lysates were centrifuged for 15 min at 12,000 g. The 
cell extracts were resolved by 10–15% SDS-PAGE, and 
transferred to Immobilon-P membranes (Millipore, Burl-
ington, MA, USA). The filters were blocked for 1 h in 1 
X tri-buffered saline buffer (TBS; 140 mM NaCl, 2.7 mM 
KCl, 250 mM Tris- HCl, pH 7.4), containing 5% skimmed 
milk and 0.2% Tween-20, followed by an overnight incu-
bation with the anti-AXL and anti-actin antibodies diluted 
1000-fold at 4 °C. The secondary antibody was horserad-
ish peroxidase-conjugated anti-mouse IgG or anti-rabbit 
IgG (Komabiotech, Seoul, Korea), diluted 5000-fold in 
blocking buffer. The detection of protein expression was 
visualized by enhanced chemiluminescence, according to 
the manufacturer’s instructions (Thermo Fisher Scientific).

Real‑time quantitative reverse 
transcription‑polymerase chain reaction (qRT‑PCR)

Total RNAs were extracted from frozen tissue samples 
or from cells using the PureHelix RNA Extraction Solu-
tion (Nanohelix, Daejeon, South Korea). The cDNA was 
synthesized from total RNA with the SuperScript III First-
Strand Synthesis System for qRT-PCR (Invitrogen, Grand 
Island, NY, USA). The qRT-PCR measurement of individual 
cDNAs was performed using SYBR green dye to measure 
duplex DNA formation with the StepOne Plus real-time 
PCR system (Invitrogen) and normalized to the expression 
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
RNA. The following primers were used in the qRT-PCR 
(F: Forward, R: Reverse); Human AXL: F-5’-GTC​CTC​ATC​
TTG​GCT​CTC​TTC / R-5’- GAC​TAC​CA GTT​CAC​CTCTT-
TCC; human GAPDH: F-5’-TCG​ACA​GTC​AGC​CGC​ATC​
TTC​TTT​ / R-5’-TAC​GAC​CA AAT​CCG​TTG​ACT​CCGA.

Real‑time assay for cell proliferation and migration

Real-time assay for cell proliferation and migration were 
measured using an xCELLigence RTCA DP system (Roche 
Applied Science, Indianapolis, IN, USA), which monitors 
cellular events in real-time without the incorporation of 
labels. Briefy, cells were placed into well of an E-plate 16 
(for proliferation; U251-MG, 3 × 103 cells) and incubated 
for indicated times.

RNA sequencing and RNA‑Seq data analysis

Total RNA of U87-MG cell, U251-MG cell and normal 
brain was extracted using Trizol reagent (Invitrogen) follow-
ing the manufacturer’s procedures. The total RNA quantity 

and purity were analysis of Bioanalyzer 2100 and RNA 
6000 Nano LabChip Kit (Agilent, Santa Clara, CA, USA). 
Roughly 10 μg of total RNA was used to isolate poly(A) 
mRNA with poly(T) oligo-attached magnetic beads (Inv-
itrogen). Following purification, the mRNA is fragmented 
into small pieces using divalent cations under increased tem-
perature. Next, the cleaved RNA fragments were reverse-
transcribed to create the final cDNA library in accordance 
with the protocol for the mRNA-Seq sample preparation kit 
(Illumina, San Diego, CA, USA). The average insert size 
for the paired-end libraries was 300 bp (± 50 bp). Next we 
performed the paired-end sequencing on an Illumina Hiseq 
2000 system at Macrogen (Seoul, Korea) following the ven-
dor’s instructions. For each sample, sequenced reads were 
aligned to the UCSC human reference genome (http://​ccb.​
jhu.​edu/​softw​are/​tophat) using the Tophat package (http://​
genome.​ucsc.​edu/), which initially removes a portion of 
the reads based on quality information accompanying each 
read and then maps the reads to the reference genome. Frag-
ments per kilobase of exon per million fragments mapped 
(FPKM) were calculated to compare the expression level of 
AXL mRNA variants in each sample.

Confocal imaging analysis and indirect 
immunofluorescence

U251-MG cells were grown on glass coverslips and trans-
fected with plasmids. After 24 h, the cells were fixed in 4% 
paraformaldehyde at room temperature for 10 min and per-
meabilized in 0.2% Triton ×100 for 5 min at room tempera-
ture. Then cells were incubated in blocking buffer containing 
5% bovine serum albumin (Sigma–Aldrich, St. Louis, MO, 
USA) in 1× TBS for 1 h at 37 °C. The rabbit polyclonal anti-
AXL antibody was diluted 200-fold and incubated overnight. 
FITC-conjugated anti-rabbit antibody (BD Biosciences, San 
Jose, CA, USA) was used as the secondary antibody. After 
appropriate rinsing, coverslips were mounted with Vectash-
ield (Vector Laboratories, Burlingame, CA, USA) and visu-
alized using a Zeiss confocal microscope.

Immunohistochemistry

The immunohistochemistry analysis was performed as previ-
ously described [41]. A human cancer tissue array slide with 
paraffin sections was purchased from US Biomax Inc. (Der-
wood, MD, USA). Histostain-Plus kits (Zymed Laboratories 
Inc., South San Francisco, CA, USA) were used following 
the manufacturer’s instructions for immunohistochemistry of 
the tissue array. Briefly, paraffin sections were deparaffinized 
with xylene and rehydrated in a graded series of ethanol. The 
slide was submerged in peroxidase quenching solution for 

http://ccb.jhu.edu/software/tophat
http://ccb.jhu.edu/software/tophat
http://genome.ucsc.edu/
http://genome.ucsc.edu/
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10 min. After washing twice with phosphate-buffered saline 
(PBS) for 5 min, two drops of Reagent A were added for 
blocking, and the slide was incubated for 30 min. Following 
two washes with PBS, the anti-AXL antibody was applied 
overnight at 4 °C. Then, biotinylated secondary antibody, 
Reagent B, was added after rinsing with PBS. The slide was 
incubated at room temperature for 1 h and then rinsed with 
PBS and mixed with enzyme-conjugated Reagent C. After 
washing with PBS, DAB chromogen, and a mixture of Rea-
gent D1, D2, and D3, the reaction was stopped with distilled 
water, and pictures were taken with a microscope.

Bioinformatics data set

Human AXL expression in different tumor types from the 
TCGA database was analyzed at cBioPortal (http://​www.​
cbiop​ortal.​org/​index.​do) based on 65,690 queried samples. 
The co-expression of AXL and HIF-1α was analyzed at cBi-
oPortal based on 142 glioblastomas or 182 ovarian serous 
cystadenocarcinomata queried samples.

Statistical analysis

Data were expressed as the mean ± SD from at least three 
separate experiments. The differences between groups were 
analyzed using a Student’s t-test, and p < 0.05 (*) was con-
sidered significant and p < 0.01 (**) was highly significant 
compared with corresponding control values. Statistical 
analyses were carried out using SPSS software ver. 13.0 
(SPSS Inc.). For the analysis of the Kaplan–Meier survival 
curve, P values were obtained from the log-rank test, and the 
hazard ratio and 95% confidence interval were determined 
by a univariate Cox regression model.

Results

Upregulation of AXL expression in glioblastoma cell 
lines

To explore a putative role for AXL in brain cancer, west-
ern blotting using an anti-AXL antibody were performed. 
AXL expression was markedly enhanced in U87-MG and 
U251-MG GBM cells compared with other cells (Fig. 1A). 
Quantitative real-time PCR (qRT-PCR) of glioblastoma 
cell lines showed that the levels of mRNA encoding AXL 
were highly elevated in U87-MG cells (Fig. 1B). Based on 
the above observations, AXL mRNA levels were measured 
by RNA sequencing of glioblastoma cell lines. Total RNA 
was isolated from two cell lines (U87-MG and U251-MG), 
which showed high expression of AXL in Fig. 1A and B. We 
also isolated total RNA from normal brain cells. mRNAs 
were isolated from approximately 10 μg of total RNA, frag-
mented, and reverse-transcribed into cDNA. The numbers 
of “fragments per kilobase of exon per million fragments 
mapped” (FPKMs) were calculated to compare the expres-
sion levels of AXL mRNA among the various samples. As 
shown in Fig. 1C, the FPKMs were markedly higher in 
U87-MG cells (18.08) and U251-MG cells (13.12) than in 
cerebral cortex cells (4.65), indicating that AXL is transcrip-
tionally upregulated in GBM cells.

Subcellular localization of AXL in U251‑MG cells

The subcellular location of AXL in U251-MG cells was 
then determined by immunocytochemistry. AXL was found 
throughout the cytosolic area of the cell, including the tail-
like cellular extensions or microvilli (Fig. 2). This suggested 
that AXL may play the important roles in cell migration, cell 
signaling and cell death.

AXL regulates cell migration 
and nutrient‑dependent cell death in GBM

To determine if AXL affect cell migration or cell death, 
short-interfering RNA (siRNA) knockdown of AXL was 
employed. As shown in Fig. 3A, AXL reduction led to 
decreased the cell migration, which may be due to the func-
tion of microvilli-located AXL as shown in Fig. 2. Similarly, 
the cell viability in AXL knocking cells was also dramati-
cally less than control cells (Fig. 3B). However, when the 
FBS was withdrawn, the cell viability indexes in the control 
and AXL-knockdown cells were similar (Fig. 3C), indicat-
ing that AXL-regulated cell death was dependent on the 
nutrient supply. Interestingly, FBS starvation decreased the 
expression of AXL, whereas epidermal growth factor (EGF) 
treatment did not (Fig. 3D). These results suggested that 

Fig. 1   AXL expression in glioblastoma (GBM) cell lines. a Lysates 
were prepared from four established GBM cell lines (U87-MG, 
U251-MG and U373-MG) and subjected to western blotting using 
anti-AXL and anti-actin antibodies. The results are representative of 
three independent experiments (top panel). Relative densities were 
obtained by densitometry. Relative differences in AXL expression 
levels were calculated by normalizing all densitometric values to that 
of actin (in each lane). Results are presented as the means ± SDs of 
data from three independent experiments. b Total RNA extracted 
from each GBM cell line was analyzed by real-time quantitative 
reverse transcription-polymerase chain reaction (qRT-PCR) using 
human AXL-specific primers, as described in Materials and Methods. 
C Total RNAs were isolated from two GBM cell lines (U87-MG and 
U251-MG) and normal brain tissue. These samples were analyzed by 
standard RNA deep-sequencing (RNA-seq), as described in Materials 
and Methods. RNA-seq read densities of AXL transcripts were plot-
ted against relative RNA-seq read coverages (counts). “Fragments 
per kilobase of exon per million fragments mapped” (FPKMs) were 
calculated to compare the expression levels of AXL mRNA variants 
among various samples. The results are presented as means ± SDs of 
data from three independent experiments. *p < 0.05, **p < 0.01

◂

http://www.cbioportal.org/index.do
http://www.cbioportal.org/index.do
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FBS regulated the AXL level, which affected the GBM cell 
viability.

AXL enhances the stabilization and nuclear 
translocation of HIF1α

AXL and HIF-1α were previously reported to be co-
expressed in breast and renal cancer [37, 42]. Therefore, we 

investigated the AXL-HIF-1α regulation. U251-MG cells 
were transfected with control siRNA or AXL siRNA before 
treatment with or without 150 µM CoCl2 to mimic hypoxic 
conditions. Interestingly, HIF-1α stabilization was abolished 
when AXL was downregulated (Fig. 4A). This observation 
was further confirmed by immunocytochemistry analysis. 
However, AXL siRNA-transfected cells showed reduced 
levels of HIF-1α and prevented HIF-1α localization in the 

Fig. 2   Subcellular localiza-
tion of AXL in U251-MG cells 
U251-MG cells were grown on 
glass coverslips, fixed, and per-
meabilized with 0.2% (v/v) Tri-
ton X-100. After immunostain-
ing with anti-AXL antibody, 
the coverslips were mounted on 
Vectashield and examined using 
a Zeiss confocal microscope. 
Scale bars: 10 μm

Fig. 3   AXL regulates cell migration and nutrient-dependent cell 
death in glioblastoma. a Real-time migration assay of U251-MG 
using the xCELLigence RTCA DP assay (n = 2) when cultured in 
fetal bovine serum (FBS)-containing media. The blue line indicates 
control siRNA-transfected cells, and the black circle indicates AXL 
siRNA-transfected cells. b Real-time proliferation assay of U251-MG 
using the xCELLigence RTCA DP assay (n = 2) when cultured in 
FBS-containing media. The white circle indicates the control siRNA-

transfected cells, and the black circle indicates the AXL siRNA-
transfected cells. c Real-time proliferation assay of U251-MG using 
the xCELLigence RTCA DP assay (n = 2) when cultured in FBS-free 
media. White circle indicated for control siRNA transfected cells and 
red line indicated for AXL siRNA-transfected cells. d Immunoblot 
analysis with the indicated antibodies of lysates from U251-MG cells 
that were transfected with control siRNA or AXL siRNA under epi-
dermal growth factor treatment condition
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nucleus, even in cells that were also treated with CoCl2 
(Fig. 4B). Hence, AXL played an important role in the sta-
bilization and nuclear translocation of HIF-1α under hypoxic 
conditions. Surprisingly, CoCl2 treatment also induced AXL 
expression as well as nuclear-located AXL (Fig. 4C), sug-
gesting AXL stabilized HIF-1α under hypoxic conditions.

Co‑expression of AXL and HIF‑1α in glioblastomas 
from patients

To validate whether AXL plays a pivotal role in human cancer, 
we investigated AXL mRNA expression in multiple malignan-
cies. RNA-sequencing data from The Cancer Genome Atlas 

(TCGA) showed that AXL mRNA expression is upregulated 
in most cancer types, including GBM and glioma (Fig. 5A). 
To confirm further the above observations in clinical samples, 
immunohistochemical (IHC) analysis with the human cancer 
tissue array was used. IHC analysis with an anti-AXL anti-
body showed a strong signal in tumor tissue, as compared to 
surrounding normal tissues (Fig. 5B). As expected, HIF-1α 
also showed a higher signal in GBM (Fig. 5C). Moreover, by 
analyzing 142 Glioblastoma samples at http://​www.​cbiop​ortal.​
org, we found that the exposure of the Pearson’s correlation 
index was 0.36, which indicated a weak uphill linear relation-
ship between AXL and HIF-1α mRNA levels (Fig. 5D). Inter-
estingly, this correlation was absent in cases of ovarian serous 

Fig. 4   AXL regulates the 
stabilization and nuclear 
translocation of HIF-1α. a 
Immunoblot analysis with the 
indicated antibodies of lysates 
from U251-MG cells that were 
transfected with control siRNA 
or AXL siRNA under CoCl2 
treatment. b U251-MG cells 
were grown on glass coverslips 
and transfected with control 
siRNA or AXL siRNA. Next, 
the cells were treated with or 
without 150 μM CoCl2 for 24 h, 
fixed, and permeabilized with 
0.2% (v/v) Triton X-100. After 
immunostaining with anti-HIF1 
antibody, the coverslips were 
mounted on Vectashield and 
examined using a Zeiss confocal 
microscope. Scale bars: 20 μm. 
c U251-MG cells were grown 
on glass coverslips and treated 
with or without 150 μM CoCl2 
for 24 h. The cells were then 
fixed and permeabilized with 
0.2% (v/v) Triton X-100. After 
immunostaining with anti-AXL 
antibody, the coverslips were 
mounted on Vectashield and 
examined using a Zeiss confocal 
microscope. Scale bars: 20 μm

http://www.cbioportal.org
http://www.cbioportal.org
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cystadenocarcinoma, which showed a Pearson’s correlation 
inde× of 0.26 (Fig. 5E). These results supported the role of 
AXL-HIF-1α association in GBM development.

Discussion

GBM is the most aggressive type of central nervous sys-
tem (CNS) tumor. The prognosis of GBM is poor even 
when multiple therapies are applied [43]. Molecular tar-
geting may be important when developing efficient GBM 
treatment strategies. In 2016, WHO changed the CNS 
tumor classification to a molecular categorization based on 

genetic and epigenetic features, which was based on histo-
pathological criteria established in the 1920s developed by 
Bailey and Cushing [44]. Therefore, prognostic biomark-
ers and potential molecular targets must be identified to 
improve the prognosis of GBM. In the present study, we 
showed that AXL is a novel GBM prognostic marker in 
the GBM cell line and in patient tissue (Fig. 1, 5A and 
B), which supported previous studies [8–10]. Remark-
ably, AXL is a member of the RTK/RAS/PI3K pathway, 
which was altered in 88% of GBM samples [6, 7]. We 
also showed that AXL knockdown reduced growth and 
cell migration in the GBM U251MG cell line (Fig. 3A and 
B). Interestingly, AXL knockdown decreased the viability 

Fig. 5   The expression of AXL and HIF-1α in human glioma. a 
Human AXL expression in different tumor types from the TCGA 
database. Adapted from cBioPortal: http://​www.​cbiop​ortal.​org/​index.​
do. b Human glioma tissue arrays were immuno-histochemically 
analyzed in terms of AXL staining. Representative images from 
samples from two patients are shown. Scale bars: 100 μm. c Human 
glioma tissue arrays were immunohistochemically analyzed in terms 
of HIF-1α staining. Representative images from samples from two 
patients are shown. Scale bars: 100 μm. d the co-expression of AXL 
mRNA and HIF-1α mRNA from 142 queried glioblastoma (GBM) 

samples in the TCGA database. e The co-expression of AXL mRNA 
and HIF-1α mRNA from 182 ovarian serous cystadenocarcinoma 
queried samples. Adapted from cBioPortal: http://​www.​cbiop​ortal.​org 
/index.do. f The working model of the role of AXL in GBM survival. 
Under the control of the tumor microenvironment, such as the nutri-
ent supply and hypoxia conditions, AXL translocates to the nucleus. 
The inhibition of HIF-1α degradation and the nuclear trans-localiza-
tion of HIF-1α by hypoxia trigger the expression of AXL. Nuclear 
HIF-1α promotes the proliferation and survival genes in GBM

http://www.cbioportal.org/index.do
http://www.cbioportal.org/index.do
http://www.cbioportal.org
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of U251MG cells cultured in FBS-containing media but 
not in FBS-free media, indicating that AXL-related cell 
viability is nutrient-dependent (Fig. 3C). Moreover, serum 
starvation decreased the viability index to 0.4 at 20 h 
(Fig. 3C) compared to 5.0 when the cells were cultured in 
FBS-containing media. Previous studies have shown that 
activation of the EGFR pathway and downstream MEK/
ERK signaling can upregulate AXL mRNA expression 
through the JUN transcription factor in non-small-cell 
lung cancer and head and neck squamous cell carcinoma 
[45]. However, in our study, we did not observe any effect 
of EGF on the expression of AXL. Although the impact of 
nutrient supply on AXL expression was inconsistent, we 
found that serum starvation also reduced the level of AXL 
(Fig. 3D), suggesting that AXL is a potential mediator in 
serum-regulated GBM cell growth.

The relation of nutrient/PKB/HIF-1α to tumor growth 
is well known in a recent study, AXL was found to be a 
key upstream effector of PKB [46], indicating a relation-
ship between AXL and HIF-1α modulation. Indeed, the 
expression of HIF-1α and AXL were both upregulated in 
a GBM patient sample (Fig. 5B and C), consistent with a 
previous study [46]. Moreover, analysis from TCGA indi-
cated that AXL was positively co-regulated with HIF-1α 
in GBM (Fig. 5D) but not in ovarian serous cystadeno-
carcinoma (Fig. 5E). Our study provides evidence that 
AXL plays a crucial role in regulating the stabilization 
and nuclear localization of HIF-1α in GBM (Fig. 4A and 
B), both of which are essential for cancer development 
and implicated in tumor growth [29]. Notably, our findings 
show that AXL levels and localization are also affected by 
hypoxia-mimicking conditions, as seen with the treatment 
of CoCl2 in prostate cancer [47]. Specifically, we observed 
that AXL is present in the cytosol and microvilli, suggest-
ing its potential involvement in cell migration and signal-
ing pathways that may impact microvilli and ER functions 
[48, 49]. Interestingly, our study revealed that CoCl2 treat-
ment increases nuclear AXL levels, indicating a possible 
regulatory role of CoCl2 in AXL’s nuclear translocation. 
Further investigation is warranted to better understand the 
molecular mechanisms underlying these observations.

Overall, this study contributed to the understand-
ing of AXL-remodeling GBM growth and migration, 
which could be a potential therapeutic strategy in GBM 
treatment.
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