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Abstract 15 

Single-cell ATAC-seq has emerged as a powerful approach for revealing candidate cis-16 
regulatory elements genome-wide at cell-type resolution. However, current single-cell methods 17 
suffer from limited throughput and high costs. Here, we present a novel technique called single-18 
cell combinatorial fluidic indexing ATAC-sequencing ("scifi-ATAC-seq"), which combines a 19 
barcoded Tn5 pre-indexing step with droplet-based single-cell ATAC-seq using a widely 20 
commercialized microfluidics platform (10X Genomics). With scifi-ATAC-seq, up to 200,000 21 
nuclei across multiple samples in a single emulsion reaction can be indexed, representing a 22 
~20-fold increase in throughput compared to the standard 10X Genomics workflow. 23 

Keywords 24 

Single-cell; ATAC-seq; Chromatin accessibility; Combinatorial fluidic indexing; Massive-25 
scale 26 

Background 27 

ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) [1] has emerged 28 
as a popular method for chromatin accessibility profiling to unveil genome-wide candidate cis-29 
regulatory elements, which govern precise gene expression patterns for specifying distinct cell 30 
types or cell states. Recently, ATAC-seq was further modified to profile chromatin 31 
accessibility at single-cell resolution (scATAC-seq), which was used to generate several cis-32 
regulatory atlases for animals and plants [2-7,35,36]. Most single-cell methods have the 33 
capability to generate data for hundreds to thousands of cells/nuclei simultaneously and are 34 
categorized as either droplet-based or combinatorial indexed techniques [8-11]. Droplet-based 35 
approaches are commonly implemented using microfluidics platforms, such as the 36 
commercialized products from companies like 10X Genomics, which offer straightforward 37 
handling and consistent data quality compared with combinatorial indexing methods [12]. 38 

In droplet-based assays the single-cell suspension is loaded into the microfluidics device at a 39 
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significantly lower concentration compared to the barcoded beads to minimize the occurrence 40 
of cell/nuclei doublets that lead to false cell states. For instance, typically the loading cell/nuclei 41 
number is only about 1-10% of the total number of Gel Bead-in-Emulsions (GEMs) from the 42 
10X Genomics Chromium Controller (Fig. 1a), which uses reagents inefficiently, leading to 43 
limited throughput and higher costs. To address the inefficiency of droplet-based approaches, 44 
a chimeric single-cell strategy has been developed, in which nuclei were pre-indexed prior to 45 
overloading of the microfluidics device. With this strategy, the technique known as 46 
"dsciATAC-seq" was developed, which combined pre-indexing with a microfluidics system 47 
from Bio-Rad, and recovered about 25k nuclei with 100k nuclei loaded in one experiment [13]. 48 
More recently, similar approaches have been used for scRNA-seq with the 10X Genomics 49 
platform, referred to as scifi-RNA-seq, which recovered around 150k cells upon loading 380k 50 
cells, and further significantly increased the throughput [14]. However, there is currently no 51 
massive-scale scATAC-seq protocol for use with the 10X Genomics platform, which is most 52 
commonly used for scATAC-seq data generation. 53 

Results and Discussion 54 

In this study, we present a method for profiling massive-scale single-cell chromatin 55 
accessibility sequencing using the 10X Genomics microfluidics system. We refer to this 56 
method as single-cell combinatorial fluidic indexing ATAC-sequencing (scifi-ATAC-seq), as 57 
it was initially inspired by the scifi-RNA-seq design [14]. In scifi-ATAC-seq, the nuclei are 58 
pre-indexed in a 96-well plate with a two-sided barcoded Tn5 (96 distinct barcode 59 
combinations), which is based on our previous sci-ATAC-seq design [15]. Then, a standard 60 
scATAC-seq library preparation is performed, except that an overloaded number of nuclei are 61 
used in the microfluidics system. Approximately 100-200k nuclei per channel instead of the 62 
recommended maximum of 15.3k are loaded. Compared to the one-sided barcoded Tn5 [13], 63 
the two-sided barcode design offers several advantages: (i) It requires fewer Tn5 adapter oligos 64 
for Tn5 barcoding, and readily accommodates scaling up the index complexity when necessary. 65 
Only 20 oligos (8 rows x 12 columns) are needed to create 96 unique barcode combinations. 66 
(ii) It requires less Tn5 for Tn5 assembly. Only 280 uL of Tn5 (15 uL in 8 rows and 10 uL in 67 
12 columns) is necessary, whereas the one-sided barcode would require over 1,000 uL of Tn5, 68 
assuming a minimal assembly volume of 10 uL per well. (iii) The barcode in the s5 end helps 69 
to distinguish index hopping reads and reduces index hopping contamination (Fig. S1 a,b ). 70 

To evaluate the performance of scifi-ATAC-seq, we generated two scifi-ATAC-seq libraries 71 
using 100k and 200k overloaded nuclei from frozen tissue with mixed genotypes (B73 and 72 
Mo17) of Zea mays (maize) seedling tissue. We compared the scifi-ATAC-seq data with two 73 
scATAC-seq libraries generated from the same tissue type using the standard 10X Genomics 74 
workflow (referred to as scATAC-seq from this point onward) [4]. All datasets were processed 75 
with the same parameters (see Methods). We assessed various quality control metrics, 76 
including the proportion of reads around the transcription start site (TSS), fraction of reads in 77 
peaks (FRiP), unique Tn5 insertions per cell, fragment size distribution, and organelle DNA 78 
contamination (see Fig. 1c-e and Fig. S1c). The scifi-ATAC-seq data showed similar or 79 
superior data quality compared to the other datasets. Particularly, scifi-ATAC-seq successfully 80 
recovered approximately 35k and 70k clean cells for the 100k and 200k input nuclei, 81 
respectively, which represents a 9-fold to 18-fold increase in throughput compared to the 82 
scATAC-seq (Fig. 1f). As expected, we observed a higher number of nuclei per droplet when 83 
overloading the nuclei, resulting in an average of 1.57 nuclei per droplet for the 100k library 84 
and 2.02 nuclei per droplet for the 200k library (Fig. S1 d,f). These data show that scifi-ATAC-85 
seq produces high-quality libraries while increasing the number of nuclei profiled. 86 
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Collecting multiple nuclei within a single droplet increases the risk of cell barcode collisions 87 
and potential index hopping contamination (Fig. S1a). Next, we compared the barcode collision 88 
rate for scATAC-seq and scifi-ATAC-seq with the same approach [4]. The identified barcode 89 
collision rate is 4.87% and 5.68% for the 16k scATAC-seq and 100k scifi-ATAC-seq, 90 
respectively (Fig. 1g,h). The total barcode collision should be around 10% for both datasets 91 
considering the collisions of the same genotype, which is similar with the collision rate reported 92 
in other studies [4]. The throughput increased about 9-fold with the 100k scifi-ATAC-seq 93 
experiment with a similar barcode collision rate. The identified collision rate was 9.52% for 94 
the 200k scifi-ATAC-seq, which is higher than the 16k scATAC-seq dataset. The total 95 
recovered nuclei number is further increased to 69,302, which reflects an 18-fold increase in 96 
throughput (Fig. 1i). As expected, the total number of the nuclei in the droplet with barcode 97 
collisions and the number of Tn5 insertions in nuclei with barcode collisions is significantly 98 
higher than non-collision droplets or nuclei (see Fig. S1d-h, q-value < 10e-16). For the droplets 99 
containing 1 to 10 nuclei, there is no obvious bias for several quality metrics, such as the 100 
proportion of reads around the TSS, FRiP score, unique Tn5 insertions per cell (Fig. S2a-c) 101 
whereas there is a noticeable increase in the contamination rate with more cells in the droplet, 102 
but it remains at a low level (<5%) even in the droplets with 10 nuclei (Fig S2d). Barcode 103 
collisions are typically removed using an array of doublet detection tools [16-19], minimizing 104 
the effect of clustering and cell-type identification. Lastly, the cross cell contamination was 105 
1.47% and 1.69% for both scifi-ATAC-seq datasets, which is much lower than the 5.63% 106 
observed in the 16k scATAC-seq dataset indicating this could benefit from the double-side 107 
barcode design implemented in our method (Fig. S1 a,b). Collectively, these data show that 108 
scifi-ATAC-seq has similar barcode collision rates as the standard scATAC-seq workflow, 109 
while producing data for significantly greater numbers of nuclei.  110 

To evaluate whether the differences in data quality and cell number could affect clustering, we 111 
clustered all the nuclei from the scATAC-seq and scifi-ATAC-seq datasets together with 112 
identical parameters using Socrates [4] and annotated the clusters using previously reported 113 
methods. In total, we identified 14 clusters representing the major cell types in the maize 114 
seedling (Fig. 1j, Fig. S3a). All the resulting cell types identified were consistent and found 115 
across multiple techniques (Fig. S3b-d). To compare the nuclei quality between scifi-ATAC-116 
seq and scATAC-seq, we randomly selected 100 cells for each cell type or library and checked 117 
the distribution of the number of Tn5 integrations for each cell type. We observed that scifi-118 
ATAC-seq has a lower median number of Tn5 integrations (Figure S4a,b).  While the lower 119 
Tn5 integration in scifi-ATAC-seq does not significantly affect clustering in this study, and the 120 
increased numbers of nuclei from scifi-ATAC-seq helps decipher cell heterogeneity (Figure S4 121 
c-e). The ability to identify and characterize rare cell populations in detail is a significant 122 
advantage of single-cell technologies, which requires profiling a substantial number of cells 123 
within each tissue. Here, we profiled more than 100k nuclei in the seedling tissue with scifi-124 
ATAC-seq, which provides an opportunity to study rarer cell types. In maize seedlings, bundle 125 
sheath and mesophyll represent major cell types for photosynthesis and typically represent ~20% 126 
of cell types in seedling tissue, whereas vascular cells, such as phloem, procambium, and xylem, 127 
responsible for nutrient transport, are present in much lower proportions (Fig. S5a-d). We 128 
observed a similar profile for bundle sheath and mesophyll cells in both scifi-ATAC-seq and 129 
the scATAC-seq data (Fig. S5e, f). However, for vascular cells, the resolution of accessible 130 
chromatin was difficult to discern in the scATAC-seq data, but were clearly visible in both 131 
scifi-ATAC-seq datasets (Fig. 1k, l, Fig. S5g-i). Scifi-ATAC-seq data leads to greater number 132 
of profiled nuclei per sample increasing the chances of studying rarer cell populations.  133 

To assess the robustness of scifi-ATAC-seq in profiling single-cell chromatin accessibility 134 
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across multiple samples within a single reaction, we implemented a multiplexing strategy using 135 
maize seedlings from eight samples with seven different genotypes in a 96-well plate (Fig. 2a). 136 
With seven different genotypes in this assay, the likelihood of index hopping contamination 137 
within the same genotype is expected to be low, as most index hopping occurred between 138 
distinct genotypes and can be identified through computational methods. Thus, increasing the 139 
number of loaded nuclei, while maintaining a low index hopping contamination rate within the 140 
same genotype, can further enhance throughput. To test this, a total of 300k nuclei were used 141 
to prepare the scifi-ATAC-seq library. We applied the same nuclei quality control criteria as 142 
before and successfully recovered 199,212 high-quality nuclei. We assigned all nuclei with the 143 
expected genotypes by matching known Tn5 barcodes and identified 133,524 singlet clean 144 
nuclei with a low index hopping contamination rate of 1.93% (Fig. 2b, Fig. S6). As expected, 145 
there was high correlation between sequencing throughput and nuclei number for all samples 146 
(R=0.98, Fig. S6d). The estimated barcode collision rate ranged from 1.0% to 7.6% (Fig. 2b, 147 
Fig. S6e-l, Methods). To further validate the biological relevance and quality of the data, we 148 
conducted a Spearman correlation analysis with chromatin accessibility among the eight 149 
libraries (Fig 2c). Our findings reveal that the clustering of different genotypes aligns well with 150 
maize genetic divergence, notably grouping all genotypes from non-stiff stalk (NSS) together. 151 
These results demonstrate that the throughput was further enhanced with scifi-ATAC-seq by 152 
approximately 27-fold compared to the scATAC-seq method, while maintaining a similar 153 
barcode collision rate and data quality. 154 

Subsequently, we clustered all the singlet nuclei from this assay and annotated the clusters 155 
using the same method as before. We identified all the cell types observed in the previous 156 
dataset and observed that there was no significant bias in cell-type proportions among the 157 
genotypes (Fig. 2d, e, Fig. S7d). With this dataset, we identified 165,666 accessible chromatin 158 
regions, with approximately 23.85% showing cell-type-specific patterns and 10.46% showing 159 
genotype-specific patterns (Fig. 2f, i). More specifically, vascular cells (procambium, phloem, 160 
and xylem) were consistently identified in all samples (Fig. 2g, Fig. S8a-c), and genotype-161 
specific accessible chromatin regions at cell-type resolution were discernible (Fig. 2j, Fig. S8d). 162 
For the tropical line Tzi8, the gtACR-associated genes were most enriched in 163 
photomorphogenesis (p-value < 1e-4) and regulation of response to red or far-red light (p-value 164 
< 1e-3). These findings may reflect its distinct adaptation response to day length or light 165 
intensity (Table S8,9). 166 

Conclusions 167 

In summary, these results collectively show that scifi-ATAC-seq provides a robust, efficient, 168 
and flexible approach for massive-scale single-cell chromatin accessibility profiling using the 169 
widely available 10X Genomics Chromium systems. We anticipate that this method will 170 
facilitate the utilization of ATAC-seq to identify candidate cis-regulatory elements at cell-type 171 
resolution in greater numbers of tissues, time point, genotypes and facilitate the study of rarer 172 
cell types. 173 

Methods 174 

Plant material and growth conditions 175 
The maize kernels used in this study were obtained from the USDA National Plant Germplasm System 176 
(https://npgsweb.ars-grin.gov). The seedlings were grown in Sungro Horticulture professional growing 177 
mix (Sungro Horticulture Canada) under controlled conditions. The soil was saturated with tap water 178 
and the seedlings were exposed to a mixture of 4,100 K (Sylvania Supersaver Cool White Delux 179 
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F34CWX/SS, 34 W) and 3,000 K (GE Ecolux with starcoat, F40CX30ECO, 40 W) light, with a 180 
photoperiod of 16 hours of light and 8 hours of darkness. The temperature was maintained at 181 
approximately 25°C during the light hours, and the relative humidity was approximately 54%. The 182 
above-ground seedling tissues were harvested between 8 and 9 AM, six days after sowing. Flash-frozen 183 
seedling tissue was used to generate scifi-ATAC-seq libraries for B73 and Mo17 mixed genotypes. And 184 
fresh seedling tissue were used for scifi-ATAC-seq library with seven different maize genotypes. 185 
 186 
scifi-ATAC-seq protocol 187 
A detailed step-by-step sci-ATAC-seq protocol with lists of necessary reagents and equipment are 188 
included in the Supplementary Methods. The Tn5 expression and purification steps were carried out 189 
according to the method described by Tu et al. (2020) [20], and the plasmids were obtained from 190 
Addgene (accession number 127916). 191 
 192 
Assembly of indexed Tn5 transposase complexes 193 
To generate indexed Tn5 transposase complexes, we modified the Tn5-ME-A and Tn5-ME-B by adding 194 
a 5-nucleotide barcode (with 12 distinct barcodes for Tn5-ME-A and 8 distinct barcodes for Tn5-ME-195 
B; see Supplementary Methods Supplementary Table 1 for barcode sequences). Each indexed 196 
oligonucleotide was annealed to a 19-bp complementary mosaic-end oligonucleotide (Tn5-ME-rev, 5′ 197 
phosphorylated, Supplementary Methods). The annealing reaction was carried out by mixing the 198 
oligonucleotides at a 1:1 molar ratio (Tn5-ME-A or Tn5-ME-B: Tn5-ME-rev) at a final concentration 199 
of 100 μM. The mixture was heated to 95 °C, cooled gradually to 20 °C at a rate of -1 °C per minute, 200 
and then held at 20 °C. The annealed oligonucleotides were then mixed at a 1:1 molar ratio (Tn5-ME-201 
A: Tn5-ME-B). To assemble the transposase, 10 μL of Tn5 transposase was added to 0.143 μL of the 202 
annealed adapter mixture, mixed well by pipetting slowly, incubated at room temperature for 60 minutes 203 
and then storing it at -20°C until the tagmentation reactions were performed [21]. 204 
  205 
Nuclei isolation with quick purification 206 
Approximately 3-4 maize seedlings were chopped on ice for about 2 minutes in 600 μL of pre-chilled 207 
Nuclei Isolation Buffer (NIB cutting, 10 mM MES-KOH pH 5.4, 10 mM NaCl, 250 mM sucrose, 0.1 208 
mM spermine, 0.5 mM spermidine, 1 mM DTT, 1% BSA, 0.5% TritonX-100), which was modified 209 
from the original buffer composition [22]. After chopping, the total mixture was filtered with a 40-μm 210 
cell strainer and then centrifuged at 500 rcf for 5 minutes at 4 ̊ C. The supernatant was carefully removed, 211 
and the pellet was resuspended in 500 μL of NIB wash buffer (10 mM MES-KOH, pH 5.4, 10 mM 212 
NaCl, 250 mM sucrose, 0.1 mM spermine, 0.5 mM spermidine, 1 mM DTT, and 1% BSA). The sample 213 
was filtered with a 20-μm cell strainer and then carefully loaded onto the surface of 1 mL 35% Percoll 214 
buffer (made by mixing 35% Percoll and 65% NIB wash buffer) in a 1.5-mL centrifuge tube. The nuclei 215 
were centrifuged at 500 rcf for 10 minutes at 4 ˚C. After centrifugation, the supernatant was carefully 216 
removed, and the pellets were washed once in 100 μL TAPS buffer (25 mM TAPS-NaOH, pH 8.0, and 217 
12.5 mM MgCl2) and then resuspended in 30 μL of 2.5x TAPS buffer. About 5 μL of nuclei were 218 
diluted 10 times and stained with DAPI (Sigma Cat. D9542). The nuclei quality and density were 219 
evaluated with a hemocytometer under a microscope. Finally, after nuclei for both genotypes were 220 
isolated separately, equal nuclei number of B73 and Mo17 were mixed together and the nuclei density 221 
was adjusted to 0.5k~1k/μL with TAPS buffer. 222 
 223 
Indexed Tn5 tagmentation and pooling 224 
To generate a combination of 96 indexed transposases, 1.5 μL of Tn5-ME-A with 12 distinct barcodes 225 
were dispensed by rows, and 1.5 μL of Tn5-ME-B with 8 distinct barcodes were dispensed by columns 226 
in a 96-well plate. Each well had a unique combination of A and B indexed Tn5. To each well, 10 μL 227 
of nuclei in TAPS buffer with 0.1% Tween 20 and 0.01% digitonin was added, and the plate was sealed. 228 
The tagmentation reaction was carried out for 60 minutes at 37 ˚C. The reaction was stopped by adding 229 
12 μL of stop buffer (10 mM Tris-HCl pH 7.8, 20 mM EDTA, pH 8.0, 2% BSA) supplemented with 230 
ethylenediaminetetraacetic acid (EDTA) to quench the Mg2+. All nuclei were transferred to a reservoir 231 
and then divided into two 1.5 mL centrifuge tubes. The nuclei were pelleted, resuspended in 200 μL 232 
diluted nuclei buffer (DNB, 10x Genomics Cat#2000207), filtered with a 40 um strainer, pooled into 233 
one PCR tube, and centrifuged at 500 rcf for 2 min at 4˚C. After centrifugation, the supernatant was 234 
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carefully removed, and the nuclei (approximately 3 μL) were resuspended in 5 μL of DNB and 7 μL 235 
ATAC buffer B (10x Genomics Cat#2000193). 236 
 237 
Library preparation and sequencing 238 
scATAC-seq libraries were prepared using the Chromium scATAC v1.1 (Next GEM) kit from 239 
10xGenomics, following the manufacturer's instructions. (10xGenomics, 240 
CG000209_Chromium_NextGEM_SingleCell_ATAC_ReagentKits_v1.1_UserGuide_RevE). The 241 
leftover nuclei after loading to ChIP-H were diluted, stained with DAPI, and nuclei quality and density 242 
was evaluated with a hemocytometer under a microscope. The final libraries were sequenced using an 243 
Illumina NovaSeq 6000 S4 in the dual-index mode using custom sequencing primer sets 244 
(Supplementary Methods). To balance the nucleotide distribution at the beginning of the forward and 245 
reverse reads, the proportion of the scifi-ATAC-seq library in a lane should be less than 50% or extra 246 
spike-in library (e.g., PhiX control from Illumina) should be added to the lane. The libraries were 247 
sequenced to an average depth of 7,617 read pairs per cell, with an average unique reads rate at 62.3%. 248 
The scATAC-seq libraries were sequenced about 51.7k reads pairs per cell [4]. 249 
 250 
 251 
Raw reads processing and alignment 252 
During the preprocessing of all single-cell ATAC-seq data, the 16-bp i5 beads barcode was added to 253 
the read names of the paired-end reads using the extract function from UMItools v.1.01 [23]. The 254 
customization parameter '--bc-pattern=NNNNNNNNNNNNNNNN' was used for this process. 255 
Moreover, for scifi-ATAC-seq data, the inline Tn5 barcode was demultiplexed and subsequently 256 
appended to the read names using cutadapt v3.4 [24]. Next, the processed reads were aligned to the Zea 257 
mays reference genome v5 [25] using BWA-MEM v0.7.17 [26]. To obtain high-quality, properly paired, 258 
and unique alignments, the view function from samtools v1.9 [27] was applied with the parameters '-q 259 
10 -f 3.' Additionally, reads with XA tags were filtered out. Subsequently, the cell barcodes were 260 
included in the alignments using the CB tag and BC tag for the 10X Genomics scATAC-seq and 261 
scifiATAC-seq datasets, respectively. To eliminate duplicate reads, Picard Tools v.2.21.6 262 
(http://broadinstitute.github.io/picard/) was employed while considering the cell barcode. Finally, the 263 
alignments were converted to single base-pair Tn5 integration sites in a BED format by adjusting the 264 
start coordinates of the forward and reverse strands by +4 and -5, respectively. Only unique Tn5 265 
insertion sites within a cell were retained for downstream analysis. 266 
 267 
Nuclei calling and quality control 268 
The R package Socrates [4]was utilized for nuclei identification and quality control. In summary, the 269 
BED file containing single base-pair Tn5 integration sites was imported into Socrates along with the 270 
Zea mays v5 GFF gene annotation and the genome index file. The scaffolds ('scaf_23', 'scaf_34', and 271 
'scaf_36') were considered as organelle genomes. To identify bulk-scale ACRs (Accessible Chromatin 272 
Regions) in Socrates, the callACRs function was employed with the following parameters: genome size 273 
= 8.5e8, shift = -75, extsize = 150, and FDR = 0.1. This step allowed us to estimate the fraction of Tn5 274 
integration sites located within ACRs for each nucleus. Metadata for each nucleus were collected using 275 
the buildMetaData function, using a TSS (Transcription Start Site) window size of 2 kb (tss.window = 276 
2000). Subsequently, sparse matrices were generated with the generateMatrix function, using a window 277 
size of 500. High-quality nuclei were identified based on the following criteria: a minimum of 1,000 278 
Tn5 insertion sites per nucleus, at least 20% of Tn5 insertions within 2 kb of TSSs, and at least 20% of 279 
Tn5 insertions within ACRs across all datasets. Additionally, a maximum of 30% of Tn5 insertions in 280 
organelle genomes was allowed. 281 
  282 
Cell barcode collision detection 283 
The term 'cell barcode' refers to the barcode used to determine cell identity. In the standard scATAC-284 
seq, the cell barcode corresponds exclusively to the barcode derived from hydrolyzed GEM beads 285 
following microfluidic partitioning. However, in scifi-ATAC-seq, the cell barcode encompasses both 286 
the beads barcode and the Tn5 barcode. Cell barcode collision occurs when more than one cell shares 287 
the same cell barcode. In traditional droplet-based assays, cell barcode collision occurs if multiple cells 288 
enter one droplet. In scifi-ATAC-seq, cell barcode collision happens when multiple cells occupy the 289 
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same droplet, and simultaneously, they share identical Tn5 barcodes. Cell barcode collisions were 290 
identified using a previously described approach [4]. Specifically, the known genotype data were 291 
obtained from Panzea[28] and lifted over to v5 genome [25] coordinates using CrossMap (v0.5.1) [29]. 292 
Only homozygous biallelic SNPs were retained for further analysis. The Souporcell (git version 293 
6872d88) pipeline [30] was used to count the number of reads for each genotype, using known common 294 
variants and specific non-default parameters (--min_alt 50, --min_ref 50, --max_loci 25000000, --295 
skip_remap TRUE). In the dataset comprising a mixture of two genotypes (B73 and Mo17), genotype 296 
identification was performed by modeling allele counts as a binomial distribution, accounting for a 297 
conservative sequencing error rate of 0.05. Posterior probabilities were estimated via Bayes theorem to 298 
assign the genotype or identify cell barcode collisions (i.e., mixtures of genotypes) with the highest 299 
probability. A minimum threshold of 50 reads covering common variants within a cell was used to 300 
confidently assign the genotype. The total SNP number between genotypes is around 1.6 million and 301 
the SNP rate is about 0.70/kb.The index hopping contamination was calculated as the proportion of 302 
reads that did not match the assigned genotype among all reads covering the biallelic SNPs. In the 303 
dataset featuring a mixture of two genotypes, cell doublets can originate from either two cells of the 304 
same genotype (A x A or B x B) or cells from different genotypes (A x B or B x A). However, the 305 
observed collisions consist entirely of cell doublets from different genotypes, representing only 306 
approximately half of the collision events that actually take place in the experiment. Therefore, there 307 
should be an equal proportion of doublets mixed with nuclei of the same genotype. For the seven-308 
genotype-mixed scifi-ATAC-seq data, expected genotypes were assigned by matching known Tn5 309 
barcodes. Any reads that did not match the expected genotype were considered as belonging to another 310 
genotype. The same genotype calling approach described above was then used to assign nuclei to their 311 
expected genotype, identify mixtures of genotypes resulting from index hopping contamination. Given 312 
the varying cell numbers per well, we used a modeling-based approach to estimate the barcode collision 313 
rate by calculating the probability of obtaining any two cells from the same well in a four-nuclei droplet 314 
(mean nuclei number per droplet is 3.4, Fig S6c).  315 
 316 
Integrated clustering analysis 317 
The integrated clustering analysis of the four datasets, combining scifi-ATAC-seq and 10X Genomics 318 
scATAC-seq data, was performed using the R package Socrates [4]. In brief, firstly, the ACRs were 319 
identified by treating each library as a traditional bulk ATAC-seq library with function callACRs 320 
(genomesize=8.5e8, shift= -75, extsize=150, fdr=0.1). Then a binary nucleus x ACR matrix was 321 
generated with the function generateMatrix (peaks=T). The ACRs that were accessible in less than 0.15% 322 
of all nuclei, and nuclei with less than 100 accessible ACRs were removed. Then the filtered nucleus x 323 
ACR matrix were normalized with the term-frequency inverse-document-frequency (TF-IDF) 324 
algorithm(doL2=T). The dimensionality of the normalized accessibility scores was reduced using the 325 
function reduceDims (method="SVD", n.pcs = 25, cor.max =0.5). The reduced embedding was 326 
visualized as a UMAP embedding using projectUMAP (k.near = 15). Approximately 5% of potential 327 
cell doublets were identified and filtered by performing a modified version of the Socrates workflow 328 
on each library separately with the function detectDoublets and filterDoublets (removeDoublets = T). 329 
To address genotype and batch effects, we used the R package Harmony with non-default parameters 330 
(do_pca=F, vars_use=c("library", "genotype"), tau=c(5), lambda=c(0.1, 0.1), nclust=50, 331 
max.iter.cluster=100, max.iter.harmony=30). The dimensionality of the nuclei embedding was further 332 
reduced with Uniform Manifold Approximation Projection (UMAP) via the R implementation of umap 333 
(n_neighbors=30, metric = “cosine”, a = 1.95, b = 0.75, ret_model=T). Finally, the nuclei were clustered 334 
with function callClusters (res=0.4, k.near =  30, cl.method = 4, m.clust = 100). 335 
A similar clustering process was applied to the 7-genotype-mixed scifi-ATAC-seq dataset with minor 336 
modifications. Specifically, we removed only the genotype effect using Harmony, and the final clusters 337 
were identified at a resolution of 0.5. 338 
 339 
Cell-type annotation 340 
To assign cell types for each cluster, we used a combination of marker gene-based annotation and gene 341 
set enrichment analysis. Initially, we compiled a list of known cell-type-specific marker genes for maize 342 
seedlings through an extensive literature review, primarily referring to Marrand et al., 2021 343 
(Supplementary Table 5) [4]. Firstly, the gene chromatin accessibility score was calculated using the 344 
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Tn5 integration number in the gene body, 500-bp upstream and 100-bp downstream region, then the 345 
raw counts were normalized with cpm function in edgeR. The Z-score was calculated for each marker 346 
gene across all cell types with scale function in R, and key cell types were assigned based on the most 347 
enriched marker genes with highest Z-score. Ambiguous clusters displaying similar patterns to key cell 348 
types were assigned to the same cell type as the key cell types, reflecting potential variations in cell 349 
states within a cell type. For gene set enrichment analysis, we used the R package fgsea [31], following 350 
a methodology described previously[4]. Firstly, we constructed a reference panel by uniformly 351 
sampling nuclei from each cluster, with the total number of reference nuclei set to the average number 352 
of nuclei per cluster. Subsequently, we aggregated the read counts across nuclei in each cluster for each 353 
gene and identified the differential accessibility profiles for all genes between each cluster and the 354 
reference panel using the R package edgeR. For each cluster, we generated a gene list sorted in 355 
decreasing order of the log2 fold-change value compared to the reference panel and utilized this list for 356 
gene set enrichment analysis. We excluded GO terms with gene sets comprising less than 10 or greater 357 
than 600 genes from the analysis and GO terms were considered significantly enriched at an FDR < 358 
0.05 with 10,000 permutations. The cell type annotation was additionally validated by identifying the 359 
top enriched GO terms that align with the expected cell type functions (Supplementary Table 6,7). 360 
 361 
ACR identification 362 
Following cell clustering and annotation, ACRs were further identified using all Tn5 integration sites 363 
for each cell type and genotype with running MACS2 [32] with non-default parameters: --extsize 150 364 
--shift -75 --nomodel --keep-dup all --qvalue 0.05. Then the cell type based ACRs for each genotype 365 
were further redefined as 500-bp windows centered on the ACR coverage summit. To consolidate 366 
information across all clusters and genotypes, we concatenated all ACRs into a unified master list using 367 
a custom script, as previously described by Marrand et al., 2021 [4], calculated the ACR chromatin 368 
accessibility score based on the Tn5 integration count within the ACR region and then normalized it 369 
using the 'cpm' function in edgeR [33]. ACRs with less than 3 cpm in all cell types and genotypes were 370 
removed for downstream analysis.  371 
 372 

Declarations 373 

Ethics approval and consent to participate 374 
Not applicable 375 
 376 
Consent for publication 377 
Not applicable 378 
 379 
Availability of data and materials 380 
All data supporting the results of this study are available within the article and supplementary 381 
information files. The scifi-ATAC-seq data generated in this study have been deposited in the National 382 
Center for Biotechnology Information Short Reads Archive (PRJNA996051). 383 
 384 
The code used for data analysis is available at https://github.com/schmitzlab/scifi-ATAC-seq/ 385 
 386 
Competing interests 387 
R.J.S. is a co-founder of REquest Genomics, LLC, a company that provides epigenomic services. The 388 
remaining authors declare no competing interests. 389 
 390 
Funding 391 
A.P.M. was funded by support from the National Institute of Health (1K99GM144742). This study was 392 
funded with support from the National Science Foundation (IOS-1856627, IOS-2134912 and IOS-393 
2026554). This material is based upon work supported by the U.S. Department of Energy, Office of 394 
Science, Biological and Environmental Research Program under Award Number DE-SC0023338. 395 
 396 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2024. ; https://doi.org/10.1101/2023.09.17.558155doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558155
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author contributions 397 
R.J.S. and X.Z. designed the research. X.Z. performed the experiments. A.P.M., H.Y., X.Z., and R.J.S. 398 
analyzed the data. R.J.S. and X.Z. wrote the manuscript. The authors read and approved the final 399 
manuscript. 400 
 401 
Acknowledgments 402 
We would like to acknowledge Dr. Pedro Augusto Braga Dos Reis, Dr. Yinxin Dong, Yangyang Xu, 403 
for HS-Tn5 transposase purification; the GACRC for providing valuable assistance; and the Duke 404 
University School of Medicine for the use of the Sequencing and Genomic Technologies Shared 405 
Resource, which provided illumina sequencing service.  406 

References 407 

1. Buenrostro, J.D., et al., Transposition of native chromatin for fast and sensitive epigenomic profiling 408 
of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods, 2013. 10(12): 409 
p. 1213-8. 410 

2. Cusanovich, D.A., et al., A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility. Cell, 411 
2018. 174(5): p. 1309-1324 e18. 412 

3. Domcke, S., et al., A human cell atlas of fetal chromatin accessibility. Science, 2020. 370(6518). 413 
4. Marand, A.P., et al., A cis-regulatory atlas in maize at single-cell resolution. Cell, 2021. 184(11): p. 414 

3041-3055 e21. 415 
5. Zhang, K., et al., A single-cell atlas of chromatin accessibility in the human genome. Cell, 2021. 416 

184(24): p. 5985-6001 e19. 417 
6. Farmer, A., et al., Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin 418 

accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol Plant, 2021. 14(3): 419 
p. 372-383. 420 

7. Dorrity, M.W., et al., The regulatory landscape of Arabidopsis thaliana roots at single-cell 421 
resolution. Nat Commun, 2021. 12(1): p. 3334. 422 

8. Marand, A.P. and R.J. Schmitz, Single-cell analysis of cis-regulatory elements. Curr Opin Plant Biol, 423 
2022. 65: p. 102094. 424 

9. Satpathy, A.T., et al., Massively parallel single-cell chromatin landscapes of human immune cell 425 
development and intratumoral T cell exhaustion. Nat Biotechnol, 2019. 37(8): p. 925-936. 426 

10. Cusanovich, D.A., et al., Multiplex single cell profiling of chromatin accessibility by combinatorial 427 
cellular indexing. Science, 2015. 348(6237): p. 910-4. 428 

11. Vitak, S.A., et al., Sequencing thousands of single-cell genomes with combinatorial indexing. Nat 429 
Methods, 2017. 14(3): p. 302-308. 430 

12. Ding, J., et al., Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. 431 
Nat Biotechnol, 2020. 38(6): p. 737-746. 432 

13. Lareau, C.A., et al., Droplet-based combinatorial indexing for massive-scale single-cell chromatin 433 
accessibility. Nat Biotechnol, 2019. 37(8): p. 916-924. 434 

14. Datlinger, P., et al., Ultra-high-throughput single-cell RNA sequencing and perturbation screening 435 
with combinatorial fluidic indexing. Nat Methods, 2021. 18(6): p. 635-642. 436 

15. Tu, X., et al., A combinatorial indexing strategy for low-cost epigenomic profiling of plant single 437 
cells. Plant Commun, 2022. 3(4): p. 100308. 438 

16. Granja, J.M., et al., ArchR is a scalable software package for integrative single-cell chromatin 439 
accessibility analysis. Nat Genet, 2021. 53(3): p. 403-411. 440 

17. Germain, P.L., et al., Doublet identification in single-cell sequencing data using scDblFinder. 441 
F1000Res, 2021. 10: p. 979. 442 

18. Thibodeau, A., et al., AMULET: a novel read count-based method for effective multiplet detection 443 
from single nucleus ATAC-seq data. Genome Biol, 2021. 22(1): p. 252. 444 

19. Xi, N.M. and J.J. Li, Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA 445 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2024. ; https://doi.org/10.1101/2023.09.17.558155doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558155
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sequencing Data. Cell Syst, 2021. 12(2): p. 176-194 e6. 446 
20. Tu, X., et al., Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 447 

transcription factors. Nat Commun, 2020. 11(1): p. 5089. 448 
21. Lu, Z., et al., Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in 449 

plant genomes. Nucleic Acids Res, 2017. 45(6): p. e41. 450 
22. Sikorskaite, S., et al., Protocol: Optimised methodology for isolation of nuclei from leaves of species 451 

in the Solanaceae and Rosaceae families. Plant Methods, 2013. 9: p. 31. 452 
23. Smith, T., A. Heger, and I. Sudbery, UMI-tools: modeling sequencing errors in Unique Molecular 453 

Identifiers to improve quantification accuracy. Genome Res, 2017. 27(3): p. 491-499. 454 
24. Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads. 455 

EMBnet. journal, 2011. 17(1): p. 10-12. 456 
25. Hufford, M.B., et al., De novo assembly, annotation, and comparative analysis of 26 diverse maize 457 

genomes. Science, 2021. 373(6555): p. 655-662. 458 
26. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. 459 

Bioinformatics, 2009. 25(14): p. 1754-60. 460 
27. Danecek, P., et al., Twelve years of SAMtools and BCFtools. Gigascience, 2021. 10(2). 461 
28. Canaran, P., et al., Panzea: an update on new content and features. Nucleic Acids Res, 2008. 462 

36(Database issue): p. D1041-3. 463 
29. Zhao, H., et al., CrossMap: a versatile tool for coordinate conversion between genome assemblies. 464 

Bioinformatics, 2014. 30(7): p. 1006-7. 465 
30. Heaton, H., et al., Souporcell: robust clustering of single-cell RNA-seq data by genotype without 466 

reference genotypes. Nat Methods, 2020. 17(6): p. 615-620. 467 
31. Korotkevich, G., et al., Fast gene set enrichment analysis. BioRxiv, 2016: p. 060012. 468 
32. Zhang, Y., et al., Model-based analysis of ChIP-Seq (MACS). Genome Biol, 2008. 9(9): p. R137. 469 
33. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for differential 470 

expression analysis of digital gene expression data. Bioinformatics, 2010. 26(1): p. 139-40. 471 
34.       Zhang, Hao, et al. txci-ATAC-seq, a massive-scale single-cell technique to profile chromatin 472 

accessibility. bioRxiv (2023): 2023-05. 473 
35.       Yan, Haidong, et al. Evolution of cell-type-specific accessible chromatin regions and the cis-474 

regulatory elements that drive lineage-specific innovation. bioRxiv (2024): 2024-01. 475 
36.      Mendieta, John Pablo, et al. Investigating the cis-Regulatory Basis of C3 and C4 Photosynthesis 476 

in Grasses at Single-Cell Resolution. bioRxiv (2024): 2024-01. 477 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2024. ; https://doi.org/10.1101/2023.09.17.558155doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558155
http://creativecommons.org/licenses/by-nc-nd/4.0/


16K B73 fro
zen seedling

16K B73/Mo17 fre
sh seedling

200K B73/Mo17 fro
zen seedling

100K B73/Mo17 fro
zen seedling

N
um

be
r o

f c
el

ls
 p

er
 li

br
ar

y
(x

1,
00

0)

c

d

scATAC-seq

scATAC-seq

sci�-ATAC-seq

sci�-ATAC-seq

Technology

Droplet-based scATAC-seq

scifi-ATAC-seq

I5-BC I7-BCTn5-BC1 Tn5-BC2

P5 R1 P7insert R2

A
B
C
D
E
F
G
H

21 3 4 5 6 7 8 9 10 11 12

Ba
rc

od
ed

 T
n5

 tr
an

sp
os

iti
on

 

Pool
tagmented

nuclei

Oil

Encapsulation 
of 1 bead and
0-1 nucleus

Gel beads

R1 insert R2

I5-BC

P5

I7-BC

P7

Tn
5 

tra
ns

po
si

tio
n

<16k nuclei

a

b

Encapsulation 
of 1 bead and
multiple nuclei

Gel beads

200K nuclei Oil

20

30

40

50

60

TS
S 

(%
)

20

40

60

80

100

FR
iP

 (%
)

1k

10k

100k

1,000k

U
ni

qu
e 

Tn
5 

pe
r c

el
l 

0

20

40

60

80

0

20

40

60

80

e

f

0
5

10
15

20

M
o1

7 
re

ad
s 

nu
m

be
r (

x1
00

0)

0
5

10
15

20

0 5 10 15 20

0
5

10
15

20

B73 reads number (x1,000)

16k scATAC-seq

100k scifi-ATAC-seq

200k scifi-ATAC-seq

g

h

i

Total number: 3,913
Identified collision: 4.87% 
Median cont. rate: 5.63%

Total number: 34,883
Identified collision: 5.68% 
Median cont. rate: 1.47%

Total number: 69,302
Identified collision: 9.52% 
Median cont. rate: 1.69%

B73

Collision
Mo17

5,328 3,913

34,883

69,302

k
Vascular parenchyma precursor

Axillary meristem

Xylem

Epidermis

Protoderm

Vascular parenchyma

Ground meristem

Mesophyll

Procambium

Bundle sheath

Phloem

j

ZmSMXL3ZmSMXL3

Axillary meristem

Bundle sheath

Epidermis

Ground meristem

Mesophyll

Phloem

Procambium

Protoderm

Vascular parenchyma

Vas. par. precursor

Xylem

16k B73 scATAC-seq

16k B73/Mo17 scATAC-seq

100k scifi-ATAC-seq

200k scifi-ATAC-seq

l

N=996

N=1,863

N=30

N=35

Figure 1. scifi-ATAC-seq combines pre-indexing with droplet-based scATAC-seq
(a) Schematic of regular droplet-based 10X Genomics scATAC-seq experimental workflow.
(b) Schematic of scifi-ATAC-seq experimental workflow.
(c) Distributions of the proportion of Tn5 integration sites within the promoter regions, encompassing the 2-kb flanking regions around gene transcription start sites (TSSs).
(d) Distributions of the proportion of Tn5 integration sites within peaks per nucleus.
(e)  Distribution of unique Tn5 integration sites per nucleus.
(f)   Number of nuclei that passed quality control thresholds.
(g-i) Scatterplot displaying number of reads per cell classified as B73 or Mo17, color-coded by genotype classification. g, 16k input B73/Mo17 scATAC-seq; h,  100k scifi-ATAC-seq;
        i,  200k scifi-ATAC-seq. Median Contamination Rate: The median cross-contamination rate, attributed to index hopping, among all predicted singlets.
(j) UMAP of all nuclei (n = 98,424). Nuclei are colored by their predicted cell type.
(k) Pseudobulk cell type Tn5 integration site coverage around the phloem precursor marker ZmSMXL3. Vas. par. precursor: Vascular parenchyma precursor.
(l) Pseudobulk cell type Tn5 integration site coverage for and UMAP embeddings overlaid with gene chromatin accessibility around the ZmSMXL3 gene across all datasets. 
    N: Number of phloem nuclei.
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(a)  Well assignment showing the multiplexing of primary samples and genotypes.
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(e)  UMAP of all nuclei across the eight samples.
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(g) Pseudobulk cell type Tn5 integration site coverage around the phloem precursor marker ZmSMXL3.
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Figure S1. Evaluation and quality control of scifi-ATAC-seq, related to Figure1.
(a-b) Illustration of index hopping occurring during linear amplification in 10X Genomics Gel Beads-in-emulsion (GEMs) for scifi-ATAC-seq with 
        (a) distinct Tn5-A barcoded nuclei, ensuring no contamination between nuclei within the droplet; 
        or (b) same Tn5 barcoded nuclei, resulting in contamination between nuclei within the droplet. 
(c)  Distributions of the proportion of Tn5 integration sites within organelle genomes.
(d) Number of nuclei per droplet in  100k scifi-ATAC-seq.
(e) Distributions of unique Tn5 integration sites across predicted droplet type in  100k scifi-ATAC-seq.
(f)   Number of nuclei per droplet in  200k scifi-ATAC-seq.
(g) Distributions of unique Tn5 integration sites across predicted droplet type in  200k scifi-ATAC-seq.
(h) Distributions of nuclei number per droplet for non-collision droplet and collision droplet in 100k and 200k scifi-ATAC-seq. The mean nuclei number labeled in each plot.
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Figure S2. Evaluation and quality control of scifi-ATAC-seq, related to Figure 1.
(a) Distributions of proportion of Tn5 integration sites within the promoter regions for droplets containing different nuclei numbers.
(b) Distributions of proportion of Tn5 integration sites within peaks for droplets containing different nuclei numbers. 
(c) Distributions of unique Tn5 integration sites for droplets containing different nuclei numbers. 
(d) Distributions of index hopping conamination rate for droplets containing different nuclei numbers. The median contamination rate showed in each plot. 
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Figure S3. Clustering and cell-type annotation of scifi-ATAC-seq and scATAC-seq, related to Figure 1.
(a) UMAP of all nuclei (n = 98,424). Nuclei are colored by clusters and labeled with predicted cell types. 
     Vas. par. precursor: Vascular parenchyma precursor.
(b) UMAP of nuclei from the two scATAC-seq dataset. Nuclei are colored by the library.
(c)  UMAP of nuclei from the two  scifi-ATAC-seq datasets. Nuclei are colored by the library.
(d) Proportions of nuclei derived from the four datasets for each cell type. Color scheme is the same with b and c. 
     There was no significant bias in cell-type proportions between the two technologies (Spearman correlation: 0.62, p-value < 0.05).
(e) UMAP embeddings overlaid with gene chromatin accessibility for representative marker genes.
(f)  Relative chromatin accessibility for the marker genes across all cell types.
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Figure S4. Comparison of nuclei quality between scifi-ATAC-seq and scATAC-seq, related to Figure 1.
(a) Distribution of number of Tn5 integration for radomly selected 100 cells in each cell type and each library, summarized by cell type and library. 
(b) Distribution of number of Tn5 integration for radomly selected 100 cells in each cell type and each library, summarized by library. 
     Median numbers were labeled for each library. 
(c) UMAP of all nuclei from the two scifi-ATAC-seq libraries. Nuclei are colored by clusters.
(d) UMAP of downsampled nuclei from scifi-ATAC-seq. Nuclei are colored by clusters.
(e) UMAP of all nuclei from the two scATAC-seq libraries. Nuclei are colored by clusters.

1 2

4
6

3

98

7
5

16
8

6 11
5

13

9

15

14

4
7

12 10 1
3

2

Nuclei#: 90,132 Nuclei#: 8,378

1k

10k

100k

16k scATAC-seq
16k scATAC-seq
100k scifi-ATAC-seq
200k scifi-ATAC-seq

10

100

1k

10k

100k

Axillary meristem

Bundle sheath

Epidermis

Ground meristem

Mesophyll
Phloem

Procabium

Protoderm

Vascular parenchyma

Vascular parenchyma pre.
Xylem

N
um

be
r o

f T
n5

 in
 p

ea
ks

 p
er

 c
el

l

d

N
um

be
r o

f T
n5

 in
 p

ea
ks

 p
er

 c
el

l

1,384 1,487

1,154
1,042

scifi-ATAC-seq scATAC-seq

16k scATAC-seq

16k scATAC-seq

100k scifi-A
TAC-seq

200k scifi-A
TAC-seq

1

2

4

6

3

9

8

7

5
Nuclei#: 8,393

downsampled scifi-ATAC-seq e

Peaks#: 72,496 Peaks#: 89,962Peaks#: 115,516

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2024. ; https://doi.org/10.1101/2023.09.17.558155doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558155
http://creativecommons.org/licenses/by-nc-nd/4.0/


N
um

be
r o

f T
n5

 in
te

gr
at

io
n 

(M
illi

on
)

0

5

10

15

20

25

30

35

N
um

be
r o

f n
uc

le
i (

x1
,0

00
)

0

2

4

10

6

8

N
um

be
r o

f T
n5

 in
te

gr
at

io
n 

(M
illl

io
n)

0

1

2

3

4

5

N
um

be
r o

f n
uc

le
i

0

200

400

600

800

1,000

Axillary meristem

Bundle sheath

Epidermis

Ground meristem
Mesophyll

Phloem

Procabium

Protoderm

Vascular parenchyma

Vas. par. p
recursor

Xylem Phloem Procabium Xylem

30 35
107 102

53 25

0.16
0.47 0.29

0.62
0.42

0.13

16k B73 scATAC-seq 
16k B73/Mo17 scATAC-seq 
100k scifi-ATAC-seq
200k scifi-ATAC-seq

996 1.8k 2.9k 5.7k 1.2k 2.1k

3.3

5.0 9.0 16.0

4.3

6.4
Phloem Procabium Xylem

Ssu2: Bundle sheath Mdh6: Mesophyll ZmAPL: Phloem ZmMP_2: Procabium Vnd6: Xylem

100k scifi-ATAC-seq

200k scifi-ATAC-seq

16k B73 scATAC-seq

16k B73/Mo17 scATAC-seq

a b

c d

e

N=513

N=257

N=4,525

N=8,584

N=996

N=316

N=1,442

N=2,492

N=30

N=35

N=996

N=1,863

N=107

N=102

N=2,857

N=5,729

N=25

N=1,161

N=2,079

N=53

f g h i

Figure S5. Characterization of vascular cells with scifi-ATAC-seq, related to Figure 1.
(a) Overall distribution of nuclei number derived from each dataset across all cell types.
(b) Distributions of nuclei number derived from each dataset across vascular cells, e.g. Phloem, Procambium and Xylem. 
     The total nuclei number was labeled on the top of each bar.
(c) Overall distribution of aggregated Tn5 integration numbers derived from each dataset across all cell types.
(d) Distribution of aggregated Tn5 integration number derived from each dataset across vascular cells, e.g. Phloem, Procambium and Xylem. 
     The total Tn5 integration numbers were labeled on the top of each bar.
(e-i) Pseudobulk cell-type Tn5 integration site coverage at representative marker genes for vascular cells across four datasets. 
       e, Bundle sheath; f, Mesophyll, g, Phloem; h, Procambium, i. Xylem. N: The total nuclei number according to cell type.
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Figure S6. Evaluation and quality control of multiplexed scifi-ATAC-seq, related to Figure 2.
(a)  Identi�cation of high-quality barcodes using a knee-plot.
(b) Density scatterplots of log10 transformed barcode read depths (x axis) by the fraction of Tn5 integration sites mapping to within 2-kb of transcription start sites (TSSs). 
       Dashed red lines indicate the threshold of two standard deviations from the mean used to �lter lower quality barcodes.
(c)  Distributions of nuclei number per droplet in 300K input multiplexed sci�-ATAC-seq.
(d)  Correlation between sequencing depth and identi�ed nuclei number for each library.
(e-l) Distributions of proportion of variant-covering reads in expected genotypes matching known tn5 barcode for eight samples. Colored dots: clean nuclei. 
        Grey dots: identi�ed cell with high index hopping contamination.  
        Median Contamination Rate: The median cross-contamination rate, attributed to index hopping, among all clean nuclei.
(m) Distributions of the proportion of Tn5 integration sites within the promoter regions, encompassing the 2-kb �anking regions around gene transcription start sites (TSSs).
(n) Distributions of the proportion of Tn5 integration sites within peaks per nucleus.
(o) Distributions of the proportion of Tn5 integration sites within organelle genomes.
(p) Distributions of unique Tn5 integration sites per nucleus.
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Figure S7. Clustering and cell-type annotation of multiplexed scifi-ATAC-seq, related to Figure 2.
(a) UMAP of all nuclei (n = 124,656). Nuclei are colored by clusters and labeled with predicted cell types. 
      Vas. par. precursor: Vascular parenchyma precursor. Procambium phloem pre.: procambium phloem precursor.
(b) Proportion of nuclei derived from the eight samples for each cell type.
(c) UMAP embeddings overlaid with gene chromatin accessibility for representative marker genes.
(d) Relative chromatin accessibility for the marker genes across all cell types.
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Figure S8. Characterization of vascular cells and genotype-specific accessible chromatin regions 
  with demultiplexed scifi-ATAC-seq, related to Figure 2.
(a-c) Pseudobulk cell-type Tn5 integration site coverage at representative marker genes for vascular cells across all samples. 
        a, Phloem; b, Procambium, c. Xylem. N: The total nuclei number according to cell type.
(e)  Pseudobulk cell-type Tn5 integration site coverage at representative genotype-specific accessible chromatin regions 
       in procambium phloem precursor cells.
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Figure S9. Estimation of barcode collision rate with different input nuclei for scifi-ATAC-seq.
(a) Distribution of number of filled droplets with different input amount of nuclei. The 383k nuclei input were from scifi-RNA-seq[14]
     Estimated proportions of filled droplets were labeled in the center of the bars, assuming 70k droplets were generated in each run.
(b) Distribution of identified barcode collision rates for droplets with nuclei numbers ranging from 1 to 20.
(c) Distribution of identified barcode collision rates for different cutoffs of maximum nuclei numbers in each droplet, ranging from 1 to 30.
(d) Distribution of number of non-collsion nuclei for different cutoffs of maximum nuclei numbers in each droplet, ranging from 1 to 30.
(e) Distribution of the proportion of total identified non-collision nuclei for different cutoffs of maximum nuclei numbers in each droplet, 
     ranging from 1 to 30.
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