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ABSTRACT Cell science has made significant progress by focusing on understanding individual cellular processes through
reductionist approaches. However, the sheer volume of knowledge collected presents challenges in integrating this information
across different scales of space and time to comprehend cellular behaviors, as well as making the data and methods more
accessible for the community to tackle complex biological questions. This perspective proposes the creation of next-generation
virtual cells, which are dynamic 3D models that integrate information from diverse sources, including simulations, biophysical
models, image-based models, and evidence-based knowledge graphs. These virtual cells would provide statistically accurate
and holistic views of real cells, bridging the gap between theoretical concepts and experimental data, and facilitating productive
new collaborations among researchers across related fields.
SIGNIFICANCE Cell science has made progress through reductionist approaches, but integrating vast knowledge and
making it accessible is challenging. Next-generation virtual cells, which are dynamic 3D models that integrate information
from diverse sources including simulations, biophysical models, image-based models, and evidence-based knowledge
graphs, could bridge theory and data by integrating diverse information and facilitating collaboration among researchers.
OVERVIEW

Cell science has made enormous progress through the
reductionist approach, which focuses on understanding indi-
vidual cellular processes and their molecular machinery.
However, the vast amount of knowledge collected is over-
whelming and presents two challenges: understanding how
these processes interact across vast scales of space and
time to generate cellular behaviors (integration), and mak-
ing the knowledge, data, and methods more accessible and
useful (reproducible and reusable) to enable our field to
take on increasingly complex biological questions as a com-
munity. This perspective suggests that we could work
together to address these challenges by creating next-gener-
ation virtual cells—dynamic 3D models that integrate infor-
Submitted December 13, 2022, and accepted for publication April 6, 2023.

*Correspondence: rickh@alleninstitute.org

Editor: Meyer Jackson.

3560 Biophysical Journal 122, 3560–3569, September 19, 2023

https://doi.org/10.1016/j.bpj.2023.04.006

� 2023 Biophysical Society.

This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
mation from various sources with simulations and other
methods to provide statistically accurate and holistic views
of real cells. These virtual cells could be constructed by
merging bottom-up biophysical models with top-down im-
age-based models and dynamic evidence-based knowledge
graphs (1) that connect decades worth of published biolog-
ical concepts, principles, and theories directly to the evi-
dence-based data, experiments, and analyses that support
them (2,3).

Currently, there are many different types of virtual cells
as well as platforms for storing and sharing models, but
they lack consistency in format, accessibility methods, and
are not designed to talk to each other, let alone interoperate
their data or code. This makes it difficult to find, use,
compare, integrate, reuse, or build upon different models
of similar (or even the same) biological systems. They are
also not typically connected directly to the data and methods
used to create them, or to the higher-level knowledge
derived from them as it is often dispersed in conclusions

mailto:rickh@alleninstitute.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2023.04.006&domain=pdf
https://doi.org/10.1016/j.bpj.2023.04.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Building virtual cells
spread across journal web sites. However, by standardizing
the inputs and outputs of different modeling systems and
integrating the information, e.g., by breaking information
into smaller modules and linking them, next-generation vir-
tual cells can be created. These cells would enable diverse
researchers to explore and discover, test hypotheses,
communicate, and learn. They could ultimately become a
reliable platform for experimentation, analysis, interpreta-
tion, and prediction.
CURRENT STATE OF VIRTUAL CELLS,
SIMULATION SOFTWARE, AND PLATFORMS

Given predicted computer power and other limitations, cur-
rent methods alone are unlikely to produce comprehensive
virtual cells that can address multiscale biological questions
ranging from the interactions and effects of molecular
mechanics to daylong signaling cascade effects. At the
same time, top-down approaches alone, such as machine
learning analyses or other quantitative approaches, are un-
likely to scale downward to bridge fromwhole-cell tomolec-
ular mechanical detail in any sort of intuitive manner in the
foreseeable future. Our hope lies in integrating all of these
methods. Creating full-blown virtual cells is a long-term
goal, but progress has already been made in developing inte-
gratedmodels that covermultiple spatial scales andmethods.
Phenomenological (or top-down) cell models
mimic the behavior and architecture of cells

Top-down virtual cells, also known as ‘‘digital twins,’’ can
characterize and imitate real cells by integrating multiple
types of data gathered from experiments (4–10). Most digi-
tal twin projects aim to produce models that can move
through space and time while remaining within the bounds
of the input data. This type of model can be broadly catego-
rized based on its phenomenological approach, which often
involves using machine learning. While these models are
useful for identifying and recreating patterns found in
data, they do not directly explain the mechanisms behind
the observed events.
Bottom-up cell models generated from
biophysical components can be perturbed to
probe how cells work

There are different methods to create more holistic and mul-
tiscale spatial models of complex systems that can include
details down to the level of molecular structure. These
methods use structural models with biophysical interactions
and parameters. They allow for the simulation of perturba-
tions that can be used to test hypotheses about how changes
in components affect the overall system, outcomes, or other
cause-and-effect relationships (11–14). There have also
been significant efforts to create massively complicated
time series models that incorporate contributions from all
known gene products (without spatial constraints) to simu-
late complex long-term cell events, such as an entire bacte-
rial cell life cycle, and to go the extra step to distill and
present the models in a comprehensive and user-friendly
manner (15).
Integrating biophysical details into
phenomenological models to create dynamic
spatial models

To begin to explain complex phenomena, the coming gener-
ation of virtual cells will likely need to incorporate various
multiscale details, such as physical chemistry, structures,
spatial interactions, and molecular mechanisms. Some pub-
lished models have used various strategies to predict the out-
comes of multiple interacting biophysical parameters that
are spatially constrained. An example is adding multiscale
spatial components and parameters to phenomenological
models, which allows for dynamic simulations within the
outputs of these models, such as cell segmentations. This
helps to predict emergent outcomes based on the spatially
constrained biophysical components. One recent study map-
ped the location and chemical characteristics of cellular
components at an atomic scale in 3D space, enabling the
model to track the movement of molecules within the cell,
their chemical reactions, and the energy needed for each
step (16). Other models have used various coarse graining
or all-atom simulations to study crowding effects and other
global influences on processes such as self-assembly, activa-
tion, or signal propagation (17,18).
Modeling software and model sharing platforms

Robust access to published models and their methods and
data are crucial for reproducibility and reusability. Easy to
use public platforms and community standards for docu-
mentation, testing, and minimal acceptable criteria can
enhance this access. While some models may be initially
generated using experimental code, if they gain more users
in a public release, they should be required to meet repro-
ducibility and usability standards. In many cases, experi-
mental code has evolved into software that is intended for
dissemination and use by the broader community. For
example, SpringSaLaD is a software tool that explicitly
models binding events and state changes while considering
crowding effects (19). Cytosim is a cytoskeleton simulation
suite designed to handle large systems of flexible filaments
with associated proteins such as molecular motors (20), and
MEDYAN software models cytoskeletons and their interac-
tions with membranes in a multiscale/type manner, for
example, by ‘‘iteratively switching between stochastic reac-
tion-diffusion simulation and network mechanical equilibra-
tions’’ (21,22). There are also software solutions for more
general simulation needs; for example, NERDSS (23) and
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ReaDDY (24) provide relatively easy access to different re-
action-diffusion systems. VCell is an example of a more
comprehensive web-based platform that enables users to
build and share models of cell biological systems using
the VCell database. It supports multiple simulation types,
including deterministic, stochastic (SSA), and spatial
stochastic (reaction-diffusion), and includes features for
membrane flux, lateral membrane diffusion, and electro-
physiology. VCell has a user-friendly interface for mod-
elers, and geometries can be generated from analytical
expressions or phenomenological inputs such as microscope
images (25,26). In a more generalized manner, the challenge
of model integration is also being addressed by tools such as
Vivarium, allowing users to connect different types of
models and interpreting between their data formats (27). Vi-
varium is working on connecting to the Biosimulators data-
base (28), which currently houses about 20 simulators that
cover a broad range of simulations spanning multiple
formats and algorithms. For example, these include
BioNetGen, COBRA, COPASI, libRoadRunner, and Smol-
dyn. Simulation projects are stored on the Biosimulations
(29) site, which has online simulation deployment options.
User interfaces reduce barriers to exploring and
interrogating published models

Tools have been developed to make it easier to explore and
analyze published spatial models online. For example,
screenshots from web browser windows in Fig. 1 show
that the Cell Feature Explorer (30) allows the online plotting
and 4D visual analysis of large numbers of 3D and time se-
ries microscopy images, published in standardized OME file
formats (31). In a similar manner, the Simularium Viewer
lets users share, visualize, and examine any spatial simula-
tion results directly in a web browser once they have been
converted to the Simularium format and hosted on the public
internet (32). Rapidly evolving user interfaces for knowl-
edge graphs, which provide access to underlying semantic
networks that reveal relationships between historic literature
and new information (e.g., (33)), can help reduce barriers to
exploring and comparing published models (1), and web
sites such as Bionumbers (34) have provided a great start
to help the community gather and share bionumeric mea-
surements that can often take a modeling expert days or
weeks to scrape from the literature.

Existing models, methods, and platforms that were previ-
ously published and are foundational must live on to become
essential building blocks for the next generation of virtual
cells. The new virtual cells will also need to integrate and
connect data, knowledge, and methods from these models
and other published efforts with new and evolving ap-
proaches and outcomes. The goal is to enable the commu-
nity, including various kinds of biologists, to ask different
types of questions, regardless of their level of expertise in
any particular method.
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A VISION FOR THE NEXT GENERATION OF
VIRTUAL CELLS

To create next-generation virtual cells, one approach is to
enhance the resolution, multiscale features, and accuracy
of top-down digital twin cells and then to integrate them
with different types of biophysical simulations that can
ideally interoperate, or at least inform one another at adja-
cent scales. By accurately mimicking real cells, these twins
can help us probe multiscale cell architecture and behavior
more easily to better characterize what cells do. We could
then use this information as a target or constraint for other
types of biophysical models that explain how cells work
(35), for example, to witness and characterize how complex
behaviors captured in the digital twins might emerge from
the interactions of many simpler building blocks and mech-
anisms that are now visible, adjustable, and easily measured
in the hybrid system. Such integrative virtual cell modeling
frameworks would expand and evolve, and the models they
generate could be queried to address many different types of
biological questions. For example, on a scale of microsec-
onds, howmight a particular modification to the actin mono-
mer building blocks affect the speed or power with which
actin filaments redirect forces from the cell membrane
onto a budding vesicle in clathrin-mediated endocytosis
(see Fig. 1 B); or, on a scale of hours or days, how might
that modified endocytosis rate then affect the ability of the
cells to interact with their environment (36)?
Improving phenomenological digital twins

Creating high-quality, multiscale digital twins is a long-term
goal, but some progress has already been made, such as inte-
grating models that provide holistic multiscale views of cell
architecture. When assembled to integrate 100s–1000s of
replicate images (views of the same system sampled across
space and/or time), biologically meaningful variance and in-
terrelations emerge among components (9,37). Advances in
microscopy, artificial intelligence (AI), and image analysis
promise to make it easier to integrate live-cell imaging
(from micro- to millimeter resolution) with higher-resolution
imaging such as x-ray tomography and electron microscopy
(down to nanometer resolution) in the same instantiation of
multiscale digital cells (38–41): picture the utility of a virtual
3D electron microscopy time series data set, captured at the
temporal resolution and reduced toxicity of bright-field imag-
ing with structures of functional regions further classified or
segmented in an easy and useful manner. A major next step
would be to include multiple types of localized single-cell
measurements to further enhance these digital cells by con-
necting architectural relationships to highly detailed and
spatially resolved physiological changes, such as: gene
expression; protein activation, modification, and concentra-
tion; or signal-induced activation and propagation, all of
which will improve the digital twin representations.



FIGURE 1 Providing data, models, simulation software, and other connected knowledge in online interfaces can make it easy for researchers and students

to find, access, use, and extend virtual cells or their contributing components. Example online interfaces already exist: (A) the Cell Feature Explorer enables

the interactive exploration of hundreds of thousands of cells at a time on cfe.allencell.org; (B) the Simularium Viewer allows modelers to host their simu-

lations online to provide interactive access to their models with a single URL that plays through the simularium.allencell.org user interface.

Building virtual cells

Biophysical Journal 122, 3560–3569, September 19, 2023 3563

http://cfe.allencell.org
http://simularium.allencell.org


Johnson et al.
Toexplain how large-scale phenomena captured in the dig-
ital twinswork in amore intuitivemanner, it will be critical to
integrate mechanistic spatial models. For example, reduc-
tionist cell science has successfully provided deep insight
into the structure and function of many cellular components
and processes. These include, for example, the motor protein
kinesin’s structure, its function in organelle trafficking, its
walking behavior along microtubule cytoskeletons, and its
response to external forces (Fig. 2). While collective knowl-
edge could be used tomake discoveries and buildmodels that
advance our understanding, by and large this knowledge re-
mains disconnected and spread overwhelmingly across pub-
lications, web sites, siloed databases, unusable models, and
researchers’ memories. Therefore, despite the vast amount
of existing data and theories, there is still much we do not un-
derstand about how these components and processes interact
to create complex living systems. For example, we do not
fully understand how kinesins and other components of the
cytoskeleton and cytoplasm work together to regulate the
spatial organizations and shapes of cellular membranes and
subcellular compartments that we can observe and charac-
terize using light microscopy techniques. Imagine the emer-
gent phenotypeswe could discover, predict, and explain if we
combined new public cell image databases with the existing
literature and multiple types of integrated modeling ap-
proaches made recently accessible.
Connecting information through knowledge
graphs

Creating the next generation of virtual cells will likely
require integrating databases and modeling technologies us-
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ing, for example, dynamic knowledge graphs that provide
user interfaces to connect biological concepts, principles,
and theories to the data, analyses, tools, and models that
support them in a reproducible and reusable manner. Even
less comprehensive virtual cells in the form of knowledge
graphs alone could serve as tools for exploration and discov-
ery by establishing robust digital reference systems for
biologically related spatial data and higher-level knowledge.
This would allow researchers and students to study relation-
ships between cellular organization, multiscale activities,
and function at different spatial and temporal resolutions,
focusing on specific questions by filtering and measuring
different metadata parameter combinations. Whether gener-
ated from easy to ingest connected knowledge, or from the
grander vision that further integrates more comprehensive
spatial models, next-generation virtual cells hold promise
for supporting applications from basic science to drug dis-
covery, but some of their highest initial impact may be in
engaging and training the next generation of scientists.
THE CHALLENGES IN CONSTRUCTING VIRTUAL
CELLS

The construction of virtual cells faces several barriers,
including the need to connect various types of data, evidence,
and claims buried across the literature. Virtual cells would be
likeGoogleMaps in their spatial aspect and ability to provide
or distill appropriate and useful levels of detail relative to the
scale of interaction. But their intrinsic 3Dand dynamic nature
will make virtual cells more complicated to deliver, more
akin to the challenges of 3D video games, which often go
further by incorporating sophisticated interacting characters
olidify mental
ourse
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and objects. Furthermore, Google Map-type systems are
based on relatively standardized instances of fixed and easily
captured structural information from satellites, car cameras,
and citizen annotations all pouring into a predetermined
framework. In contrast, virtual cells will be based on statisti-
cal models that merge patterns and relationships from many
imaging instances andmodalities, with bottom-upmodeling.
In this regard, the utility of any unified virtual cell model will
depend on the quality of the replicate data and the veracity of
the simulation systems that generate it.

Constructing next generationvirtual cells will require over-
coming four major challenges: 1) interpreting and exploring
across the vast spatial-temporal scales at which cell events
occur, 2) finding useful frames of reference, 3) data quality,
integration, and interpretation, and 4) unitingmolecular struc-
tures and mechanisms with behaviors observed at the larger
scales. Scaling from nanometer/nanosecond-level spatial-
temporal events to the scales of whole cells or multiday
events, as described in the clathrin-mediated endocytosis
example above, is difficult. To combine spatial phenomena
into a larger model, appropriate spatial reference coordinate
systems must be identified. Models will also depend on the
quality of data used to build them, how those data are inte-
grated into a unifiedwhole, and the quality of user experiences
in visual analysis tools and reduced dimensionality represen-
tations that are used for interpretation. Overall, constructing
virtual cells requires advanced technology and collaboration
among researchers from different disciplines. To become
comprehensive and to cover the knowledge landscape of
cell biology (data, tools, claims/hypotheses, and conclu-
sions), virtual cells must be community driven, likely
enhanced byAI, andmust embody contributions from diverse
community members including both large and small labs.
Challenge of interpreting and exploring across
many spatial-temporal scales

The challenge of studying complex cell structures and be-
haviors is that they emerge across a wide range of spatial
and temporal scales, from tiny molecular interactions to
large-scale cell transitions over hours, days, or years. It is
impossible to use current computational resources and ap-
proaches to brute-force simulate whole-cell or whole-day
events in nanometer/nanosecond-level detail. The appro-
priate scale for measuring phenomena depends on what is
being studied (46). Experimentally, it is not necessary to
collect data across all scales for each measurement; instead,
data can be collected on the appropriate timescale, with the
goal of developing methods to integrate the data later.
Challenge of finding useful frames of reference

Many breakthroughs in science came from uncovering or
defining the most appropriate frame of reference, or coordi-
nate system, for describing the phenomena of interest. Phys-
icists, for example, routinely select coordinate systems to
simplify calculation and promote understanding such as us-
ing angular instead of Cartesian coordinates to calculate the
motion of a pendulum. Comparing or analyzing the relative
locations of cells and their internal components will require
similarly simplifying reference coordinate systems, which
will likely vary depending on the tissue, cell type, and struc-
ture being studied. It is important to consider factors such as
magnification and resolution when developing these sys-
tems. For well-stereotyped and polarized cells or tissues,
simple overlay systems or orienting to an easy target such
as the contractile apparatus have sufficed (47), while for
mesenchymal and epithelia-like cells, the nucleus and
more nuanced cell membrane has proven more effective
(9,37). Reference systems must also be developed for the
positions of organelles, substructures, and even individual
cells within tissues. The robustness and predictive accuracy
of these systems must be carefully assessed before imple-
mentation (8,37,48).
Challenges of data quality, integration, and
interpretation

The creation of a digital twin cell involves mergingmeasure-
ments of a specific cell type into a unified image model that
moves through virtual space and time while statistically ac-
commodating all of the input image and measurement data
that drives it. This model would need to capture variation
by looking at both population means and specific individual
digital twins along population distributions. Integrating
multimodal and multiscale information is challenging due
to the complexity and interoperability needed (46). Compu-
tational approaches are currently used to integrate different
types of data into dimensionally reduced representations
(4–10,37). Integrating data from multiple labs is also chal-
lenging due to differences in imaging platforms and settings.
Establishing requirements that enable FAIR (findable, acces-
sible, interoperable, reusable) data practices including com-
munity standards, quality assessments for image capture,
useful metadata, and data accessibility will be not only be
critical to enabling easy functionality and reproducibility in
the development of virtual cells, but they should also become
a mandate for public data sets (49). Algorithmic conversions
and machine learning, such as label-free imaging, can help
address these issues, but in the meantime we can make
many other improvements as a community (50–52).
Unitingmolecular structure andmechanismswith
behaviors at the organelle, whole cell, signaling,
and tissue scale

Virtual cells must integrate detailed spatially resolved func-
tional, biophysical, structural, and proteomic data, along
with computational models. This encompasses various bio-
logical factors such as metabolism, electrical activity,
Biophysical Journal 122, 3560–3569, September 19, 2023 3565
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posttranslational modifications, force, calcium, pH fluxes,
and other relevant data, where incorporating spatial informa-
tionwithin the cell would enhance the accuracy and effective-
ness of the model. Localized biophysical parameters, such as
molecular transport rates, equilibrium constants, including on
and off rates for binding, concentrations, and effective viscos-
ities will help simulation and modeling efforts using virtual
cells. The pioneering work of Ken Jacobson and others on
FRAP and related microscopies (53) inspired the notion that
physical chemical measurements could be done in living
cells, themselves, thus providing localized biophysical data
for integration into virtual cells.

A powerful approach to data integration is the use of deep
learning methods applied to large data sets. These can be
performant and generate highly accurate predictions. Howev-
er, how they do this is typically specific to the input data set,
somewhat mysterious to biologists, and produces little gener-
alizable or mechanistic insight. This contrasts with other
computational approaches, which may not be as highly pre-
dictive or accurate but can instead reveal deeper mechanistic
insights by exposing the model rules and their more strai-
ghtforward or understandable construction. In evaluating
different approaches, this issue of balancing readily acces-
sible and accurate predictions against mechanistic insight
needs to be considered. Hopefully, in the future, AI will pro-
vide us with both predictive accuracy and insight into the
driving multiscale mechanisms to aid our understanding.
A modular toolbox for exploration and discovery

In the future, a comprehensive, verified, and open access suite
of computational tools must be integrated into the virtual cell
platform tomake it accessible to awide range of users and use
cases. These tools should evolve and improve over time,
enabling analysis and discovery. Despite existing tools, chal-
lenges remain in coordinating diverse tools and bridging gaps
in data translation and technical skills. Future tools should
focus on user-friendly exploration of morphology-function
relationships and framing mechanistic simulations in the
context of whole cells for easy evaluation, use, and compar-
ison of different models. This will democratize access and
enhance the likelihood of discovery in virtual cell research.
VIRTUAL CELLS WILL HELP CAPTURE,
INTERPRET, UNDERSTAND, COMMUNICATE, AND
EVOLVE KNOWLEDGE OF CELLS

Once a useful iteration of a virtual cell is built, what would
we do with it? Like Google Maps, it is hard to fully antici-
pate its utility, except that it too, will likely greatly exceed
expectation. Some immediate activities will likely include:

� Studying interrelationships among molecular cellular ma-
chinery, localized cellular activities, and integrated
cellular behaviors
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� Understanding emergent properties of cells
� Providing a holistic and contextual view of cellular be-

haviors and processes
� Allowing the public to observe cellular behaviors and

processes as they would in a multiscale microscope
� Providing a statistically integrated platform for enormous

amounts of cellular data
� Enabling the identification and detection of different cell

types in developing or diseased tissues
� Improving the prediction of emergent or longer-term out-

comes from genomic data
� Enabling rapid in situ diagnoses and prognoses
� Developing new rules, principles, and theories for the in-

tegrated complex systems that comprise cells

If successful, these investigations and activities promise
profound implications in many areas.
Transforming education

To truly revolutionize our understanding of how cells
work, it will be critical to educate both current and future
biologists on these methodologies and opportunities in
both current and future biology. That future will likely
require an intuitive grasp of emergent complexity based
on reproducible evidence-based hypotheses and claims
that support higher level conclusions, principles, rules,
and theories as stated in the Vision and Change statement
by the American Association for the Advancement of Sci-
ence and the National Science Foundation (54). Virtual
cells and accompanying analysis and modeling tools can
provide a platform (a fearless playground) for students to
gain intuition about cause-and-effect relationships and
principles by changing input parameters in a simulation.
Democratized access to this platform is critical, and host-
ing in the cloud or on open, public web sites could be a
route to achieving this accessibility in an equitable
manner, where dedicated training, low fees, and efficient
mechanisms for efficiently microfunding these computa-
tional resources (regardless of an institution’s on-premises
resources) will be crucial for enabling and encouraging
general accessibility.
Engagement and motivation via the awe of
discovery enhanced through visualization

The same awe that we sense when viewing the deep ocean,
another planet, or a galaxy awaits us when we view next gen-
eration virtual cells. We have neither seen nor understood the
complexity of a cell—its organization, dynamics, and inter-
relationships across scales—and this will be our window in.

The complexity and interrelationships of cells can be bet-
ter understood through virtual cell models, which allow for
real-time measurement and event plotting. The awe-
inspiring experience of exploring virtual cells can engage
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and motivate biologists to gain intuition about cause-and-ef-
fect relationships and principles—perhaps even motivating
them to dive deeper into cell systems that they do not nor-
mally focus on and thus expanding their specialized knowl-
edge into the bigger picture of how different systems
interact and affect one another across entire cells or tissues.
By observing the effect of changes in one cell or subcellular
structure on others, researchers can gain new insights and
uncover underlying principles about cell behavior.
Improving human health

Next generation virtual cells will likely not only provide
reliable initial predictions about what might be the best tar-
gets for mutation or drugs, but they can also be used for as-
sessments of their downstream effects. They could predict
how the phenotype will evolve over time and the impact
of a mutant cell on its neighbors. While many mutations
and drugs have known or predicted effects on a particular
structure or activity, virtual cells will not only better predict
how they might propagate throughout the cell as a whole;
but they will also provide a deep understanding of the mech-
anisms and processes involved across all scales, leading to
new potential avenues for intervention.
The principles of cellular morphogenesis

Virtual cells can provide insight into the principles of
cellular morphogenesis, which has received little attention
compared to the morphogenesis of tissues, organs, and em-
bryos. Virtual cells can reveal interrelationships among
various cellular structures, suggesting hypotheses for how
cells organize and reorganize as they transition among
states. The real power of virtual cells is to see how these in-
terrelationships change over a wide range of cell types and
contexts, leading to generalizations, rules, and an under-
standing of contextual differences. It is possible that the
rules of organization may vary among cells and become a
classification system, and we must be able to distinguish
which changes in cell states are manifest in changes in vari-
ance rather than the mean, perhaps by testing various hy-
potheses across each of the scales accessible to these
multiscale models.
Predicting cellular structure and emergent
behaviors from 1D genomics

Virtual cells can incorporate spatially resolved, multiplexed
single-cell gene expression data to explore the relationship
between gene expression profiles and cellular organization.
This can lead to the identification of cell types and states
from microscopic observations, which can be used for rapid
in situ diagnoses and prognoses. By combining biological
activity, overall morphology, and gene expression informa-
tion, virtual cells can lead to more nuanced and meaningful
classifications of cells, as well as a better understanding of
how cells change architecture and phenotype during com-
plex processes. Much like weather forecasting, this can
improve predicting emergent or longer-term outcomes
from genomic data.
CONCLUSION

The construction of this next generation of virtual cells is an
achievable goal that could one day provide a computational
output that mimics real cells in every conceivable mea-
sure—enabling analysis, modeling, perturbation, and visu-
alization of spatial and temporal data gathered together
from both current and historical experimentation. In addi-
tion to exploring what an average cell looks like, the spec-
trum of variation could be accessed probabilistically.
These outputs could integrate enormous amounts of cellular
data and allow for the observation of cellular behaviors and
processes in a virtual multiscale microscope, which could at
once be useful for research and accessible to students,
trainees, and even public audiences if properly presented.
By studying interrelationships among cellular machinery,
activities, and behaviors, emergent properties can be re-
vealed. From these analyses, new rules, principles, and the-
ory can emerge, moving cell science from a large collection
of observations to viewing cells as the complex integrated
systems that they are.
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