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Abstract

Grapevine powdery mildew is caused by Erysiphe necator, which seriously harms grape production in the world. Stilbene synthase
makes phytoalexins that contribute to the resistance of grapevine against powdery mildew. A novel VqNSTS3 was identified and cloned
from Chinese wild Vitis quinquangularis accession Danfeng-2. The novel VqNSTS3 was transferred into susceptible ‘Thompson Seedless’
by Agrobacterium-mediated transformation. The transgenic plants showed resistance to the disease and activated other resistance-
related genes. VqNSTS3 expression in grapevine is regulated by VqWRKY33, and which binds to TTGACC in the VqNSTS3 promoter.
Furthermore, VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased
VqNSTS3 expression. ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the
pathogen’s haustoria and block invasion by Golovinomyces cichoracearum. These results demonstrate that stilbene accumulation of
novel VqNSTS3 of the Chinese wild Vitis quinquangularis accession Danfeng-2 prevented pathogen invasion and enhanced resistance
to powdery mildew. Therefore, VqNSTS3 can be used in generating powdery mildew-resistant grapevines.

Introduction
The grapevine is one of the ancient and most economically valu-
able fruits in the world [1]. Because of their high-quality fruit,
European grape varieties (Vitis vinifera) are considered the world’s
most prominent cultivars. However, this valuable species is highly
susceptible to Erysiphe necator (previously Uncinula necator), a fun-
gus that causes powdery mildew (PM) disease [2]. The obligate
biotrophic fungus E. necator affects all parts of a plant, which leads
to significant losses in fruit yield and quality in the viticulture
industry [3–5]. The main measure for preventing and controlling
grapevine PM in grape production is the spraying of chemical
fungicides, which not only causes cost increases, fruit contami-
nation, and environmental pollution, but also causes resistance
in pathogenic bacteria and new variations in pathogenic bacte-
ria, bringing new control difficulties to grape production [6–8].
Therefore, using the grapevine immune system to improve dis-
ease resistance is a fundamental way to solve the disease resis-
tance problem in grape production. Obtaining PM-resistant grape
varieties and elucidating the molecular mechanisms of disease
resistance are vital steps in reducing the reliance on fungicides
and breeding grapevine varieties for disease resistance.

An early study that first isolated resveratrol in grapevine leaves
found that it had the effect of conferring disease resistance

to grapevine [9]. Vitis vinifera was found to produce a stilbene

phytoalexin, a derivative of resveratrol [10]. In later studies,

resveratrol was isolated and obtained in grape berries [11]
and wine [12]. There has been significant research on the role

resveratrol plays in grapevine against Botrytis cinerea [13, 14], E.
necator [15], Plasmopara viticola [16], and Neofusicoccum parvum [17].
Resveratrol also has benefit associated with human health [18,
19]. Stilbene synthase (STS) catalyzes the formation of resveratrol
from three malonyl coenzyme A esters and one coenzyme A ester
[20]. Heterologous expression of STS genes can improve the level

of stilbene and enhance plant disease resistance. For example,

transferring two STS genes from grapevine, where they are
highly expressed, into tobacco plants, increased their resistance
to B. cinerea [21]. Grapevine STS genes have been transferred

to many plants, including rice [22], pea [23], lettuce [24], and
kiwifruit [25], in each case resulting in significant improvements

in accumulation of stilbene or pathogen resistance.

In recent years, several transcription factors were shown to

regulate the expression of STS genes and stilbene accumulation,
such as MYB, WRKY, ERF, AL, and bZIP [26–35]. Among them,
WRKY transcription factors are important in regulating STS gene

expression. VvWRKY24 can independently regulate the VvSTS29
promoter, while VvWRKY03 and VvMYB14 jointly upregulate
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the VvSTS29 promoter [35]. Recently, VvWRKY8 has been shown
to repress VvSTS15/21 expression and resveratrol biosynthesis
through interaction with VvMYB14 [31]. When grapes are under
UV stress, they produce resveratrol through VvMYB14-VvWRKY8-
VvMYB30, and prevent excessive accumulation of resveratrol [29].
VqWRKY53 positively regulates the expression of VqSTSs, and
interacts with VqMYB14 and VqMYB15 to show stronger regula-
tory function [32]. VqWRKY31 can be induced after E. necator and
directly regulates the promoters of STS9/48 [26]. However, it is
currently unclear whether other WRKY transcription factors are
involved in regulating STS gene expression.

In order to better study the traits and functions of grapevine
genes, functional genome sequencing was conducted in different
germplasms of grapes. In 2007, genome sequencing of PN40024
‘Pinot Noir’ identified 48 VvSTS genes [1], of which 33 had potential
functions [1, 36, 37]. Girollet et al. reported the de novo assembly of
the Vitis riparia genome in 2019 [38], while an analysis of grapevine
diversity and demographic history was performed using whole-
genome resequencing of 472 Vitis accessions by Liang et al. [39].
The draft genome of V. riparia ‘Manitoba 37’, a native American
cold-hardy grapevine, has been sequenced [40]. The genome of
the grape interspecific hybrid ‘Shine Muscat’ (Vitis labruscana × V.
vinifera) was sequenced and published in 2022 [41].

China is one of the main points of origin for grape varieties
and has abundant germplasm resources that can be used for
grape breeding [42]. Preliminary research in our laboratory found
that Chinese wild Vitis pseudoreticulata accession Baihe-35-1 can
provide a genetic resource to investigate the role of stilbene
synthase genes in the PM interaction [43–45]. In total, 61 VpSTS
genes have been isolated from Baihe-35-1 [46]. In particular,
VpSTS29/STS2 contributes to basal resistance of grapevine and
Arabidopsis thaliana to PM [47, 48]. Another important Chinese wild
resource is Vitis quinquangularis accession Danfeng-2, containing
41 STS genes (GenBank accession numbers JQ868658–JQ868698)
[49]. Many VqSTS genes from Danfeng-2 have been shown to
significantly enhance resistance to PM [50–53]. Among them,
overexpression of the fruit-specific and highly expressed gene
VqSTS6 increases resveratrol content and pathogen resistance
in V. vinifera ‘Thompson Seedless’ [53, 54]. Further analysis of
Danfeng-2 novel transcriptome data (PRJNA306731) identified six
novel STS transcripts: VqNSTS1–VqNSTS6 [55]. VqAL4 positively
regulates VqNSTS4 expression, enhancing resistance to PM by
activating salicylic acid (SA) signals in grapevine [34]. What is
the mechanism of VqNSTS3 expression in disease resistance?
This research elucidated the effect and regulation mechanism of
VqNSTS3 in Chinese wild grape breeding for disease resistance.

Results
VqNSTS3 has conserved motifs of the stilbene
synthase gene family and expresses resistance
to E. necator
Six new STS transcripts were identified in our laboratory [55].
A homologous cloning method was used to identify VqNSTS3
(GenBank accession number OL589478) from Danfeng-2. The
coding sequence of VqNSTS3 was 1179 bp (Fig. 1a) and showed
98.3% similarity to VvSTS4 from V. vinifera PN40024 (Fig. 1b).
VqNSTS3 possessed the conserved domain of the STS family
[56] (Fig. 1c) and showed 99% amino acid sequence identity with
VqSTS33 [34] (Fig. 1d). VqNSTS3-GFP localized in the cytoplasm
(Fig. 1e). Six new transcripts were transiently transformed into
tobacco, in which we detected the highest content of stilbenes
after overexpression of VqNSTS3 (Fig. 1f) (data not shown). To

further explore whether the gene responds to the induction of E.
necator in Danfeng-2, samples from Danfeng-2 plants were taken
for qPCR analysis after artificial inoculation with E. necator. It was
found that VqNSTS3 gene expression increased significantly on
the first day after inoculation, and the trend continued to the
third day after inoculation (Fig. 1g).

Transgenic VqNSTS3 grapevine lines show
enhanced resistance to E. necator and activation
of resistance-related genes
To determine whether VqNSTS3 is involved in grapevine resistance
to E. necator, VqNSTS3 from Danfeng-2 was transferred into
disease-susceptible European grape cultivar ‘Thompson Seedless’
using Agrobacterium tumefaciens-mediated transformation (Fig. 2a,
Supplementary Data Fig. S3). Two independent VqNSTS3-
transgenic overexpression lines were obtained (OEVqNSTS3-
L3 and OEVqNSTS3-L5) (Supplementary Data Fig. S3i and j).
Transgenic and wild-type (WT) plants were inoculated with E.
necator to characterize the disease resistance function of VqNSTS3.
WT plants were more susceptible, producing extensive fungal
hyphae and conidiophores, whereas transgenic lines were not
(Fig. 2b–d and f). Furthermore, transgenic lines showed enhanced
callose deposition (Fig. 2e) and increased the expression of
resistance-related genes after inoculation (Fig. 2h–k). HPLC assays
indicated that after inoculation only piceid and piceatannol
were detected in WT plants, while five stilbenes accumulated
in transgenic plants. The contents of piceid and piceatannol
in VqNSTS3-transgenic overexpression lines increased 13.0-
and 6.3-fold, respectively, compared with WT plants (Fig. 2g,
Supplementary Data Table S7). To study the role of VqNSTS3 in
disease resistance further, we used RNA interference (RNAi) to
study the resistance of VqNSTS3 to E. necator in Danfeng-2. Due
to high sequence similarity between VqNSTS3 and VqSTS33, we
were only able to interfere with both at the same time. RNAi-
VqNSTS3/VqSTS33 plants showed contrasting results to the over-
expressing (OE) plants. Following inoculation, trans-resveratrol,
piceid, pterostilbene, ε-viniferin, and piceatannol levels in RNAi-
VqNSTS3/VqSTS33 were 27, 42, 57, 59, and 14% lower than in empty
vector (EV) controls (Fig. 2l–u; Supplementary Data Table S7). The
above results show that VqNSTS3 plays an active role in the
defense response after inoculation with E. necator.

VqNSTS3 expression enhances resistance to E.
necator in grapevine due to regulation by
VqWRKY33
We analyzed the VqNSTS3 promoter cloned from Danfeng-2 to
identify transcription factors that regulate VqNSTS3 expression.
The VqNSTS3 promoter was found to contain three specific fungal
elicitor-responsive elements: W-box elements (Supplementary
Data Fig. S2, Supplementary Data Table S4), and the W-box
element is the binding site of the WRKY transcription factor
[57]. Previous studies in our laboratory found that 16 VqWRKY
transcription factors responded to the induction of E. necator in
Danfeng-2 [32]. To determine whether WRKY transcription factors
could regulate the expression of VqNSTS3, we selected eight WRKY
transcription factors that showed significant responses to the
induction of E. necator using dual-luciferase assays to detect the
promoter activity of VqNSTS3. The results show that VqWRKY2,
VqWRKY18, VqWRKY33, and VqWRKY53 can positively activate
the promoter activity of VqNSTS3 and that VqWRKY33 had
the greatest regulatory activity on the VqNSTS3 promoter
(Supplementary Data Fig. S5a and b). Therefore, we conducted
further research on VqWRKY33. We artificially inoculated
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Figure 1. Cloning and expression analysis of VqNSTS3 under E. necator inoculation in grapevine. a Amplification of VqNSTS3 from Chinese wild V.
quinquangularis accession Danfeng-2. b DNA sequence alignment between VqNSTS3 and VvSTS4 (XM_003634021). c Multiple amino acid sequence
alignments between VqNSTS3 and other VqSTS proteins. The yellow box indicates the STS conserved domain. d Phylogenetic analysis of VqNSTS3 and
part of VqSTSs from Danfeng-2. VqNSTS3 is highlighted with a blue dot. e Subcellular localization of VqNSTS3 in N. benthamiana leaves. Scale bars, 10
μm. f VqNSTS3 was transformed into tobacco for 3 days. The content of stilbenes was determined by HPLC. Results are shown as mean ± standard
error of the mean; n = 3. g qPCR analysis of VqNSTS3/VqSTS33 expression in Danfeng-2 leaves after infection with E. necator. Results are shown as mean
± standard error of the mean; n = 3. Significance was examined by one-way ANOVA followed by Dunnett’s multiple comparisons test (∗∗P < .01).

Danfeng-2 leaves with E. necator, and the expression of VqWRKY33
was significantly upregulated after inoculation (Fig. 3a). To
further investigate the function of the transcription factor
VqWRKY33, the characteristics of VqWRKY33 were analyzed.
VqWRKY33 is a nuclear protein that encodes 561 amino acids and
has two highly conserved WRKY domains (amino acid residues
230–285 and 392–449), predicted to be located on chromosome
8 (Supplementary Data Fig. S5c–f). The VqWRKY33 promoter also
contained three W-box elements located 143–478 bp upstream
of the start codon (Supplementary Data Fig. S4, Supplementary

Data Table S5). Two GUS fragments, P-478-GUS (with the W-
box) and P-143-GUS (without the W-box), were constructed to
determine whether the W-box of the VqWRKY33 promoter could
respond to chitin and E. necator (Supplementary Data Fig. S4a).
Two GUS fragments were transiently transformed into the leaves
of Danfeng-2 or tobacco, which were then artificially inoculated
with E. necator or sprayed with chitin. The findings showed that the
fragments containing W-box regions responded to E. necator and
chitin (Fig. 3b and c). To test whether VqWRKY33 could bind to the
VqNSTS3 promoter, yeast one-hybrid (Y1H) assays were developed.
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Figure 2. Transgenic VqNSTS3 grapevine plants show enhanced resistance to E. necator. a Diagram of the OEVqNSTS3 construct. b Photographs of
VqNSTS3 overexpression and WT plants infected with E. necator at 21 days post-inoculation (dpi). Scale bars, 3 cm. c Trypan blue staining of OEVqNSTS3
and WT leaves at 7 dpi to observe the growth of hyphae. Scale bars, 100 μm. CD, cell death. d Scanning electron micrographs of WT and OEVqNSTS3
leaves at 4 and 7 dpi. C, conidium; ha, hyphal appressorium; Cp, conidiophore. e Aniline blue staining of WT and OEVqNSTS3 leaves at 7 dpi to detect
callose deposition. Scale bars, 50 μm. f Number of conidiophores per colony at 7 dpi on WT and transgenic plants. Results are shown as mean ±
standard error of the mean; n = 20; different letters represent significant differences (P < .05) as determined by one-way ANOVA followed by Tukey’s
multiple comparisons test. g HPLC analysis of content of stilbenes in WT and OEVqNSTS3 leaves at 7 dpi. h–k Expression of defense-related genes
determined by qPCR analysis in WT and transgenic plants after E. necator inoculation. Results are shown as mean ± standard error of the mean; n = 3.
Significance was examined by one-way ANOVA followed by Dunnett’s multiple comparisons test (∗P < .05; ∗∗P < .01). l Diagram of the RNAi-VqNSTS3/
VqSTS33 construct. m Phenotypes of RNAi-VqNSTS3/VqSTS33 and EV leaves infected with E. necator for 5 days. Scale bars, 3 cm. n RNAi-VqNSTS3/
VqSTS33 and EV leaves at 5 days stained with trypan blue. Scale bars, 50 μm. o qPCR analysis of VqNSTS3/VqSTS33 expression in RNAi-VqNSTS3/
VqSTS33 and EV leaves. p Number of conidiophores per colony at 5 dpi on EV and RNAi leaves. Results are shown as mean ± standard error of the
mean; n = 20. Significance was examined by Student’s t-test ( ∗∗P < .01). q HPLC analysis of stilbenes in RNAi-VqNSTS3/VqSTS33 and EV leaves at 5 dpi.
r–u Expression of defense-related genes determined by qPCR analysis in EV and RNAi leaves after E. necator inoculation. Results in (g, o, q-u) are shown
as mean ± standard error of the mean; n = 3. Significance was examined by Student’s t-test (∗P < .05; ∗∗P < .01).

It was found that VqWRKY33 can regulate the promoter of
VqNSTS3 by binding at TTGACC (Fig. 3d). Moreover, dual-luciferase
assays were performed, which gave the same results (Fig. 3f–h).
Phosphorylation sites in the SP cluster of VqWRKY33 are well
known [58]. A mutation of the four Ser residues to Ala in
VqWRKY33 blocked its binding to the VqNSTS3 promoter, while
a mutation of Ser to Asp enhanced its binding to the VqN-
STS3 promoter (Fig. 3e and h). Chromatin immunoprecipitation

(ChIP)–qPCR was conducted to examine the binding of VqWRKY33
in the promoter of VqNSTS3 in vivo (Fig. 3g and i). Because of the
presence of W-box elements in the VqWRKY33 promoter, it was
speculated that VqWRKY33 could regulate its own expression.
Through Y1H assays, VqWRKY33 was found to regulate its own
expression by binding to its own promoter (Fig. 3j). Moreover, the
dual-luciferase and ChIP–qPCR assays obtained the same results
(Fig. 3k–n). The above results show that VqWRKY33 positively
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Figure 3. VqWRKY33 responds to E. necator and regulates VqNSTS3 expression. a qPCR analysis of VqWRKY33 expression in Danfeng-2 leaves after
inoculation with E. necator for 0, 1, 3, 5, and 7 days. b Measurement of GUS activity. Danfeng-2 leaves expressing P-478-GUS and P-143-GUS were
inoculated with E. necator or treated with chitin. c Chitin-induced GUS activity in transient expression tobacco leaves. Tobacco leaves expressing
P-478-GUS and P-143-GUS were treated with 1 mg/ml chitin for 30 minutes. d Y1H analysis using pGADT7-VqWRKY33 as the prey and
PpVqNSTS3-AbAi, P3xTTGACT-AbAi, and P3xTTGACC-AbAi as baits to demonstrate VqWRKY33 can bind to ProVqNSTS3 and TTGACC. e Loss-of-
phosphorylation VqWRKY33 mutant with all four Ser residues mutated to Ala (VqWRKY33SA), and the phospho-mimicking VqWRKY33 mutant with
all four Ser residues mutated to Asp (VqWRKY33SD). f Structural diagrams of dual-luciferase assays. g Schematic diagram of the promoter region of
VqNSTS3. h Ratio of luciferase activity of VqWRKY33, VqWRKY33SA, and VqWRKY33SD binding to the VqNSTS3 promoter. i VqWRKY33 binding to the
promoter of VqNSTS3 in vivo after E. necator treatment verified by ChIP–qPCR assays. j Y1H analysis using pGADT7-VqWRKY33 as prey and
PpVqWRKY33-AbAi as bait to demonstrate VqWRKY33 can bind to its own promoter. k Structural diagrams of dual-luciferase assays. l Ratio of
luciferase activity of VqWRKY33 binding to its own promoter. m Schematic diagram of the promoter region of VqWRKY33. n VqWRKY33 binding to
promoter of the VqWRKY33 in vivo after E. necator inoculation, shown by ChIP–qPCR assays. Results in (a-c, h) are shown as mean ± standard error of
the mean; n = 3. Significance was examined by one-way ANOVA followed by Dunnett’s multiple comparisons test (∗P < .05; ∗∗P < .01). Results in (i, l, n)
are shown as values ± standard error of the mean; n = 3. Significance was examined by Student’s t-test ( ∗∗P < .01).

regulates VqNSTS3 expression by binding to TTGACC in the
VqNSTS3 promoter and also regulates its own expression.

Transfer of VqWRKY33 into ‘Thompson Seedless’
to promote resistance to E. necator through
accumulation of stilbenes
To determine the role of VqWRKY33 in the accumulation
of stilbenes, two transgenic lines and one RNAi line were
obtained by stable genetic transformation mediated by A.
tumefaciens (Fig. 4a and b, Supplementary Data Fig. S6). Trans-
genic plants were identified by qPCR and western blot assays
(Supplementary Data Fig. S6d and e), and the plants obtained
were subjected to inoculation with E. necator to observe the
phenotypes; WT plants were used as negative control. After
artificial inoculation, WT and RNAi plants showed more colonies
than those of OE lines. In transgenic lines a more obvious
hypersensitive response (HR) cell death phenotype could be
observed (Fig. 4c, d, and g). OE plants accumulated more callose
and H2O2 than in WT and RNAi plants by histochemical staining
(Fig. 4e–f and h–i). The expression of STSs after inoculation in
transgenic plants showed a more significant response than in
the WT and RNAi plants (Fig. 4j). VqWRKY33’s influence on the
accumulation of stilbenes after E. necator inoculation was further
investigated. The HPLC assay indicated that after inoculation,

only piceid and piceatannol were detected in WT plants, while five
stilbenes accumulated in transgenic plants. The contents of piceid
and piceatannol in VqWRKY33 overexpression lines were 6.7 and
2.3 times higher, respectively, compared with WT. However, in
RNAi-WRKY33 we only detected piceid after inoculation (Fig. 4k,
Supplementary Data Table S8). Overall, these results showed that
VqWRKY33 is an important transcription factor in regulating the
stilbene synthesis pathway.

VqWRKY33 induces enhanced expression of
VqNSTS3 due to interaction with and
phosphorylation by VqMAPK3/6
Our previous study found that MAPKKK38 responded sig-
nificantly after E. necator induction [59]. We quantitatively
analyzed MAPKKK38 and five MEKK genes after inoculation
with E. necator in Danfeng-2. Here, MAPKKK38, MEKK3, and
MEKK5 were significantly induced after E. necator inoculation
(Supplementary Data Fig. S1). To further investigate VqWRKY33’s
molecular role in regulating VqNSTS3 in response to E. neca-
tor, we focused on protein–protein interaction networks. The
STRING database was used to predict the possible interact-
ing proteins of VqWRKY33, including MAPK3 and MAPK6
(Supplementary Data Fig. S7a–c, Supplementary Data Table S6).
VqMAPK3, VqMAPK4, and VqMAPK6 could be activated by E.
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Figure 4. Overexpression of VqWRKY33 in ‘Thompson Seedless’ promotes expression of STSs and resistance to E. necator. a, b Diagram of the (a)
OEVqWRKY33 and (b) RNAiWRKY33 construct. c Photographs of OEW33-8, OEW33-11, RiW33-9, and WT plants at 21 dpi. Scale bars, 3 cm. d Trypan
blue-stained OEW33-8, OEW33-11, RiW33-9, and WT leaves at 4 and 7 dpi. CD, cell death. Scale bars, 50 μm. e Aniline blue staining of OEW33-8,
OEW33-11, RiW33-9, and WT leaves to detect callose deposition at 7 dpi. Scale bars, 50 μm. f DAB staining of OEW33-8, OEW33-11, RiW33-9, and WT
leaves to detect H2O2 accumulation at 7 dpi. Scale bars, 50 μm. g Number of conidiophores per colony on OEW33-8, OEW33-11, RiW33-9, and WT
leaves at 7 dpi. Results are shown as mean ± standard error of the mean; n = 20, and different letters represent significant differences (P < .05) as
determined by one-way ANOVA followed by Tukey’s multiple comparisons test. h Quantification of callose deposition area on leaves at 7 dpi. i H2O2

content in OEW33-8, OEW33-11, RiW33-9, and WT leaves at 7 dpi. j qPCR analysis of VvSTS expression in OEW33-8, OEW33-11, RiW33-9, and WT
plants after inoculation. Results are shown as mean ± standard error of the mean; n = 3. Significance was examined by one-way ANOVA followed by
Dunnett’s multiple comparisons test (∗∗P < .01). k HPLC analysis of stilbenes in (OE and RNAi) WRKY33 and WT after inoculation. Results are shown as
mean ± standard error of the mean; n = 3. Significance was examined by Student’s t-test (∗∗P < .01). Results in (h) and (i) are shown as mean ±
standard error of the mean; n = 3, and different letters represent significant differences (P < .05) as determined by one-way ANOVA followed by Tukey’s
multiple comparisons test.
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necator and chitin [60] (Fig. 5a and b); meanwhile, VqWRKY33
could be phosphorylated after inoculation with E. necator (Fig. 5c).
Next, to determine whether VqWRKY33 could interact with
VqMAPK3 and VqMAPK6, a BiFC assay was performed, allowing
direct interaction between VqMAPK3/6 and VqWRKY33 to be
observed in nuclei (Fig. 5d). A split-luciferase complementation
assay and a co-immunoprecipitation (CoIP) assay also confirmed
the interaction between VqMAPK3/6 and VqWRKY33 (Fig. 5e–f). To
determine whether VqMAPK3 and VqMAPK6 could phosphorylate
VqWRKY33, we separately co-expressed VqMAPK3 and VqMAPK6
with VqWRKY33 in tobacco leaves and sprayed them with chitin.
Phos-tag gel was used to separate the extracted protein. Under
chitin treatment, VqWRKY33 can be phosphorylated by VqMAPK3
and VqMAPK6 (Fig. 5g). Constitutively active MAPK3 and MAPK6
(MAPK3CA and MAPK6CA), which result from two mutations
(E198G/E202A and D220G/E224A) in each of the conserved
domains, respectively, retain their substrate specificity and
physiological functions [61] (Supplementary Data Fig. S7d and e).
MAPK3/6CA could phosphorylate VqWRKY33 without chitin
treatment (Fig. 5h), which confirms the previous report that
MAPK3/6CA is a constitutively active form of MAPK3/6 [61].
To explore how VqMAPK3/6 affected VqWRKY33 function and
regulated VqNSTS3 expression, transient transactivation was
performed via assays using the VqNSTS3 promoter fused to
GUS (ProVqNSTS3-GUS). Co-expression of VqMPK3/6 induced
VqWRKY33-activated VqNSTS3 expression, and the VqMAPK3/6
constitutive activation form displayed enhanced VqNSTS3
expression activity (Fig. 5i and j).

VqMAPK3/6 positively regulate the expression of
VqSTSs and enhance resistance to E. necator in
grapevine
As VqMAPK3 and VqMAPK6 can be activated after E. necator inoc-
ulation (Fig. 5a), we speculated that VqMAPK3 and VqMAPK6 are
involved in resistance to E. necator. 35S-VqMAPK3CA-GFP and 35S-
VqMAPK6CA-GFP were transiently overexpressed in Danfeng-2 (EV
as a negative control) (Fig. 6a, Supplementary Data S8c and d).
We observed fewer spores on OE leaves than on the negative
control after inoculation (Fig. 6b–d). The expression of VqWRKY33,
VqNSTS3/VqSTS33, and VqSTSs in transient overexpression
leaves was prominently higher than in the EV leaves (Fig. 6f–h).
Contents of trans-resveratrol, piceid, ε-viniferin, and piceatannol
in OEVqMAPK3CA leaves were 2.4-, 3.6-, 5.7-, and 1.3-fold compared
with EV leaves after inoculation; in OEVqMAPK6CA leaves contents
were 1.9-, 4.7-, 5.8-, and 1.6-fold compared with EV leaves after
inoculation (Fig. 6e, Supplementary Data Table S9). These results
indicated that phosphorylated VqMAPK3/6 could positively
regulate the expression of VqWRKY33 and VqSTSs and the
production of stilbenes. MAPK3 and MAPK6 were then silenced in
grapevines (Fig. 6i, Supplementary Data Fig. S8e and f). Notably,
spores of E. necator on RNAi-MAPK3 or RNAi-MAPK6 leaves
were strikingly larger than those on WT after inoculation
(Fig. 6j–l). RNAi-MAPK3 or RNAi-MAPK6 significantly reduced the
expression levels of VvWRKY33 and VvSTSs (Fig. 6n and o). HPLC
was performed to detect the accumulation of stilbenes in the
RNAi lines, and only piceid was detected after inoculation. The
contents of piceid in RNAi-MAPK3/6 increased 4.2- and 11.9-fold,
respectively, after inoculation. The results showed that the non-
toxic piceid in susceptible plants was the main stilbene accumu-
lated (Fig. 6m, Supplementary Data Table S9). Collectively, these
results indicate that VqMAPK3/6 positively regulate VqNSTS3
expression and increase the accumulation of stilbenes against
E. necator.

ProVqNSTS3::VqNSTS3-GFP moves to and wraps
the pathogen haustoria, forming encasements to
block the invasion of pathogens in A. thaliana
As the model plant A. thaliana does not contain STS genes, VqN-
STS3 was linked to its own promoter to stably transform A.
thaliana, thus revealing the expression and function of the VqN-
STS3 gene in transgenic A. thaliana (Fig. 7a, Supplementary Data
Fig. S9). Transgenic lines of the T3 generation were artificially
inoculated with G. cichoracearum, and after trypan blue staining it
was found that large areas of HR cell death appeared on trans-
genic A. thaliana after inoculation (Fig. 7b and c). Furthermore,
the number of spores on the transgenic lines was less than on
WT (Fig. 7d and e). Trans-resveratrol and piceid in transgenic lines
accumulated after inoculation (Fig. 7f, Supplementary Data Table
S10). Preliminary studies have shown that stilbenes can inhibit
the growth of hyphae, and mainly accumulate at the place where
G. cichoracearum invades [15]. However, there is no direct evidence
of how the STS gene resists G. cichoracearum infection. Forty-
eight hours after inoculation of the OE lines, green fluorescence
of VqNSTS3 was observed on the plasma membrane and the
intact haustorium encasement. The lipophilic dye FM4-64 mainly
marked the cell phospholipid membrane. Green and red fluores-
cence had obvious fluorescence overlap on the haustorial neck
and plasma membrane (Fig. 7k). The yellow fluorescence was
observed gathered around the secondary haustorium developing
from new appressoria along the hyphae 72 hours after inoculation
with G. cichoracearum (Fig. 7l). To further determine when and how
ProVqNSTS3::VqNSTS3-GFP accumulated at haustorium encase-
ments, a time-process study was conducted. At the invasion site of
G. cichoracearum, aggregation of GFP fluorescence could be seen 6–
10 hours post-inoculation (hpi), accompanied by the germination
of spores. With increasing invasion time, some small multivesic-
ular body (MVB) structures aggregated in the infected sites and
started accumulating at the haustorial neck (10–24 hpi). A cupular
encasement then formed around the haustorium [62]. Finally, the
haustorium was completely wrapped by ProVqNSTS3::VqNSTS3-
GFP (24–72 hpi) (Fig. 7g–j). These results indicate that stilbene syn-
thase directly interacts with spores and inhibits the germination
and growth of spores.

Discussion
On the stilbene synthase genes and novel
VqNSTS3 resistance to disease in grapevine
STS is a key enzyme in the biosynthesis of resveratrol [63].
Resveratrol in grapevine plays a key role in plant disease
resistance and is beneficial to human health [18, 19]. After
infection or stress in grapevine, resveratrol, a major stilbene
product, accumulates in large amounts in the stressed areas [64].
We recently found six novel transcripts of STSs by analyzing the
transcriptome data of Danfeng-2 [55]. Based on sequence align-
ment, there are significant differences between VqNSTS2–6 and
the reported VqSTSs, indicating that the VqNSTS genes are new
members in Danfeng-2 [34]. Among them, VqNSTS3 produced the
highest stilbene content after it was transiently transformed into
tobacco (Fig. 1f). Therefore, we speculated that VqNSTS3 enhanced
the resistance of Danfeng-2 to E. necator by accumulating
stilbenes. In order to better study the function of VqNSTS3 from
Chinese wild grapevine in European grapevine varieties, an A.
tumefaciens-mediated genetic regeneration system for transgenic
grapevines was used for the identification of gene function in
transgenic lines [43, 65]. We genetically transformed VqNSTS3 into

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
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Figure 5. VqMAPK3/6 interact with and phosphorylate VqWRKY33, inducing the expression of VqNSTS3. a Activation of VqMAPKs in Danfeng-2 leaves
treated with E. necator was verified by western blot assays. b Activation of VqMAPKs in Danfeng-2 leaves treated with 1 mg/ml chitin was verified by
western blot assays. c Phosphorylation of VqWRKY33 was induced by E. necator. Proteins were separated by Phos-tag gel. d BiFC assays verified the
interaction between VqWRKY33 and VqMAPK3/6 in tobacco leaves and grape protoplasts. Scale bars, 50/10 μm. e Split-luciferase complementation
assays confirmed the interaction between VqWRKY33 and VqMAPK3/6. f CoIP assays validated that VqWRKY33 interacted with VqMAPK3 and
VqMAPK6. g Phosphorylation of VqWRKY33 co-expressed with VqMAPK3 and VqMAPK6 after chitin treatment. Proteins were separated by Phos-tag gel,
and then detected by immunoblotting with an anti-Myc antibody. h Phosphorylation of VqWRKY33 was induced by phospho-mimicking VqMAPK3/6
mutants. Proteins were separated by Phos-tag gel, and then detected by immunoblotting with an anti-Myc antibody. i Structural diagrams of GUS
activity assays. j Measurement of GUS activity. ProVqNSTS3-GUS was co-transformed with 35S-GFP, 35S-VqWRKY33-GFP, and 35S-VqMAPKs-GFP
in tobacco leaves. Results are shown as mean ± standard error of the mean; n = 3, and different letters represent significant differences (P < .05) as
determined by one-way ANOVA followed by Tukey’s multiple comparisons test.

V. vinifera ‘Thompson Seedless’ and detected the accumulation of
stilbenes after inoculation. The content of these chemicals in the
VqNSTS3 transgenic lines exceeded that in WT plants (Fig. 2g).

Similar results were observed in VpSTS29/STS2 [47] and VqNSTS4
overexpression lines [34]. Plants resist pathogens through two
layers of innate immunity: PAMP-triggered immunity (PTI) and
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Figure 6. VqMAPK3/6 positively regulate the expression of STSs and enhance the disease resistance of grapevine. a Diagram of the OEVqMAPK3/6CA

construct. b Photographs of OEVqMAPK3/6CA and EV leaves at 5 dpi. Scale bars, 3 cm. c Trypan blue-stained EV and OEVqMAPK3/6CA leaves at 5 dpi.
Scale bars , 50 μm. d Number of conidiophores per colony on EV and OEVqMAPK3/6CA leaves at 5 dpi. e HPLC analysis of stilbenes in OEVqMAPK3/6CA

and EV leaves. f–h qPCR analysis of VqWRKY33, VqNSTS3/VqNSTS33, and VqSTS in EV and OE leaves after E. necator inoculation. i Diagram of the
RNAi-MAPK3/6 construct. j Photographs of RiMAPK3-13, RiMAPK3-19, RiMAPK6-2, RiMAPK6-5, and WT plants at 21 dpi. Scale bars, 3 cm. k Trypan
blue-stained RNAi-MAPK3/6 and WT leaves at 7 dpi. Scale bars, 100 μm. l Number of conidiophores per colony on RNAi-MAPK3/6 and WT leaves at
7 dpi. m HPLC analysis of stilbenes in RNAi-MAPK3/6 and WT. n, o Expression of VvSTSs and VvWRKY33 analyzed by qPCR in WT and RNAi-MAPK3/6
plants after E. necator inoculation. In (d) and (l) results are shown as mean ± standard error of the mean; n = 20, and different letters represent
significant differences (P < .05) as determined by one-way ANOVA followed by Tukey’s multiple comparisons test. In (e–h) and (m–o) results are shown
as mean ± standard error of the mean; n = 3. Significance was examined by one-way ANOVA followed by Dunnett’s multiple comparisons test (∗P < .05;
∗∗, P < .01).

effector-triggered immunity (ETI) [66–68]. PTI is the basic defense
of plants, characterized by activation of multiple immune
responses [69–73]. Callose deposits, a sign of the plant PTI
response [74], are accumulated at the sites of attack during
early stages of pathogen invasion [75]. The HR may inhibit
or delay further spread of the pathogen [76]. Compared with
WT plants, VqNSTS3 overexpression plants exhibited more cell
death and higher callose accumulation after E. necator infection
(Fig. 2c–e). Consistent with this, VqNSTS3-transgenic A. thaliana
plants showed HR cell death and limited spore growth and
germination (Fig. 7b–e). These results were also found in previous
studies [34, 47, 53]. SA signaling is another vital signal for
plant immunity [77]. Overexpression of VqNSTS3 in transgenic
grapevine lines activated SA-related signaling genes PR1 and PR5
(Fig. 2h and i) and disease resistance-related genes RBOHD and
CHIT4C (Fig. 2j and k), which is similar to the findings in VqNSTS4
overexpression grapevines in that the plants showed enhanced
disease resistance-related gene expression and enhanced resis-
tance to E. necator [34]. In RNAi-VqNSTS3 plants, however, we

observed the opposite results (Fig. 2l–u). Overall, these results
suggest that overexpression of VqNSTS3 triggered several mecha-
nisms after elicitor perception and regulated stilbene production
in plant cells to enhance E. necator resistance [47, 78, 79]. Our
results demonstrated that VqNSTS3 transgenic overexpression
plants showed resistance-related gene expression, HR cell death,
and callose deposition after inoculation by E. necator.

Transcription factor regulation and novel
mechanism of VqWRKY33 in grapevine
Several transcription factors involved in the regulation of grape
STS genes have been discovered, including MYB, WRKY, ERF, and
bZIP [26–33, 80]. Höll et al. reported that the MYB transcription
factors that regulate the STS genes in grapevine via a typical
path, VvMYB14 and VvMYB15, can activate the promoters of
VvSTS29/41 [30]. Jiang et al. revealed that VqMYB154 can promote
polygene VqSTS9/32/42 expression by binding to their promoters
[27]. Aside from MYB transcription factors, WRKY transcription
factors are also vital regulators of STS genes [35, 81]. VvWRKY24
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Figure 7. ProVqNSTS3::VqNSTS3-GFP moves to and wraps the pathogen haustoria to block the invasion of G. cichoracearum in A. thaliana. a Diagram of
the ProVqNSTS3::VqNSTS3-GFP construct. b Photographs of ProVqNSTS3::VqNSTS3-GFP overexpression and Col-0 leaves infected with G. cichoracearum at
7 dpi. Scale bars, 1 cm. c Trypan blue staining of leaves from Col-0 and transgenic A. thaliana at 7 dpi. Scale bars, 100/50 μm. d Scanning electron
micrographs of Col-0 and transgenic A. thaliana leaves inoculated with G. cichoracearum for 7 days. Scale bars, 50 μm. e Quantification of G. cichoracearum
growth on A. thaliana leaves at 7 dpi. Results are shown as mean ± standard error of the mean; n = 20. Significance was examined by one-way ANOVA
followed by Dunnett’s multiple comparisons test (∗∗P < .01). f HPLC analysis of piceid and trans-resveratrol in ProVqNSTS3::VqNSTS3-GFP transgenic
plants and Col-0. Results are shown as mean ± standard error of the mean; n = 3. Significance was examined by one-way ANOVA followed by Dunnett’s
multiple comparisons test (∗∗P < .01). g–j Confocal microscope images from single optical sections of A. thaliana leaf epidermal cells expressing
ProVqNSTS3::VqNSTS3-GFP infected by G. cichoracearum. The top row shows ProVqNSTS3::VqNSTS3-GFP fluorescence and the bottom row shows the
merged field images. The red arrow indicates the penetration site, green arrows indicate multivesicular bodies, white arrows indicate the haustorial
necks, and blue arrows indicate haustorial encasements. hn, haustorial neck; he, haustorial encasement; C, conidium. Scale bars, 5 μm. k Arabidopsis
thaliana plants overexpressing ProVqNSTS3::VqNSTS3-GFP were inoculated with G. cichoracearum and haustorial encasements were analyzed by confocal
microscopy at 48 hours post-inoculation (hpi) for PM. hn, haustorial neck; he, haustorial encasement. Scale bars, 5 μm. The left column shows
ProVqNSTS3::VqNSTS3-GFP fluorescence, the middle column shows corresponding red fluorescence after staining with the membrane-specific tracer
FM4-64, and the right column shows the corresponding merged images. l Z-projections through the epidermal cell layer were visualized by confocal
microscopy at 72 hpi. They were 3D-reconstructed and displayed as maximum intensity projections. Image shows overlays of GFP fluorescence (yellow)
and calcofluor white staining (cyan). Scale bars, 50 μm.

alone can activate the promoter of VvSTS29, but VvWRKY3
needs to form an integrated organization with VvMYB14 to
regulate VvSTS29 [35]. VqSTS32/41 are positively regulated by
VqWRKY53; meanwhile VqWRKY53 interacts with VqMYB14
and VqMYB15 to show a stronger regulatory function [32].
VqWRKY31 can directly bind to the promoters of STS9/48 [26].
The WRKY transcription factors are prominent signaling proteins
participating in resistance to various fungal diseases in plants
[82–85]. They are key regulatory components of plant disease

resistance for A. thaliana [86], rice (Oryza sativa) [87], apple (Malus
domestica) [85], Brassica napus [88], and rose (Rosa hybrida) [89].
Moreover, many WRKY transcription factors in grapevines have
been demonstrated to be involved in plant resistance to disease.
For example, heterologous expression of VpWRKY1, VpWRKY2,
VpWRKY11, VqWRKY52, VqWRKY53, and VqWRKY56 enhances
resistance to pathogens [32, 84, 90–92]. WRKY family members
can be divided into three subfamilies [57]. WRKY33, belonging to
the WRKY I family, is a pathogen-inducible transcription factor,
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the expression of which was shown to be essential for positively
regulating resistance to B. cinerea [86, 93], Alternaria brassicicola [94],
and the oomycete pathogen Plasmopara viticola [95]. In A. thaliana,
AtWRKY33 induced camalexin biosynthesis after pathogen
infection [86, 93, 94], and acted as an important node of the
regulatory cascade [86]. In this study, a WRKY-type transcription
factor, VqWRKY33, which can be induced by E. necator, was
isolated from Danfeng-2 (Fig. 3a, Supplementary DataS5). WRKY
transcription factors regulate target genes by binding to the
W-box elements on target gene promoters [57]. The VqNSTS3
promoter contained both TTGACT and TTGACC (Supplementary
Data Fig. S2), which indicates that VqNSTS3 may be directly
regulated by VqWRKY33. Through Y1H, dual-luciferase, and ChIP–
qPCR assays, the results showed that VqWRKY33 increased the
activity of VqNSTS3 promoter by binding directly to TTGACC on
the VqNSTS3 promoter (Fig. 3d, f–i). In this study, overexpression
of VqWRKY33 in ‘Thompson Seedless’ plants enhanced E. necator
tolerance and increased stilbene, callose, and H2O2 accumulation,
and HR cell death after inoculation, whereas RNAi plants
showed the opposite phenotype (Fig. 4a–i and k). Here, compared
with WT and RNAi plants, the expression of the STS gene
in plants overexpressing VqWRKY33 was significantly higher
after inoculation with E. necator (Fig. 4j). Taken together, our
data show that VqWRKY33 may be an important node for
enhancing the expression of VqNSTS3 in grapevine, leading
to stilbenes accumulation and consequently resistance to E.
necator.

Phosphorylation signaling of the three-stage
cascade of VqMAPK3/6-VqWRKY33 enhances
VqNSTS3 stilbene accumulation and prevents
infection by pathogens
In plants, MAPK cascades can regulate plant growth processes,
hormonal signaling, and the response of the plant to various
stresses [96–100]. This module typically consists of three protein
kinases that activate each other through phosphorylation [101].
Two MAPK cascades are known to participate in plant immunity
[61, 102–106]. The MAPK cascades communicate biological signals
through phosphorylation of various transcription factors [107].
Among them, WRKYs are vital substrates of MAPK cascades.
For example, AtMPK3/AtMPK6-AtWRKY33 functions against
B. cinerea and MAPK-WRKY7/8/9/11 against Phytophthora [83,
108]. MdMMKK4-MdMPK3-MdWRKY17 increased susceptibility
to Colletotrichum fructicola due to SA degradation in apple [85].
However, studies of grapevine MAPK signal transduction in
response to E. necator have not been conducted. MAPK activation
is one of the earliest signaling events in plants after perception
of pathogen stress [109] and participates in signal transduction
of multiple defense responses [96, 110]. In V. vinifera, there are
14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs [111].
Jiao et al. (2017) reported that stilbene accumulation can be
positively regulated by VqMAPKKK38 by mediating the activation
of VqMYB14 in grapevine [59]. In this study, expression of
VqMAPKKK38, MEKK3, and MEKK5 was significantly induced after
E. necator inoculation in Danfeng-2 (Supplementary Data Fig.
S1). Then, VqMAPK3 and VqMAPK6 were activated following
chitin and E. necator treatment (Fig. 5a and b). These results may
suggest that VqMAPKKK38, VqMEKK3, and VqMEKK5 act upstream
in Danfeng-2 in transducing signal downstream of MAPK3/6 after
E. necator inoculation. AtMPK3/MPK6 was previously reported to
phosphorylate AtWRKY33 and activate camalexin biosynthesis
gene expression [58]. The OsMKK4-OsMPK6 cascade plays a
vital role in biosynthesis of diterpenoid phytoalexins [112].

SIPK/NTF4/WIPK-phosphorylated, WRKY33-related NbWRKY8
induced a key gene for the production of isoprenoid phytoalexins
[113]. In our study, we have shown that VqMAPK3/VqMAPK6
phosphorylation of VqWRKY33 forms an accessory pathway for
the regulation of stilbene biosynthesis and resistance to E. necator
in grapevine. WRKY I family members have SP clusters, which are
thought to be phosphorylated by MAPKs at the N-terminal [58, 85,
108, 113]. Four sites in the SP clusters of VqWRKY33 are important
phosphorylation sites that regulate VqWRKY33-mediated VqN-
STS3 expression (Fig. 3e and h). In apple, the phosphorylation sites
in the SP cluster are vital for regulating MdWRKY17-mediated
MdDMR6 activation [85]. Phosphorylation of VqWRKY33 by
VqMPK3/VqMPK6 enhances its activity in promoting the expres-
sion of downstream stilbene biosynthetic genes. However, other
phosphorylation sites involved in phosphorylating VqWRKY33
by VqMAPK3/6 need to be further studied. In addition, RNAi-
MAPK3/6 plants both showed increased susceptibility to E. necator
and decreased the accumulation of stilbenes (Fig. 6). In Danfeng-
2, both VqMAPK3 and VqMAPK6 showed vital functions in stilbene
accumulation and E. necator resistance. Therefore, our study
found that, under infection with E. necator, VqMAPK3/6 sense the
stimulation of the pathogen and release phosphorylation signals,
which cause downstream transcription factor VqWRKY33 to start
the positive regulation of target gene VqNSTS3, which expresses
and accumulates a large number of stilbenes, enhancing disease
resistance.

ProVqNSTS3::VqNSTS3-GFP moves to and wraps
the haustoria to prevent pathogen invasion in
transgenic A. thaliana
Fungal conidia invade plants by forming haustoria, which secrete
proteins that degrade the host cell wall, and then invade the host
plant [114]. To prevent the growth of fungi, plant cells enclose
the haustoria by forming an encasement [115]. Haustorial encase-
ments may serve as a matrix in which to concentrate plant-
derived antimicrobial compounds at the plant–fungal interface,
thereby poisoning the haustorium [62, 116, 117]. Several proteins
that are essential for encasement formation towards PM fungus
have been found in previous studies. For example, the syntaxin
PEN1 (SYP121) and its closest homolog, SYP122, are required for
encasement formation [62, 118]. These syntaxins are required for
mediating encasement formation at the site of a fungal attack
[117]. Previous studies showed that STS proteins localized to
the exocarp cell wall, secondary cell wall, chloroplast, endoplas-
mic reticulum, and the oil bodies using immune-histochemical,
immunogold electron microscopy, and laser scanning confocal
microscopy techniques [48, 119, 120]. In this study, ectopic expres-
sion of VqNSTS3 in A. thaliana under its own promoter showed
that VqNSTS3 is crucial for postinvasive immunity against the PM
pathogen by accumulating stilbenes in the transgenic lines after
artificial inoculation with G. cichoracearum (Fig. 7f). By using laser
scanning confocal microscopy, VqNSTS3 was found to localize
on the plasma membrane in the absence of pathogen infection,
but was actively translocated to the haustorial encasements and
surrounded the haustoria when plants were challenged by G.
cichoracearum (Fig. 7g–l). The expression enhancement of VqNSTS3
caused large amounts of the protein VqNSTS3 to be transported
to the haustorium by vesicles (Fig. 7h and i). Therefore, our results
imply that the VqNSTS3-containing MVBs move to the haustorial
encasements and wrap around them, preventing the growth of
fungal conidia and mycelium .

In summary, we have discovered and identified a novel VqN-
STS3 from Danfeng-2 based on transcriptome sequencing. The

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhad116#supplementary-data
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Figure 8. Model of the three-stage signaling cascade of VqMAPK3/6-VqWRKY33-VqNSTS3 in Danfeng-2, enhancing stilbene accumulation and
preventing infection with pathogens. Erysiphe necator-triggered phosphorylation of VqWRKY33 by VqMAPK3/6 enhances the binding of VqWRKY33 to
the VqNSTS3 promoter and activates VqNSTS3 expression to promote the accumulation of stilbenes. VqWRKY33 can also activate its own expression.
VqNSTS3 can be carried by MVBs that positively accumulated at haustorial encasements to inhibit the growth of PM spores.

novel VqNSTS3 has the conserved domain and sequence charac-
teristics of the STS family. Transgenic VqNSTS3 plants not only
rapidly produced phytoalexin but also showed HR cell death, cal-
lose accumulation, and resistance-related gene expression after E.
necator inoculation. Grapevine VqMAPK3/6-VqWRKY33 positively
regulates novel VqNSTS3 expression and resistance to E. necator in
grapevine immunity. It has been found that in plants that have
been attacked by pathogens VqNSTS3 is actively transported to
the haustorium, then surrounds the haustorium and prevents it
from invading the plant (Fig. 8). These results demonstrate that
the Chinese wild grapevine integrates the three-stage cascade
signal to positively regulate VqNSTS3 expression and stilbene
accumulation, thereby enhancing the resistance to PM. Chinese
wild grapes are valuable germplasm resources for grape disease
resistance breeding.

Materials and methods
Plant materials
All sample tissues of Chinese wild grapevine V. quinquangularis
accession Danfeng-2 were gathered in 2020 from the grapevine
resource nursery of Northwest A & F University, Yangling, Shaanxi,
China (34◦20′N, 108◦24′E). Callus of V. vinifera cultivar ‘Thompson
Seedless’ was used for genetic transformation. Arabidopsis
thaliana Columbia WT (Col-0) was cultivated and used as a
transgene receptor in a growth chamber. Tobacco plants (Nicotiana
benthamiana) were cultivated in an incubator at 22 ± 2◦C with light
for 16 hours.

RNA extraction and reverse
transcription–quantitative PCR
The Omega Plant RNA Kit (Omega, GA, USA) was used for RNA
extraction. The FastKing RT Kit (TIANGEN, Beijing, China) was
used for cDNA first-strand synthesis [92]. PerfectStart Green
qPCR SuperMix (TransGen Biotech, Beijing, China) and the ABI
QuantStudio 6 Flex (Applied Biosystems, Thermo Fisher, CA, USA)
were used for qPCR. The 2−��c(t) method was used to calculate
relative expression [121]. Primers are listed in Supplementary
Data Tables S1–3.

Subcellular localization
The plasma membrane-localized marker PM-RK-mCherry [122]
was co-expressed with 35S-VqMAPK3/6-GFP to validate the local-
ization of these proteins and injected into 4-week-old tobacco
leaves. And 35S-VqNSTS3-GFP construct was mobilized into the
GV3101 strain of Agrobacterium tumefaciens and then transferred
into tobacco leaves. [123]. In addition, 35S-VqWRKY33-GFP was
co-expressed with 35S-AtHY5-mCherry (a marker of nucleus) into
protoplasts of grapevine using the polyethylene glycol-mediated
method [124]. GFP and mCherry signals were observed with con-
focal laser microscopy (Leica TCS SP8, Germany).

Grapevine transformation, E. necator infection,
histochemical staining, and microscopy
Callus isolated from ‘Thompson Seedless’ was used for grapevine
transformation by A. tumefaciens. The transgenic transformation
method was similar to the method described previously [43, 65,
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123]. The third to sixth healthy and newly developed leaves from
the beginning of the shoot tip were selected for E. necator artificial
inoculation [42].

After 7 days of inoculation, leaves were gathered for trypan
blue staining and calculating the number of conidiophores per
colony under a microscope as described [125]. Trypan blue stain-
ing was used to visualize hyphal growth and detect cell death
[27]. Callose was stained by aniline blue and visualized by UV
epifluorescence. Scanning electron microscopy observation was
carried out following a previously described method [15]. For
transient expression experiments in grapevine, A. tumefaciens con-
taining 35S-VqMAPK3/6CA-GFP, RNAi-VqNSTS3, and empty vectors
was cultured in LB liquid medium, and the OD600 was adjusted
to 0.6–0.7. Leaves of Danfeng-2 were vacuumed for 30 minutes
by immersion in bacterial solution [126]. Then, the leaves were
placed in a growth chamber for moisturizing and cultivation for
3 days and gathered for subsequent research.

Stilbene content determination by
high-performance liquid chromatography
Plant samples were freeze-dried for 48 hours, and dry weight
was determined according to the volume-to-mass ratio of 1:10.
Methanol was added to extract stilbene substances for 24 hours
in dark. Then, the methanol extract was filtered through a 0.22-
μm membrane film. High-performance liquid chromatography
(HPLC) was conducted using a Nexera UHPLC LC-30A (Shimadzu,
Japan). The gradient used was consistent with previous research
methods [127]. Standard samples of trans-resveratrol (CAS:
501-36-0), piceid (CAS: 27208-80-6), piceatannol (CAS: 10083-24-
6), pterostilbene (CAS: 537-42-8), and ε-viniferin (CAS: 62218-08-0)
(Sigma–Aldrich, USA) were used to confirm retention times.
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