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Abstract

We introduce a novel metagenomics assembler for high-accuracy long reads. Our approach, implemented
as metaMDBG, combines highly efficient de Bruijn graph assembly in minimizer space, with both a multi-k′

approach for dealing with variations in genome coverage depth and an abundance-based filtering strategy
for simplifying strain complexity. The resulting algorithm is more efficient than the state-of-the-art but with
better assembly results. metaMDBG was 1.5 to 12 times faster than competing assemblers and requires
between one-tenth and one-thirtieth of the memory across a range of data sets. We obtained up to twice as
many high-quality circularised prokaryotic metagenome assembled genomes (MAGs) on the most complex
communities, and a better recovery of viruses and plasmids. metaMDBG performs particularly well for
abundant organisms whilst being robust to the presence of strain diversity. The result is that for the first
time it is possible to efficiently reconstruct the majority of complex communities by abundance as near-
complete MAGs.

1 Introduction

Shotgun metagenomics, i.e. the untargeted sequencing of DNA fragments from a mixed sample of genomes in a
community, is now an established tool in microbial community analysis [1]. It enables the sequencing of genetic
material from microbes that cannot otherwise be studied, for example through isolation and culturing [1].
Pioneering studies have used metagenomics to survey the taxonomic and functional composition of various
microbiomes such as the human gut or soil [2]. A recent large-scale reanalysis of all shotgun metatranscriptomes
has enabled the discovery of an order of magnitude more RNA viruses than previously known [3]. A critical
first-step in metagenomics analyses is the assembly of shotgun reads into longer contiguous sequences or contigs.

While short-read sequencing produces petabytes of valuable metagenome data each year, genome assemblies
derived from short reads are typically highly fragmented into millions of contigs per sample, preventing the
precise assessment of genomic contents. The low quality of assemblies is due to intra- and inter-genome sequence
repeats, low coverage of some species, and strain diversity. Many complete genomes are nevertheless recovered
by clustering (i.e. binning) short contigs using features such as sequence composition or differential coverage
across multiple samples [4], creating so-called metagenome assembled genomes (MAGs). While MAGs have
resulted in thousands of bacterial genomes being added to reference databases, typical MAGs from short-read
metagenomes remain fragmented, contaminated, and missing key regions such as the 16S rRNA gene operon.

Third-generation long-read sequencing technologies have greatly improved the quality of metagenome as-
semblies and MAGs. The first applications using reads generated by the Oxford Nanopore technology, which
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at that point had a relatively high error rate, typically only resolved a small fraction of the community as
complete circularised contigs [5]. More recent results using the long (≈ 10 kbp) and accurate reads generated
by HiFi PacBio have improved on this dramatically, with hundreds of genomes obtained as circularised contigs
or partially fragmented MAGs [6].

Existing in silico techniques for producing MAGs using long-read metagenome assembly remain limited.
Firstly, whilst assembly of complete lineage resolved MAGs is now possible, both low abundance and highly
abundant organisms with strain diversity may not be assembled [7]. The result is that the majority of the com-
munity by abundance is still not resolved as high-quality MAGs [6]. Secondly, the computational performance
of current tools severely limits the size of samples that can be be processed: oceanic/terrestrial samples or large
co-assemblies remains prohibitive to assemble. Even typical metagenomes require long processing times (days)
and high-end computing infrastructure (> 500 GB – 1 TB memory) which is out of reach for many labs. Thirdly,
most current assemblers do not allow the easy incorporation of contextual data such as depth of coverage that
is a critical component in metagenome reconstruction.

There are two generally accepted paradigms for sequence assembly, string graph methods that operate with
individual reads, considering pair-wise overlaps and constructing graphs to represent these [8], and de-Bruijn
graph (dBG) assemblers where reads are first decomposed into short fixed-length sequences (k-mers) [9]. The
former, requires all-vs-all read comparisons which scales poorly with read number, and hence, is too inefficient
for short-read metagenomics. It has been applied to long reads, specifically HiFi PacBio metagenomics, in
hifiasm-meta [10]. This is made possible through the use of minimizers to efficiently find overlaps between reads
prior to assembly. Minimizers are a means of selecting a subsample of k-mers in a reproducible way so that
similar regions across reads share the same minimizers. The decomposition to k-mers in dBG assemblers enables
them to reduce the volume of data to process and efficiently detect overlaps. They are now the typical approach
for large-scale short read data sets. To the best of our knowledge, they have not been applied to long-read
metagenome assembly, apart from an hybrid approach (Flye [11]) which uses a form of sparse de Bruijn graph,
termed as A-Bruijn graph [12]. With carefully subsetted k-mers, it forms initially noisy disjointig assembled
sequences, that are then used to create a repeat graph, further resolved through read mapping. This approach
works for both noisy Nanopore and accurate HiFi PacBio sequences, and has been adapted to metagenomics,
but does not scale particularly well, nor does it provide state-of-the-art performance on HiFi data [13, 6].

String graph, de-Bruijn graph, and hybrid approaches all have limitations when applied to long-read
metagenome assembly. String graph methods are still relatively inefficient and coverage estimation is difficult
on the uncorrected string graph because of ambiguous read mapping when strain diversity or noise generates
complex graphs with many similar alternate paths. There are two challenges in applying de-Bruijn graph to
long reads, firstly they effectively assume exact overlaps, and secondly for long reads the required overlap and
therefore k-mer size becomes large and the number of unique k-mers required and hence memory, prohibitive.
Scalability, will become a key issue for HiFi PacBio metagenomic assembly. This data type has the potential
to allow genome resolution from even complex metagenomes such as soil and plankton, which will be transfor-
mative, but only if we can develop tools that can scale to large amounts of sequence data whilst addressing the
unique characteristics of metagenomes of uneven coverage depth and strain heterogeneity.

A fundamentally different approach to the problem of adapting dBGs to long reads was introduced with
rust-mdbg [14], which uses a minimizer space de-Bruijn graph (MDBG). The units of the MDBG are no longer
k-mers but sequences of minimizers of size k′ (k′-min-mers), each of which is a short k-mer. The result is highly
scalable genome assembly, just 12 million k′-min-mers are required to assemble a complete human genome. This
approach also has the appeal that it can deal better with noise than long nucleotide k-mer dBGs because exact
matches are only required on the small selected minimizers. The rust-mdbg algorithm, is however, not designed
for metagenomics, in particular, it cannot cope well with variable genome coverage depths.

We introduce metaMDBG, a method that takes the principle of minimizer space assembly and engineers
it specifically for metagenomics, at the same time introducing a number of novel algorithmic advances. We
designed a highly efficient multi-k′ approach, where the length of k′-min-mers is iteratively increased whilst
feeding back the results of the last round of assembly. This enables us to deal with the variable coverage depths
found in metagenomes. We implemented several techniques to estimate and refine k′-min-mer abundance as their
length is increased. This information on abundance is then used in a novel ‘local progressive abundance filtering’
strategy to reduce the graph complexity generated by errors, inter-genomic repeats and strain variability. We
demonstrate on multiple mock and real community metagenome HiFi PacBio data sets, that metaMDBG, has an
order of magnitude better scaling of memory than the current state-of-the-art whilst outperforming all existing
algorithms in terms of near-complete MAGs and run time.
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2 Results

Overview of metaMDBG. We present metaMDBG, a method for assembling metagenomes from accurate
long reads (e.g. PacBio HiFi). metaMDBG takes as input a set of reads and outputs a FASTA file with contigs.
The overall assembly strategy is summarised in Figure 1-A. The universal minimizers, which are k-mers that
map to an integer below a fixed threshold (see Methods), in each read are first identified. Each read is thus
represented as an ordered list of the selected minimizers, denoted a minimizer-space read (mRead). Each
iteration of the assembler then comprises the construction of a de-Bruijn graph using lists of minimizers of fixed
length k′, denoted k′-min-mers, starting with k’min = 4. We count k′-min-mers across the whole dataset and
those with frequency below a set threshold are filtered (Figure 1-B). The graph is then constructed and graph
simplification performed. This process includes classical methods for contig generation such as tip clipping
and bubble popping. This is followed by a ‘local progressive abundance filter’ method to remove potential
inter-genomic repeats, strain variability, and complex error patterns (Figure 1-C). This starts by identifying
long seed unitigs, i.e. long non-branching paths in the graph. We then increment an abundance threshold
starting at one up until 50% of the coverage depth of this seed. At each step unitigs with coverage equal to
or lower than the threshold are removed and the graph re-compacted. This strategy, coupled with techniques
for refining unitig coverage estimation (Figure 1-B), enables the seed unitig to conservatively converge on its
longest possible form as complexity from the graph is removed. This completes one iteration in our multi-k′

approach in this minimizer space. The resulting minimizer-space contigs (mContigs) are added to the set of
input mReads in the next iteration and these steps repeated but after incrementing k′ by one. At the end of
the multi-k′ process when k′ equals k’max, reads are mapped to the final mContigs in order to extract their
base-space sequence.

In the following sections, we demonstrate that metaMDBG accurately reconstructs bacterial genomes and
outperforms state-of-the-art approaches. Furthermore, metaMDBG only uses a fraction of the computational
resources needed by other tools, enabling for the first time an accurate and cost-efficient reconstruction of large
metagenomes.

Benchmarking setup. We compared metaMDBG with two other state-of-the-art assemblers for HiFi metage-
nomics data: metaFlye (v2.9-b1768) and hifiasm-meta (v0.2-r058). We do not include a comparison to the
rust-mdbg implementation of minimiser space de Bruijn graphs [14], because it was not competitive on the
metagenome data sets considered here. This is unsurprising since it is designed specifically for genome assem-
bly.

We experimentally evaluated the assemblers on two mock communities and three real metagenomic projects
from different environments (Table 1). The two mock communities, ATCC [15] and Zymo, contain respectively
20 and 21 species for which abundances and reference genomes are known. The real datasets derive from three
metagenome sequencing projects of various sequencing depths and from microbiomes with different levels of
species diversity. The first one ‘Human’ is a PacBio generated dataset composed of four human fecal samples
from omnivore and vegan donors. The second one ‘AD’ is a time-series of three samples extracted from anaerobic
digester sludge, generated for this study. For these two projects, where multiple samples were available, we
present results below from coassemblies of all samples together, although results on single-sample assembly are
available in Supplementary Table S2. The third dataset ‘Sheep’, is a single deeply sequenced sample from the
sheep rumen [6].

Since the true genomes in the real datasets are not known, we used CheckM (v1.1.3) to evaluate the genome
completeness and contamination level of each contig and determine whether they are MAGs. We grouped
MAGs into three conventional categories based on the CheckM results: ‘near-complete’ if its completeness is
≥ 90% and its contamination is ≤ 5%, ‘high-quality’ if completeness ≥ 70% and contamination ≤ 10%, ‘medium
quality’ if completeness ≥ 50% and contamination ≤ 10%.

Improved recovery of complete circularized microbial genomes from metagenomes. We first eval-
uated the assemblers on two mock communities: ATCC and Zymo, by aligning contigs to references and
computing average nucleotide identity (ANI) - (see Methods and Supplementary Table S3). All three assem-
blers performed similarly on the mocks, both in terms of number of species obtained as circularised contigs
and ANI to reference sequences (> 99.99% in most cases). The mock ATCC contains 20 species, but only 15
with sufficient coverage depth for assembly, of these each assembler obtained 12 as circularised contigs, but
not the same twelve, each assembler assembled one species uniquely. The Zymo mock contains 21 genomes,
but five have very low coverage, and five are strains of E. coli. In this case, metaMDBG and hifiasm-meta
both obtained ten circularised genomes, and metaFlye nine, but metaMDBG additionally generated two almost
complete (> 99.8%) genomes as linear contigs. No assembler could correctly resolve all the E. coli strain di-
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versity, metaMDBG circularised the most abundant strain B1109 and the strain B766 as a single linear contig,
hifiasm-meta assembled strain B766 only as a circular contig but had all other strains present as fragmented
contigs, and metaFlye produced fragmented genomes for all five E. coli strains.

Assembling sequences from real complex microbiomes is a substantially more challenging problem than for
mock communities, due to the higher species richness, uneven coverage distributions and strain diversity. For
all three real communities, we observe a significant improvement in the number of circularised near-complete
MAGs longer than 1 Mb (cMAGs) generated by metaMDBG compared to the state-of-the-art (Figure 2-A).
metaMDBG assembled 75 cMAGs on the Human gut microbiome dataset (13 more than hifiasm-meta), 114 on
the AD dataset (61 more than hifiasm-meta) and 266 on the Sheep rumen dataset (3 more than hifiasm-meta).
MetaFlye produced significantly fewer cMAGs than the other two assemblers.

To investigate potential differences between the circular MAGs generated by the assemblers, we aligned the
assemblies against each other with wfmash (Supplementary Tables S4 and S5). On the Sheep rumen dataset,
metaMDBG and hifiasm-meta combined found a total of 356 distinct near-complete circular contigs. Among
them, 176 where found by both assemblers (49%), with 90 specific to metaMDBG and 87 to hifiasm-meta.
We note that the vast majority (91%) of these specific cMAGs are still present in the other assemblies but as
one or more linear contigs. The cMAGs missed by metaMDBG were less fragmented, with a median of one
contig (mean = 1.3) necessary to cover a cMAG reconstructed by another assembler, compared to a median of
three (mean = 10.7) for hifiasm-meta and also a median of three for metaFlye (mean = 5 — see Figure S1).
The remaining 9% of cMAGs that exist in one assembler and were not found by the other assemblers usually
correspond to phased strains by hifiasm-meta or to species with low coverage that might be incomplete in other
assemblies. On the human gut microbiome samples, we observed similar results in terms of specific circular
contigs and linear contig fragmentation. However, on the AD dataset, the cMAGs missed by hifiasm-meta and
metaFlye were highly fragmented, being covered by in both cases a median of six contigs, whereas metaMDBG
still obtained a median of two contigs.

We next determined the impact of coverage depth and strain diversity, as measured by SNV density - com-
puted with Longshot [16], on the ability of the different assemblers to resolve cMAGs from all three datasets
combined. metaMDBG and hifiasm-meta were able to generate cMAGs across a range of SNV densities (Fig-
ure 2-C), but we found a highly significant negative relationship between SNV density and the probability that
metaFlye assembles a cMAG (Logistion regression coeff. = -1.35, p-value = 2.18e-11, sample size n=575) and
in fact no cMAGs with greater than 7% SNP density were found by metaFlye. For coverage depths between
10x and 100x metaMDBG and hifiasm-meta had similar success at resolving cMAGs but at higher coverages,
more than twice as many cMAGs were obtained by metaMDBG (see Figure 2-D).

Improved reconstruction of circularised phage and plasmid genomes. In addition to prokaryotic
genomes, plasmids and phages will be present in a typical metagenome. These are usually smaller but can be
present with high coverage depth and strain diversity presenting particular assembly challenges. We used vi-
ralVerify [17] to identify the circular components that are potentially plasmid or phage genomes (Supplementary
Table S2). In all three data sets, and for both plasmid and phages, metaMDBG identified substantially more
circularised plasmids and phages than either of the other two assemblers. In the Sheep rumen metagenome,
metaMDBG obtained 70% more circularised plasmids and 25% more phages than the next best assembler,
hifiasm-meta. In the Human gut coassembly, 42% more plasmids, and 55% more phages and in the AD
coassembly more than twice as many plasmids and 55% more phages compared to hifiasm-meta which was
second best in both cases. This improved performance on mobile elements by metaMDBG probably derives
from the same robustness in the presence of high coverage depth and strain diversity, that we observed in the
case of cMAGs.

The majority of complex communities by abundance recovered as circular or non-circular near-
complete MAGs. To date no existing HiFi PacBio assembler has succeeded in recovering the majority of
a microbial community by abundance as near perfect MAGs from complex communities. To reconstruct non-
circular MAGs, we took the contig collections for each assembler after first subtracting all circularised contigs
≥ 1 Mb, and then binned the remaining contigs with MetaBAT2, using sequence composition and coverage
(across multiple samples for the Human and AD coassemblies). The contigs removed prior to binning will
include the cMAGs identified above, this procedure ensures that bins are only constructed from potential
genome fragments [10]. We then evaluated these bins with CheckM as described above.

The complete list of MAGs recovered by each assembler and their statistics is provided in Supplementary
File S1. Figure 2-A shows that metaMDBG reconstructs 23 (34%) more near-complete non-circular MAGs
than hifiasm-meta on the human gut co-assembly, 127 (270%) more on the anaerobic digester time-series and
44 (32%) more on the sheep gut dataset. MetaFlye produced less near-complete circular contigs than other
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assemblers, but has an equivalent or higher number of near-complete or high-quality MAGs than hifiasm-meta
across all datasets, and lower or equivalent to metaMDBG. The high quality bins from all assemblers typically
contained less than ten contigs (Figure S2) and MAGs that were more fragmented than this generally had low
coverage.

The improvement in the number of near-complete non-circular MAGs of metaMDBG is mostly due to a
better recovery of low-abundance organisms (Figure S3). This is in contrast to the cMAGs, discussed above,
where metaMDBG exhibits better performance on high coverage depth genomes. The assemblers also differ in
the nucleotide divergence of the near-complete MAGs they resolve. We illustrate this in Figure S4 where we
show for each assembler on each data set, how the number of dereplicated near-complete MAG clusters, both
circular and non-circular, collapses as they are dereplicated at decreasing levels of nucleotide similarity. In the
Sheep rumen and Human gut data sets, the number of dereplicated MAG clusters from hifiasm-meta drops
significantly below a 97% ANI dereplication threshold, this is not observed for metaMDBG or metaFlye, which
indicates that a greater proportion of the hifiasm-meta MAG diversity is at the strain-level. This is not the
case for the AD data set where no assembler seems to generate a substantial number of strains with more than
97% ANI.

To summarise the microbial diversity obtained as near-complete MAGs from the AD coassembly, we con-
structed a phylogenetic tree at the genus level, using a panel of single-copy core genes, for all MAGs from all
assemblers (Figure 3A). This reveals that the improved MAG recovery by metaMDBG, translates into a far
more representative picture of microbial diversity at all levels of evolutionary divergence. In total, we observe
114 genera that are recovered from the AD datasets by metaMDBG but missing from the near-complete MAG
collections of the other programs. When the other assemblers did recover MAGs from the same genus, in all but
one case metaMDBG found more MAGs, indicating a better recovery of diversity at the species level. Finally,
we can see large parts of the tree in Figure 3 that are only represented by metaMDBG MAGs, in fact, 6 phyla
(46 families) are only found by metaMDBG, against 1 phylum (4 families) specific to metaFlye and 4 families
to hifiasm-meta. These statistics are summarised in Figure 3B and a detailed list of taxa recovered by only one
of the assemblers given in Supplementary File S3.

The combined result of these differences: the higher number of abundant cMAGs; the better resolution of
low coverage near-complete non-circular MAGs; and near-complete MAGs that are more representative of the
phylogenetic diversity present; is that for the AD and Sheep data sets metaMDBG actually succeeds in obtaining
a collection of near-complete MAGs that can map over 50% of the reads in the original samples (Figure 2-B).
This is highly significant as it implies that the majority of the community by the abundance is present as high-
quality constructs. This was not the case for the Human data set which may be to due to the relatively lower
depth of sequencing of these samples. Considering, cMAGs alone, across all data sets metaMDBG, recruited
twice as many reads as either metaFlye or hifiasm-meta (Figure 2-B).

Efficient large-scale assembly with a substantial reduction in memory footprint MetaMDBG is
highly scalable, both in terms of execution time and memory footprint (Table 2). On the Human dataset,
metaMDBG took 36h to complete, which is 20% faster than other assemblers. This gain increased significantly
on more complex Sheep and AD datasets. MetaMDBG took about 3 days to assemble the AD datasets against
8 days for metaFlye and 39 days for hifiasm-meta. We observed similar trend on the Sheep dataset. With
regards to memory usage, metaMDBG required only 14 GB to assemble the Human dataset, while metaFlye
and hifiasm-meta used more than 130 GB. The memory consumption of metaMDBG on the AD and Sheep
samples only spiked at 16 GB and 22 GB despite the larger diversity detected in those datasets. On the other
hand, metaFlye and hifiasm-meta memory usage was many times this, MetaFlye required about 450 GB to
complete and 650 to 800 GB for hifiasm-meta.

3 Discussion

We have introduced metaMDBG, an assembler for long and accurate metagenomics reads based on the minimizer-
space de-Bruijn graph. The principal motivation for using this structure was to develop a scalable assembler,
in this we succeeded, metaMDBG on a range of data sets, was 1.5 to 12 times faster than the state-of-the-art
and required between one-tenth and one-thirtieth of the memory. Moreover, we achieved this with substan-
tially better assembly results particularly in strain-diverse communities such as the AD dataset and for the
first time succeeded in reconstructing the majority of communities by abundance as near-complete MAGs. We
also demonstrated improved results for phages and plasmids. This was made possible thanks to a specialized
multi-k′ strategy for assembling rare and abundant species, coupled with a novel method for removing sequence
complexity based on organism abundance.
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The improvement in running time is significant when we consider the time-scale necessary to process metage-
nomics projects which can be counted in days. The improvement in terms of memory footprint was even more
substantial, we could assemble the largest data sets with one-twentieth of the requirements of our competitors.
This is important, for smaller scale projects it is democratising, enabling research groups without access to
sophisticated HPC to easily assemble their data sets, even on laptops. At the other end of the scale, the po-
tential of long accurate reads and probable future technological advances that will reduce the cost to generate
them, means that we are likely to see ever larger high accuracy long read projects studying highly complex
environments such as soil, metaMDBG is uniquely placed to address those assembly challenges.

Even though metaMDBG was able to reconstruct more MAGs than other assemblers, we have seen that
they do not necessarily collect the same organisms. For instance, on the sheep rumen dataset, metaMDBG and
hifiasm-meta found respectively 266 and 263 near-complete circular contigs, but after dereplication, only 176
were common to both assemblers. This highlights the complementarity of both methods and the possibility for
future methodological improvements, e.g. through assembly reconciliation [18].

We have demonstrated that none of the assemblers directly phase strains reliably. Our approach, metaMDBG,
reconstructs more contigs with high SNV density than its competitors (Figure 2), the other assemblers struggle
to reconstruct consensus-level assemblies in high-diversity regions, but we do not attempt, here, to resolve finer
scale variation beyond this consensus. However, we believe that these contigs could form a framework for strain
phasing within the same core data structures that we have introduced. Ekim et al. [19] have recently developed
a read mapping strategy in minimizer space. This could be used for fast mapping of reads to the assembly
graphs and combined with a method for distinguishing noise from true strain variation, would enable phasing
of SNPs within strains. This would be similar in principle to the approach of Strainberry [20] but integrated
directly into the assembly process. That the MDBG structure preserves information on strain variability and
accessory genomes is demonstrated by the observation that Ekim et al. [14] were able to build and query a
massive MDBG pangenome from 661,405 bacterial species.

A similar approach, but based on mapping Hi-C contact reads onto the minimizer-space graphs, might
also enable strain-resolution or linkage of plasmids to genomes [6]. The key point is the flexibility of our data
structures to incorporate and manipulate additional information on the graph. Which we believe we enable
further extensions of the underlying algorithms.

In summary, we have demonstrated the power of minimizer-space de Bruijn graphs, for assembly of highly
accurate long reads from metagenomes. Outperforming all existing assemblers in terms of results and compu-
tational efficiency. We believe that further advances of our methodology coupled to larger data sets will go a
long way to finally achieving complete genome-scale resolution of even complex metagenomes.
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4 Tables

Sample Accessions Number of
bases (Gb)

N50 read
length (kb)

Sample description

ATCC SRR11606871 59 12 Mock community ATCC MSA-1003 [15]
Zymo SRR13128014 18 10.6 Mock community ZymoBIOMICS D6331
Human SRR15275213,

SRR15275212,
SRR15275211,
SRR15275210

68 10.5 Four human gut datasets from a pool of omnivore
and vegan samples

AD ERR10905741,
ERR10905742,
ERR10905743

178 10.1 Time-series of three samples extracted from anaer-
obic digester sludge (week t+1, t+20 and t+40)

Sheep SRR14289618 206 11.8 Sheep rumen microbiome [6]

Table 1: Evaluated metagenome datasets.

Human Gut (68 Gb) Anaerobic Digester (178 Gb) Sheep Gut (206 Gb)

meta-
MDBG

hifiasm-
meta

meta-
flye

meta-
MDBG

hifiasm-
meta

meta-
flye

meta-
MDBG

hifiasm-
meta

meta-
flye

Time 36 h 42 h 43 h 77 h 950 h 187 h 108 h 587 h 153 h
Memory 14 GB 163 GB 137 GB 16 GB 669 GB 458 GB 22 GB 811 GB 439 GB

Table 2: Performance on the three metagenomic projects. Assemblers wall-clock time using 16 cores
and memory footprint. These were run on a 192 core Linux x86-64 server running Intel(R) Xeon(R) CPUs
E7-8850 v2 @ 2.30GHz.
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5 Figure Legends/Captions
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Figure 1: Overview of the algorithmic steps of metaMDBG. (A) Overview of the multi-k′ assembly
strategy. Processes in blue are performed at the level of nucleotide sequences, while the ones in green are
performed at the level of minimizers only. (B) Components for estimating and refining k′-min-mer abundance
as k′ is increased, and filtering errors prior to graph construction. (C) Illustration of the ‘local progressive
abundance filter’ algorithm that simplifies complex graph regions generated by errors, inter-genomic repeats
and strain variability. Each node represents an unitig (unitigs in green and blue belong to two distinct species,
unitigs in red represents errors). The long unitig on the top-left part of the graph is chosen as seed (step C.1).
Its abundance (4) is used as reference to apply a ‘local progressive abundance filter’ from one-times to half its
abundance (step C.2 and C.3). At each step, unitigs with abundance equal to the cutoff value are removed, then
the graph is re-compacted to simplify fragmented unitigs. Note that fragmented green unitigs with abundance
2 would have been removed without the intermediate step C.2.
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Figure 2: Assembly results on three metagenomic projects. ‘Human Gut’ represents the co-assembly
of the four human gut samples, ‘Anaerobic Digester’ is the co-assembly of the three AD2 time-series samples.
(A) CheckM evaluation. A MAG is ‘near-complete’ if its completeness is ≥ 90% and its contamination is ≤ 5%,
‘high-quality’ if completeness ≥ 70% and contamination ≤ 10%, ‘medium quality’ if completeness ≥ 50% and
contamination ≤ 10%. (B) The percentage of mapped HiFi reads on MAGs. (C-D) The distribution of SNV
density (%) and coverage depths for near-complete circular contigs generated by each assembler on all datasets
(the y-axes have been sqrt-scaled); here the bars are overlaid and not stacked.
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Figure 3: Phylogenetic tree of genera recovered from the AD dataset for all assemblers combined.
(A) For the near-complete bacterial MAGs, we generated a de novo phylogenetic tree based on GTDB-Tk marker
genes and display at the genus level. The outer bar-charts give the number of MAGs found in each genus. The
coloured symbols then denote genera recovered by only one of the assemblers. The grayscale heat-map denotes
the aggregate abundance of dereplicated MAGs in a genus. (B) Number of taxa at different levels that are
unique to each assembler.
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6 Supplementary Figures

Figure S1: Number of contigs required to cover a near-complete circular MAG reconstructed
successfully by an alternative assembler. In order to estimate the degree of fragmentation of assemblers,
we aligned the contigs of one assembler against the near-complete circular contigs (cMAGs) recovered by the
other assemblers. The fragmentation is then represented as the number of contigs required to cover these
cMAGs (see section ‘Assessment of completeness and fragmentation of assemblies using reference sequences’ for
details). The boxplot elements are the median (horizontal bar), 25th and 75th percentiles (box limits Q1 and
Q3), Q1-1.5*IQR and Q3+1.5*IQR (whiskers, IQR=Q3-Q1) and outliers. Summary statistics (min, median,
mean, max): Human— metaMDBG (1, 2, 2.1, 5); hifiasm-meta (1, 2, 4, 24); metaFlye (1, 4, 7.5, 48) : AD—
metaMDBG (1, 2, 2.3, 6); hifiasm-meta (1, 6, 19.8, 109); metaFlye (1, 6, 15.1, 104) : Sheep— metaMDBG (1,
1, 1.8, 8); hifiasm-meta (1, 3, 10.7, 125); metaFlye (1, 3, 5, 37). The data to generate this boxplot have been
extracted from the columns ‘AssemblyStatus’ of Supplementary Table S4.
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Figure S2: Number of contigs in non-circular near-complete MAGs. The boxplot elements are the
median (horizontal bar), 25th and 75th percentiles (box limits Q1 and Q3), Q1-1.5*IQR and Q3+1.5*IQR
(whiskers, IQR=Q3-Q1) and outliers. Summary statistics (min, median, mean, max): Human— metaMDBG
(1, 4, 6.8, 53); hifiasm-meta (1, 3, 3.1, 13); metaFlye (1, 3, 4.6, 19) : AD— metaMDBG (1, 4, 9.2, 138);
hifiasm-meta (1, 2, 3.6, 20); metaFlye (1, 5, 7, 35) : Sheep— metaMDBG (1, 2, 3.3, 22); hifiasm-meta (1, 1, 1.5,
9); metaFlye (1, 2, 2.8, 22). The number of contigs per non-circular MAGs have been extracted from columns
‘AssemblyStatus’ of supplementary File S1.
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Figure S3: Number of low-coverage non-circular near-complete MAGs recovered by the assem-
blers. For the three tested datasets, we show the number of non-circular near-complete MAGs with low coverage
(< 12x) reconstructed by each assembler.

Figure S4: Total number of near-complete MAGs (circular and non-circular) across different
dereplication thresholds. We used dRep [21] to cluster MAGs by nucleotide similarity using the parameter
-sa from 0.95 to 1.
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7 Methods

7.1 Preliminaries

We start with a lexicon of some terms and concepts related to minimizer-space de-Bruijn graphs (MDBG) and
genome assembly.

Minimizer In this work, we consider the concept of universal minimizer as in [14]. Recall that in the original
definition of minimizers [22], a window is used to compute minimizers. Universal minimizers are pre-determined
and do not require a window to be defined. Specifically let f be a function that takes as input a k-mer (string of
size k) and outputs an integer value within range [0, H[ where H is typically equal to 264. Given 0 < d < 1 and
k > 0, a universal minimizer is any string m of length k over the DNA alphabet such that f(m) < d.H. The
value of d represents the density of k-mers that will be considered as minimizers over the space of all possible
k-mers.

Minimizer-space read Prior to minimizer-space de-Bruijn graph construction, each read is scanned and its
minimizers are identified. Each read is therefore represented as an ordered list of minimizers. We call this
minimizer representation of a read the minimizer-space read, or mRead.

k′-min-mer A k′-min-mer is a list of k′ successive minimizers. They are collected by sliding a window of size
k′ over the mReads.

Minimizer-space de Bruijn graph The minimizer-space de-Bruijn graph (MDBG) is constructed from the
set of k′-min-mers. A MDBG is a directed graph where nodes are k′-min-mers and an edge exists between
two nodes x and y if the suffix of x of size k’−1 (i.e. its k’−1 first minimizers) is equal to the prefix of y of
size k’−1 (i.e. its k’−1 last minimizers). We defer details about reverse-complementation to the ‘Assembler
implementation details’ section.

Unitig An unitig (or simple path), is a maximal-length sequence of distinct nodes in the graph such that,
given a unitig length n, (1) for each 1 ≤ i ≤ n−1, in and out-degrees are equal to 1, (2) if n > 1, the out-degree
of u0 is 1 and the in-degree of un is 1. Singleton nodes (n = 1) are also considered to be unitigs.

Unitig abundance We define the unitig abundance as the median abundance of its constituent k′-min-mers.

Minimizer-space contig Contigs have the same definition as unitigs, they are unitigs obtained after graph
simplification. Contigs are first extracted as ordered lists of k′-min-mers (a path in the graph). The minimizer-
space representation of a contig, called a mContig, is constructed by concatenating the first k’ − 1 minimizers
of its first k′-min-mer and the last minimizer of each following k′-min-mer (i.e the sequence of k′-min-mers
without their k’−1 overlapping region). The mContig representation will be used to extract (k’+1)-min-mers
in the multi-k′ algorithm.

Contig At the end of the assembly process, the mContigs are converted to base-space by concatenating
the base-space sequence spanned by the minimizers (see section ‘Converting to base-space and assembly post-
processing’ for more details).

7.2 Algorithmic components

The overall assembly workflow is given in Figure 1. Input reads are first converted into their minimizer-space
representation (mReads). We then initiate a multi-k′ assembly algorithm, in minimizer space. The following
operations are performed during each iteration. The abundance of k′-min-mers is determined and low-abundance
k′-min-mers, deemed as erroneous, are discarded. A MDBG graph is then constructed and classical assembly
graph simplification steps, such as tip clipping and bubble popping, are performed. Then a novel algorithm
termed ‘local progressive abundance filter’ is applied to remove potential inter-genomic repeats, strain variability,
and complex error patterns. The resulting minimizer-space contigs (mContigs) are added to the set of mReads
for the next iteration. At the end of the multi-k′ process, reads are mapped to the final mContigs in order to
output their polished sequences in base-space. In the following sections, we describe in more detail each of the
major steps.
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7.3 Multi-k′ minimizer-space de-Bruijn graph assembly

In classical de-Bruijn graph metagenome assembly, the choice of the k-mer size is critical. Smaller k-mers
increase sensitivity as they recover overlaps between reads from rare species, and are less sensitive to sequencing
errors. On the other hand, larger k-mers yield higher-contiguity assemblies by resolving longer repeats. In order
to get the best of both worlds, multi-k strategies have been introduced [23]. The assembler typically iterates
over k values from values kmin to kmax by fixed increments. In each iteration, a de-Bruijn graph is constructed
from the input reads and the contigs generated from the previous iteration.

In minimizer-space, there are three ways to increase the base-equivalent length of a k′-min-mer: decrease
the density d, increase the minimizer length, or increase the value of k′. We rule out increasing the minimizer
length k under the hypothesis that it would increase sensitivity to sequencing errors. Changing the density is
in principle interesting as it only affects the distance between consecutive minimizers, however, it would require
the recomputation of all minimizers within the mReads and mContigs for each iteration of the assembler, which
would be computationally costly. Therefore, we decided to only increase the k’ parameter, the length of the
k′-min-mer, as it does not require minimizers to be recomputed.

In metaMDBG we iterate over k′ from values k′min to k′max by increments of 1 (see section ‘Choice of
parameters’ for the values and a discussion of (k′min, k

′
max)). The input reads are parsed only once to generate

mReads, using fixed minimizer k and d parameters. Each iteration then extracts k′-min-mers from the mReads.
Another advantage of this approach is that the base-space sequence of the contigs never needs to be constructed
during the intermediate iterations: only the union of mContigs and mReads is used to construct the next graph.

7.4 Estimating k′-min-mers abundance and filtering errors

This part aims to refine the abundance of each k′-min-mer, i.e. the number of times a k′-min-mer is seen in the
input reads. Generally, abundance information is used in de-Bruijn graph assemblers to detect and filter out
erroneous k-mers before graph construction, to reduce its complexity and memory consumption. Here the same
philosophy is adapted and further elaborated for k′-min-mers. Refined abundances are estimated in two steps.
1) Prior to the first graph construction, k′-min-mer abundances are collected from raw k′-min-mer counts in
mReads. 2) At each k′ iteration after graph construction, long mContigs, which are unlikely to be erroneous, are
examined to refine the abundances of k′-min-mers and better detect erroneous k′-min-mers. Refined abundances
are then propagated to the k′-min-mers of the next multi-k′ iteration.

Initial k′-min-mers counting and filtering Even though the MDBG is a lightweight data structure, in-
serting all erroneous k′-min-mers would dramatically increase graph memory consumption and its complexity,
making its traversal computationally challenging. Prior to constructing the graph for the first value of k′, we
thus apply a abundance-based filter on k′-min-mers to remove the majority of erroneous ones. In metagenomics,
detecting erroneous k′-min-mers is non-trivial, as low-frequency k′-min-mers might either correspond to real ge-
nomic sequences coming from rare species, or to errors. Our idea in this first step is to consider the k′-min-mers
in the context of the read they have been extracted from: an estimate of a long read ‘abundance’ is determined,
then its k′-min-mers having very low ‘local’ abundance are filtered out.

More precisely, we first perform k′-min-mer counting, similarly to classical k-mer counting, i.e. the number
of occurrences of each distinct k′-min-mer is determined. Then each read is processed sequentially. We define
the read coverage Rcov as the median of abundances of all its constituent k′-min-mers. We then determine a
minimum abundance cutoff Rmin = Rcov ∗ β (where β = 0.1). A k′-min-mer is discarded if the following two
criteria are satisfied: its abundance is equal to one, and is also lower than Rmin. This only removes k′-min-mers
seen once, which represents the vast majority of erroneous k′-min-mers, but only within reads where Rcov is
greater than 1/β. Other potentially erroneous k′-min-mers will be detected during the contig generation process
by the ‘local progressive abundance filter’ method described in the next subsection.

Refining k′-min-mer abundances After mContigs have been generated (next section), k′-min-mer abun-
dances are refined. We introduce two techniques: abundance smoothing and long contig k′-min-mer rescuing.
The smoothing step is performed first. The abundance of a mContig Ccov is computed as the median abundance
of its constituent k′-min-mers. In the mContig, the abundance of each k′-min-mer is then set to the refined
abundance Ccov. Long mContigs (having > 2k′ k′-min-mers) are unlikely to contain any erroneous k′-min-
mers. If a k′-min-mer with abundance 1 is present in a long mContig, it is rescued by incrementing its refined
abundance by 1 so that it will pass the pre-filtering performed in the next iteration.

Propagating refined abundance to the next k′ iteration and filtering At the beginning of each sub-
sequent multi-k′ iteration except the initial one (k′ > k′min), we estimate k′-min-mers based on the refined
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abundance of (k′-1)-min-mers determined in the previous iteration. A k′-min-mer contains two overlapping
(k′-1)-min-mers for which the refined abundance is known. We define the refined abundance of a k′-min-mer
as the minimum of its two (k′-1)-min-mers abundances. We use the minimum instead of the average because if
one of the two (k′-1)-min-mers is erroneous, we do not wish its abundance to be raised by the other potentially
correct one. This refined abundance propagation technique is to the best of our knowledge novel and has several
advantages. Firstly, it improves k′-min-mer abundance estimation over using abundances determined from reads
alone. Secondly, it prevents k′-min-mer abundances from collapsing to one (or even zero) as we increase k′:
indeed long k′-min-mers tend to be underrepresented as they are more likely to contain a sequencing error or
be longer than the mReads themselves. Finally, refined abundances allow us to assign an abundance estimate
to k′-min-mers that only exist in mContigs and not in mReads.

After the k′-min-mer refined abundances have been determined, all k′-min-mers seen once are discarded. As
we progress in the multi-k′ process, we notice that the refined abundances of erroneous k′-min-mers tends to
become one, whereas correct k′-min-mers tend to get rescued and refined to abundances of two or more.

7.5 Local progressive abundance filtering

In this section, we introduce a key component of our contig generation process, which performs progressive
abundance filtering to simplify parts of the assembly graph corresponding to abundant organisms (typically
above 10-20x coverage). We first explain the rationale then give algorithmic details in the next paragraphs.

We generate contigs by examining the abundances of organisms in the assembly graph through the abun-
dances of unitigs. Recall that a unitig is a maximal-length non-branching path in the assembly graph. Nearly
all unitigs of abundant organisms cluster together into a single large connected component of the assembly
graph. This is due to inter-genomic repeats and chimeric reads in HiFi samples. These two effects drastically
increase the complexity of the graph and make assembly challenging. By performing graph simplifications using
abundance information, we will sidestep both issues.

In principle, some abundant organisms could be separated in silico from the large component of the assembly
graph using an abundance filter, e.g. by removing all nodes with abundance lower than half of the organism’s
abundance. This is because most of the erroneous overlaps have low coverage: chimeric reads are rare, and most
inter-genomic repeats are spanned by rare species, so removing the corresponding low-abundance graph nodes
will remove those repeats. Filtering using a local abundance criteria has additional advantages: it can get rid
of large stretches of sequencing errors, and can remove strain variability. However, designing such a filter is not
straightforward.

In complex areas of an assembly graph unitigs tend to be fragmented and their abundances under-estimated,
resulting in correct unitigs being filtered out whenever removal is based on their length, or more critically, their
absolute abundance. Interestingly, the abundances of chimeric or rare species unitigs in complex areas also tend
to be under-estimated [23]. Our remedy will be to filter out unitigs by iterating over abundance cutoffs, from
low to high. At some point in the iterative process, fragmented but correct unitigs will be linked to longer ones,
and thus successfully rescued.

An unpractical but simple algorithm that illustrates our contig generation process is as follows. Sort the
MDBG unitigs u1, . . . , un from the most abundant (u1) to the least abundant (un). Iterate the following
procedure from i = 1 . . . n. Consider the abundance ai of ui and fix a local abundance cutoff Ui,cut = ai ∗ β
(with β values in the range 0.1 – 0.5, which in the real algorithm we will set it to 0.5). Create a copy G′ of the
MDBG. For t = 1 to t = Ui,cut, repeat removing all unitigs having abundance below t from G′ and re-compact
G′. Finally at t = Ui,cut, collect the unitig u′ in G′ that contains u. If u′ does not contain any k′-min-mer from
a previously returned contig, return it as a contig.

Performing assembly with the above procedure for every unitig would be costly and redundant. Instead, in
this work a progressive abundance filter is applied once to the whole graph from thresholds t = 1 to t = tmax

(see paragraph ‘Progressive abundance filtering’) instead of performing it per unitig. At each step we collect
the set of unitigs from the graph. This results in multiple sets of unitigs (S1, . . . , Stmax), each corresponding to
a single threshold t. A subsequent algorithm iterates over the St’s and non-redundantly outputs all the unitigs
that are above a well-chosen abundance threshold at each step (paragraph ‘Generating mContigs’).

Progressive abundance filtering This process (Algorithm 1) iterates over abundance thresholds, simpli-
fying and compacting the graph and then removing unitigs below the current threshold, saving the remaining
unitigs.

Specifically the algorithm iterates from abundance threshold t = 1 to t = tmax (line 3), where tmax is the
abundance of the most abundant unitig in the initial graph. The graph is simplified (line 4, see next section
‘Graph simplification’ for details). The graph is then compacted (line 5) and unitigs are collected into a set St
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Algorithm 1 Progressive abundance filtering.

Input: MDBG G
Output: S1, . . . , Stmax

sets of unitigs along with their abundance information
1: S ← {}
2: t← 1
3: while t ≤ tmax do
4: G← Simplify(G) . Tip clipping, bubble popping
5: G← Compact(G) . Compact the graph and calculate median k′-min-mer abundance of unitigs
6: St ← Unitigs(G)
7: Remove unitigs with abundance ≤ t from G
8: t← t+ 1
9: end while

10: return S

(line 6). Finally, unitigs with abundance ≤ t are discarded (line 7) from the graph and we move to the next
iteration of t.

Graph simplification The simplification step includes two processes: tip clipping and superbubble popping.
Tips of 50 kbp or smaller are disconnected from the graph. We do not remove them here as they may either be
erroneous or belong to a rare species. These tips are removed at the end of the assembly process if they have a
high identity with another contig. Superbubbles of length 50 kbp or smaller are detected in O(|Edges|+|Nodes|)
average time following the definition and algorithm of Onodera et al [24], and the path with maximum abundance
is kept.

Generating mContigs This process iterates over all sets of unitigs St’s starting from the one with highest
abundance cutoff, Stmax

. For each set, unitigs and their abundances are scanned in no particular order and an
unitig u is returned if its abundance a is greater than some threshold. We call mContigs the set of returned
unitigs (in line with typical genome assembly usage, where a contig is generally a unitig within the simplified
assembly graph). The complete process is described in Algorithm 2.

Specifically at each iteration, a unitig u from St along with its abundance a is added to the final set
of mContigs if it does not share any k′-min-mer with any other unitig already in mContigs, and also if its
abundance a is greater than a ∗ t/β (line 6). The k′-min-mers within u are recorded in a set of outputted nodes
to prevent redundancy (lines 7 - 8).

Here the sets of unitigs St’s are iterated from the large abundance threshold to the low abundance threshold,
rather than the opposite. This is to make sure that we always output unitigs in their longest possible form. To
see this, consider what would happen if we had started with the lowest threshold. There would be no way of
knowing if a given unitig has been maximally merged with some other unitig(s) after our abundance filtering
and graph simplifications steps. For example, at the abundance threshold of 3, all unitigs with an abundance
of 6 would be output as they pass the local abundance threshold of 3/0.5 = 6. But among them there may also
be fragmented unitigs belonging to a more abundant species (e.g. of abundance 10) that are ‘waiting’ to be
merged with other unitigs after more drastic simplifications (at t=4 or 5 for instance). Iterating from the large
threshold to the low threshold solves this.

7.6 Converting to base-space and assembly post-processing

At the end of the multi-k′ process the base-space representation of mContigs, i.e. the actual nucleotide sequences
and not their minimizer-space representation, is constructed by gathering the base sequences corresponding to
all mContigs k′-min-mers from the original reads. It is followed by two post-processing steps. A contig polishing
step fixes sequencing errors in contigs (mostly homopolymers), and an optional duplication purging step removes
similar contigs corresponding to close strains.

Constructing contig base sequences This step converts mContigs, i.e. the minimizer-space representation
of contigs, to actual nucleotide-space contigs. The idea is to choose a particular k′ value, collect k′-min-mers
nucleotide sequences from the original reads, then reconstruct contig nucleotide sequences by aggregating the
k′-min-mers nucleotide sequences. This is a generalization of the method presented in [14] to the multi-k′

setting, also made more accurate using read mapping. Indeed a k′-min-mer can be generated by multiple
different nucleotide sequences. Hence collecting the ‘wrong’ nucleotide sequence could yield errors in contigs.
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Algorithm 2 Generating mContigs.

Input: S1, . . . , Stmax
sets of unitigs

Output: mContigs
1: t← tmax

2: C ← {} . C is the set of k′-min-mers in the mContigs
3: β ← 0.5
4: while t ≥ 1 do
5: for each unitig u (with abundance a) in St do
6: if C ∩ nodes(u) = ∅ and a > t/β then
7: Output u
8: C ← C ∪ nodes(u)
9: end if

10: end for
11: t← t− 1
12: end while

Large values of k′ yield more specific k′-min-mers, minimizing such errors. However, some of these long k′-min-
mers may only exist in mContigs but not in mReads, thus their nucleotide sequences cannot be constructed
with certainty. We use k′ = k′min to ensure that all contigs k′-min-mer are indeed present in the reads. To
collect the ‘true’ nucleotide sequence of each contig k′-min-mers, mReads are first mapped to mContigs. k′-
min-mers sequence are then collected from the reads that best match on contigs. The read mapping strategy
in minimizer-space is described as follow.

The mContigs are firstly indexed to create a set of k′-min-mer seeds: each mContig k′-min-mer is stored
as a key in a hash table with the associated values being a list of contig positions, represented as pairs {ci,
cp}, where ci is the contig identifier and cp is the k′-min-mer position in ci. Then mReads are scanned, and
for each mRead k′-min-mer found in one or more mContigs, its mContig position(s) are retrieved as seeds for
potential mappings. The seeds are extended maximally: we iterate over the mRead k′-min-mers (to the left and
to the right of the seed) and extend mappings as long as subsequent k′-min-mers continue to be the same as
those that follow in the mContig(s). The result is a set of intervals (made non-redundant) indicating maximal
matches between the current mRead and one or several mContigs. Then another hash table with contig k′-min-
mer positions {ci, cp} as keys (here cp is the position of the seed in the mContig, one position per mapping
obtained), maintains the maximal matches as triplets {ri, rp,m} where ri is the read identifier, rp is the position
of the seed k′-min-mer in ri and m is the length of the longest match.

The overall mapping algorithm is thus quadratic over the number of k′-min-mers in each mRead. However,
in practice this number is close to 45, making the algorithm highly practical. We process mReads twice, in
forward and reverse order, to handle reverse complements. The output of the algorithm is exactly one read
k′-min-mer position for each contig k′-min-mer position.

The reads are then parsed in nucleotide space, and their k′-min-mers are extracted. If a k′-min-mer is
one that was reported as a best match during the above mapping procedure, we collect the substring of the
read corresponding to that k′-min-mer. To deal with overlaps between successive k′-min-mers in mContigs, we
also record the position of the second and second-to-last minimizers within each k′-min-mer. We finally parse
mContigs and concatenate the sequences associated to their k′-min-mers, making sure to discard overlaps.

Contig polishing We perform an additional polishing step on the base-level representation of contigs to
remove sequencing errors. We re-implemented a strategy akin to racon [25]: reads are first uniquely assigned to
contigs using minimap2, contigs are then split into non-overlapping windows of 500 nucleotides and fragments
of reads that map to each window are collected. Finally a consensus sequence for each window is created by
partial order alignment using the SPOA library [25].

Our polishing differs from racon, in particular in the following two aspects. The first is how we select
reads in case of multiple mappings. We noticed that longer alignments are not necessarily the best ones, but
that alignment identity must also be considered. We score alignments using the metric MS = alignLength ∗
alignIdentity and only retain for each read the alignment that maximizes MS. The second is a reduction of
memory usage: we limit the number of read fragments used to correct a window, with accurate long-reads,
we noticed that using only 20 fragments is sufficient to produce a high-quality consensus; we also reduce the
memory required to store the read fragments by partitioning the contigs and the reads that map onto them on
the disk, processing one partition at a time. The memory required to store the read fragments of a contig is
estimated by multiplying the contig length by the contig coverage (estimated from the initial read mapping).
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Contigs are processed sequentially and written into a partition file until the memory required to process the
partition exceeds 6 GB. The current partition is then closed and a new one started. A structure in memory
records the association of contigs to partitions. Similarly, reads are then processed and written to the partition
of their best matching contig. This resulted in an approximately one-hundred fold reduction in memory usage
compared to the original racon implementation for the Sheep rumen data set.

Strain duplication purging Sequence duplications in contigs due to strain variablity are detected by an
all-versus-all contig mapping using wfmash [26]. Contigs longer than 1 Mbp are left untouched and are used
as templates to remove duplications present in shorter contigs. For those shorter contigs, we remove any part
overlapping with a ≥ 1 Mbp contig when the overlap nucleotide alignment identity is over 99%.

7.7 Choice of parameters

Our method has four critical parameters: the minimizer size, the minimizer density, the starting and ending
k′-min-mer size k′min and k′max.

The minimizer size and density were both set empirically to respectively 13 and 0.005 (i.e. rougly 0.5% of
total k-mers are used as minimizers). In our tests, using such short minimizers leads to superior results than
using longer minimizers, possibly because they are less sensitive to sequencing errors.

The starting k′-min-mer size k’min was fixed to 4. Using k′ values less than 4 creates assembly graphs that
have high complexity, resulting in highly fragmented contigs. The ending k′-min-mer size k′max is a function of
the sample median read length: k′max = medianReadLength ∗ density ∗ 2.

With density 0.005 and k’min = 4, the assembler initially considers overlaps between reads of lengths
4−1
0.005 = 600 bases on average. It then iteratively increases the overlap length, in increments of 200 bases, until
finally processing overlaps of twice the median length of the reads.

7.8 AD sample extraction and long-read DNA sequencing

Three biomass samples were taken at weeks 1, 20, and 40 from a year long sampling campaign, directly from an
AD reactor digesting food waste by the facility operators and shipped in ice-cooled containers to the University
of Warwick. Upon receipt, they were stored at 4◦C and then sampled into several 1-5mL aliquots within a
few days and stored in 1.8 mL Cryovials at -80◦C. Samples were defrosted at 4◦C overnight prior to DNA
extraction. DNA was extracted from a starting mass of 250 mg of anaerobic digester sludge using the MP
Biomedical FastDNA SPIN Kit for Soil (cat no: 116560200) and a modified manufacturers protocol (see [27]
for detailed protocol).

DNA size was assessed using a FemtoPulse (Agilent). The Pacific Biosciences protocol ‘Preparing 10 kb
Library Using SMRTbell R©Express Template Prep Kit 2.0 for Metagenomics Shotgun Sequencing’ was used to
create libraries from 1.5 micrograms of DNA. In most cases the DNA was already 10 kb or smaller. Sample
AD2W40 was a bit larger so the DNA was sheared using a g-TUBE (Covaris) for one library and unsheared for
a second library. Libraries were not pooled due to the large number of reads desired. Sequencing was performed
using a Sequel II sequencer (Pacific Biosciences) using version 8M SMRT cells and version 2.0 sequencing
reagents with 30-hour movies with 2 hr pre-extension time to generate CCS reads.

7.9 Assembling datasets, mapping reads and binning contigs

We ran all assemblers with 16 CPU threads. We used metaMDBG default parameters for all assemblies (min-
imizer size = 13 and density = 0.005). We ran hifiasm-meta with default parameters on real data, and with
option –force-preovec on mock communities as suggested by the authors. We only used the hifiasm-meta pri-
mary assembly of polished contigs (p ctg.gfa), since adding alternate contigs reduced the overall MAG quality.
We ran metaFlye with options –pacbio-hifi, –plasmids, –meta. We used the command ‘/usr/bin/time -v’ to
obtain wall-clock runtime and peak memory usage. All tools used and complete command line instructions are
available in Supplementary Table S1.

To determine the fraction of reads mapped to assemblies, we used ‘minimap2 -x asm20’ as suggested in the
metaFlye study [6]. We filtered out a read when all its alignments were shorter than 80% of its length, and we
assigned each remaining read to a unique contig through its longest alignment (breaking ties arbitrarily). To
estimate contig coverage across samples prior to binning, we used the command ‘minimap2 -ak19 -w10 -I10G
-g5k -r2k –lj-min-ratio 0.5 -A2 -B5 -O5,56 -E4,1 -z400,50’ as proposed in the hifiasm-meta article. We input the
resulting BAM to the program jgi summa rsize bam contig depths of MetaBAT2 to obtain contig coverage
profiles across samples.
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We performed contig binning using MetaBAT2 [28] with default parameters and a fixed seed (–seed 42)
for reproducibility. Since MetaBAT2 may bin strains from the same species, creating a single apparently
contaminated MAG, we separated all circular contigs of 1 Mb or longer prior to binning the remaining contigs,
as suggested in the hifiasm-meta study [10].

7.10 Quality assessment of assemblies

We used CheckM (v1.1.3) to assess the quality of all MAGs and circular contigs longer than 1 Mbp. We used
viralVerify [17] (v1.1) to identify plasmids and virus in each assembly (Supplementary Table S2). We only
considered contigs shorter than 500 kbp with prediction score higher than 5. Annotations labeled as ‘Plasmid’
or ‘Uncertain - plasmid or chromosomal’ were considered as plasmids, and similarly annotations labeled as
‘Virus’ or ‘Uncertain - viral or bacterial’ were considered as virus. We used Barrnap (https://github.com/
tseemann/barrnap), and Infernal [29] to predict respectively rRNA and tRNA genes from circular contigs.
We filtered out annotations with E-value over 0.01. A total of 437 (96%) near-complete circular contigs found
by metaMDBG have one copy of the 5S, 16S and 23S genes and at least 18 tRNA genes, against 96.6% for
hifiasm-meta, and 98.5% for metaFlye (Supplementary File S2).

7.11 Assessment of completeness and fragmentation of assemblies with reference
sequences

We used the following process to assess the completeness and fragmentation of assemblies when reference
genomes are available (mock reference genomes or near-complete circular contigs). We used wfmash to align
contigs against the reference sequences. Alignments with less than 99% identity were filtered out. Alignments
were ordered by their matching score MS = alignLength ∗ alignIdentity (best score first). We considered
alignment identity to improve contig assignment to similar strains. Alignments were then processed sequentially
and contigs were uniquely assigned to references. During this process, we check whether a reference is complete
or not, meaning that at least 99% of its positions are covered by contigs. We prevent other contigs from being
assigned to a complete reference. Moreover, we prevent a contig to be assigned to a reference if more than 30%
of its matching positions are already covered by another contig. In this case, we first try to assign this contig
to another reference. References with less than 70% completeness were considered missed by the assembler.

7.12 Taxonomic classification of MAGs recovered from AD samples

The phylogenetic tree of Figure 3 was built using fasttree [30] from the output alignment of gtdbtk version
2.1.0 [31] on near-complete quality MAGs of all three assemblers for the anaerobic digester dataset. Concurrent
diversity coverage between the different assemblers was explored at different taxonomic levels from genus to
domain. To do so, it is necessary to first address MAGs for which no annotation is available at a given taxonomic
rank. A pair of unannotated MAGs may or may not share the same taxa. A first pass based on tree topology
allows us to select neighbouring MAGs as candidates for sharing the same unknown taxa. As a second step we
compute the Relative Evolutionary Distance using the R library Castor version 1.7.3 [32]. Following guidelines
from gtdb, we use their median RED values for each taxa in order to decide on grouping together unknown
MAGs. We then find the best ancestor for each unknown MAG in terms of their RED being nearest to the
corresponding taxa median RED. If they share the same best ancestor, we group them together otherwise we
split them into distinct unknown taxa. Tree manipulation and representation is carried out using the library
ggtree version 2.4.1 [33], treeio version 1.14.3 [34] and ggtreeExtra version 1.0.2 [35].

8 Assembler implementation details

During transformation to minimizer-space, reads are homopolymer-compressed [36]. We handle reverse recom-
plements in a similar but different manner to classical de Bruijn graph assembly. We considered canonical
k′-min-mers in the following manner: a k′-min-mer is compared to its reverse (and not its reverse comple-
ment). The first minimizer of each is compared: the k′-min-mer with the smallest minimizer is selected as the
canonical representative. In case of equality, the second minimizer of each is compared, and so on. Note that
minimizers are also considered in their canonical representations, which is in this case identical to the classical
technique: a minimizer is in canonical form if its forward sequence is lexicographically equal or smaller than its
reverse-complement sequence.

23

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.07.548136doi: bioRxiv preprint 

https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
https://doi.org/10.1101/2023.07.07.548136
http://creativecommons.org/licenses/by-nd/4.0/


9 Data availability

All datasets used is this study were downloaded from NCBI Sequence Read Archive (SRA) with accession
numbers given in Table 1. Zymo mock reference genomes are available at https://s3.amazonaws.com/

zymo-files/BioPool/D6331.refseq.zip. ATCC mock reference genomes are available at https://www.atcc.
org/products/msa-1003.

10 Code availability

MetaMDBG is available at https://github.com/GaetanBenoitDev/metaMDBG. We have also made the anal-
ysis scripts used in this study to compare assemblers available at https://github.com/GaetanBenoitDev/

MetaMDBG_Manuscript.
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