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Background
The steady increase of age-related diseases might be one of the most impactful down-
sides of our contemporary society. An unhealthy lifestyle, including insufficient exercise, 
unhealthy food, and mental stress, enhance the risk of comorbidities in age. In addition, 
cardiovascular disorders and musculoskeletal diseases, including osteoarthritis (OA) 
and osteoporosis (OP), are considered to be the most common global age-related dis-
eases. While OA is defined as a whole-joint disease, characterized by cartilage destruc-
tion, synovial inflammation, severe pain, and immobility, OP is mainly associated with a 
decrease in bone mass and subsequent compromised bone strength. Both OA and OP 
are incurable and associated with disability in age, causing high economic costs. As in 
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During aging and after traumatic injuries, cartilage and bone cells are exposed 
to various pathophysiologic mediators, including reactive oxygen species (ROS), 
damage-associated molecular patterns, and proinflammatory cytokines. This det‑
rimental environment triggers cellular stress and subsequent dysfunction, which 
not only contributes to the development of associated diseases, that is, osteoporosis 
and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated 
stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. 
However, cellular antioxidative capacities are limited and thus ROS accumulation can 
lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone 
homeostasis. In this narrative review, we address oxidative stress as a major driver 
of pathophysiologic processes in cartilage and bone, including senescence, misdi‑
rected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy 
by illustrating the consequences on tissue homeostasis and regeneration. Moreo‑
ver, we elaborate cellular defense mechanisms, with a particular focus on oxidative 
stress response and mitophagy, and briefly discuss respective therapeutic strategies 
to improve cell and tissue protection.
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most degenerative and age-related diseases, oxidative stress has been identified as a cru-
cial driver of the underlying pathogenesis in OA and OP.

In addition to pro-inflammatory cytokines, reactive oxidative species (ROS) are con-
sidered to be the most important modulators of cell fate and behavior. The term “ROS”, 
which will be used as collective term for both ROS and reactive nitrogen species in this 
review, comprises unstable, thus reactive, molecules such as free radicals [superoxide 
(·O2

−), hydroxyl radicals (·OH), or nitric oxide (·NO)] and their secondary products, for 
example, hydrogen peroxide (H2O2) or peroxynitrite (ONOO−).

It has been estimated that approximately 90% of endogenously produced ROS derive 
from the mitochondrial electron transfer chain due to electron leakage in the course of 
ATP production [1]. However, ROS can also be generated in other cell organelles, such 
as the endoplasmic reticulum, peroxisomes, and lysosomes, as well as in the cytoplasm. 
Various enzymes are involved in endogenous ROS production, including nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidases (NOXs), cytochrome P450, xan-
thine oxidase, and NO synthase among others [2].

At physiologic levels, ROS are considered to be second messengers and involved in 
cellular function maintenance by orchestrating various processes, including prolifera-
tion, survival, and differentiation. Moreover, ROS have been associated with cellular 
communication and immunomodulation, ranging from immune cell recruitment and 
activation to immunosuppression [3].

The signal transduction of ROS is mainly based on redox-sensitive signaling pathways, 
such as the nuclear factor-κB (NFκB) pathway as well as the mitogen-activated protein 
kinases (MAPKs) pathways extracellular signal-regulated kinase 1/2 (Erk1/2), p38, and 
c-Jun N-terminal kinases (JNK) [4, 5]. By contrast, several cysteine-containing enzymes 
can be inactivated by means of an NO-dependent modification of thiol groups, termed 
S-nitrosylation, as reported in the case of caspases as well as several transcription fac-
tors, including the NFκB-related proteins p50 and p65, or the subunits of activation pro-
tein 1, c-jun, and c-fos [5]. Therefore, ROS can both activate and inhibit redox-sensitive 
pathways involved in (patho-)physiologic processes in a different manner. In the context 
of mitogenic, nutrient uptake, or survival signals, epidermal growth factor) and platelet-
derived growth factor, for example, were found to transiently increase ROS generation 
via NOXs to mediate receptor tyrosine phosphorylation and sustain subsequent signal 
transduction [4].

In the following narrative review, we will elaborate why oxidative stress occurs upon 
aging and how ROS regulate cell fate and behavior in different situations. During this 
journey, we will particularly focus on OA and OP. While cartilage is thought to possess 
only very poor capacity for repair, bone is characterized by a remarkable endogenous 
regenerative potential. Therefore, pathophysiologic consequences of oxidative stress, 
such as regulated cell death and senescence, will be predominantly discussed in the con-
text of OA. By contrast, the decisive role of ROS in regenerative processes, including 
stem cell differentiation, but also consequences of mitochondrial dysfunction, will be 
addressed in the context of fracture healing and OP, because bone is normally consid-
ered to be a highly regenerative tissue.

First, a general introduction into the cellular antioxidant defense system as well as rele-
vant regulators and pathways will be given. Moreover, the disturbance of the antioxidant 
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defense in OA and OP patients will be addressed, including clinical biomarkers of oxida-
tive stress. Afterwards, we will focus on ROS-mediated cell fate decision in OA, com-
prising regulated chondrocyte death, such as apoptosis, ferroptosis, necroptosis, and 
pyroptosis, as well as stress-induced premature senescence (SIPS). Subsequently, we 
will discuss the role of ROS in bone remodeling and fracture healing as well as the con-
sequences of oxidative stress in cell fate regulation in OP. Moreover, we will focus on 
mitophagy and describe different therapeutic strategies targeting oxidative stress and 
mitochondrial dysfunction.

The cellular antioxidant defense system
Disturbance of the fine-tuned ROS balance has detrimental consequences on cells and 
thus tissue homeostasis. The product of superoxide and nitric oxide, namely peroxyni-
trite, represents one of the most cytotoxic ROS. Cell toxicity by peroxynitrite is mainly 
based on its reaction with biomolecules, resulting in lipid peroxidation, S-nitrosylation 
of glutathione (GSH) and enzymes, deamination of DNA bases, or even DNA single-
strand breakage [6].

Some physiologic processes, for example, osteogenic or chondrogenic differentiation, 
require well-balanced ROS levels. Differentiation is an energy-intensive process associ-
ated with enhanced ROS production due to increased mitochondrial activity to satisfy 
the required ATP demand. At the same time, ROS are essential inducers of cell differen-
tiation by modulating signaling pathways and subsequent transcription. However, both 
excessive and too low ROS levels impair differentiation [7–9]. Therefore, an intact cel-
lular antioxidant system is required to sustain a physiologic redox homeostasis and cope 
with excessive ROS levels, thus ensuring cell function and preventing damage.

The cellular antioxidant system consists of enzymatic antioxidants, for example, 
superoxide dismutases (SODs), catalase (CAT), and glutathione peroxidase (GPX), as 
well as non-enzymatic ROS scavengers, for example, GSH, ascorbic acid (vitamin C), 
α-tocopherol (vitamin E), and carotenoids [10, 11].

SODs are a group of antioxidants that are part of the first line antioxidant defense. 
In mammals, there are three forms of SOD enzymes: cytoplasmic SOD1 (Cu/ZnSOD), 
mitochondrial SOD2 (MnSOD), and extracellular SOD3 (Cu/ZnSOD) [12]. SODs con-
vert highly reactive superoxide into less harmful H2O2 [13], which can then be neutral-
ized into oxygen and water by CAT or GPX. Moreover, SOD2-generated H2O2 serves, 
for example, as a positive regulator of mitochondrial biogenesis [14, 15]. Elimination of 
superoxide by SODs prevents cellular damage and maintains mitochondrial function 
[16], thus protecting against cell death or senescence. It is noteworthy that global as well 
as a brain-specific knockout of SOD2 leads to neonatal death as observed between 10 
and 25 days after birth, depending on the mouse model [17–19].

The GSH system represents another important component of the first line antioxidant 
defense, comprising GSH, GPX, and glutathione reductase. GSH can act both as a non-
enzymatic free ROS scavenger and as a precursor of GPX, which reduces peroxides by 
using GSH as an electron donor, resulting in oxidized GSH (GSSG) as an end product. 
The flavoprotein glutathione reductase, in turn, converts GSSG into its reduced form 
and thus active GSH in a NADPH-consuming reaction, which closes the GSH redox 
cycle [20].



Page 4 of 41Riegger et al. Cellular & Molecular Biology Letters           (2023) 28:76 

Different enzymes and pathways are involved in the regulation of cellular antioxidants, 
thus maintaining the redox homeostasis and promoting cell protection under oxidative 
stress. In the following paragraphs, we will address some of the most important regula-
tors in more detail.

Sirtuins and forkhead box O (FoxO) proteins

Sirtuins comprise a family of seven members—SIRT1–7—of cytosolic and mitochon-
drial nicotinamide adenine dinucleotide (NAD)-dependent deacetylases. They are 
essential in terms of cellular anti-aging mechanisms, by being involved in DNA repair, 
antioxidative defense regulation, and immunomodulation. Therefore, sirtuins are con-
sidered to be important targets to counteract age-related diseases, including OA and OP 
[21, 22]. Indeed, sirtuins have been found to maintain tissue anabolism, prevent apop-
totic cell death, and attenuate senescence and inflammation in cartilage [23–27] as well 
as in bone [28, 29]. Sirtuins are important regulators of autophagy and mitochondria-
specific autophagy (mitophagy) in chondrocytes and osteoblasts, thus contributing to 
cellular survival and function [23, 30–32]. Beyond mitophagy, sirtuins, and in particular 
mitochondrial SIRT3/4/5, are further involved in mitochondrial function maintenance 
by regulating mitochondrial biogenesis and translation and deacetylation of various 
enzymes associated with the electron transfer chain, in particular oxidative phosphoryl-
ation complexes [33–36]. Overall, deficiencies in cytoplasmic (SIRT1) or mitochondrial 
(SIRT3) sirtuins were demonstrated to promote OA and OP progression in mice [29, 
37–39].

Sirtuin-mediated cell and tissue protective effects are mainly attributed to the modu-
lation of transcription factors, such as p53, NF‐κB, or FoxO 1, 3A, and 4 [25, 28, 40]. 
Deacetylation of FoxO proteins, for example, results in gene expression of antioxidant 
proteins, including SOD2, CAT, peroxiredoxins, thioredoxin, and thioredoxin reductase, 
thus ameliorating ROS accumulation and subsequent cell damage [40].

FoxO activity is negatively regulated by the phosphatidylinositol 3-kinase/Akt path-
way, which promotes AKT-dependent phosphorylation and subsequent cytoplasmic 
retention. JNK or AMP-activated protein kinase (AMPK) signaling, in turn, results in 
the activation of FoxO proteins, which enables their nuclear translocation and transla-
tion of target genes via the FoxO binding consensus domain [41–43]. Both pathways are 
considered to be stress-responsive and play an important role in ROS defense and cell 
survival during oxidative stress [44]. FoxO1 and 3 expression was found to be suppressed 
in aged and OA cartilage derived from both, human donors and experimental murine 
models, accompanied by enhanced FoxO phosphorylation and thus inactivation of the 
proteins [45].

Keap1‑Nrf2 pathway

The Keap1-Nrf2 pathway has been considered to be the most important classical regula-
tory mechanism regarding cellular detoxification and antioxidant defense [46]. Indeed, 
nuclear factor erythroid 2-related factor 2 (Nrf2) represents a master regulator of anti-
oxidant and cell protective genes, by binding and activating cis-acting enhancer anti-
oxidant response element (ARE) sequences [47]. AREs are located in the promoters of 
genes encoding proteins associated with detoxification and antioxidative defense, for 
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example, SODs, CAT, quinone reductase, glutathione S-transferase, heme oxygenase-1 
(HO-1), thioredoxin, and UDP-glucuronyl transferase, as well as the Nrf2 gene itself [46, 
48, 49]. Nrf2 activity is constitutively regulated by Kelch-like ECH-associated protein 1 
(Keap1), which binds to Nrf2, resulting in its cytosolic retention and the promotion of 
Cullin 3-mediated ubiquitination and subsequent proteasomal degradation [50]. Upon 
exposure to oxidative or electrophilic stress, the cysteine-based redox sensors of Keap1 
are oxidized, which allows newly translated Nrf2 to translocate into the nucleus, heter-
odimerize with small Maf proteins, and initiate ARE-dependent transcription [51–53]. 
In addition to the transcriptional control of antioxidants, the Nrf2 pathway has been 
described to be involved in mitochondrial homeostasis. Nrf2 was found to induce mito-
chondrial biogenesis by promoting the transcription of mitochondrial transcription fac-
tor A—the key enhancer protein of mitochondrial DNA (mtDNA) replication [54, 55]. 
Moreover, Nrf2 contributes to mitophagy-mediated elimination of dysfunctional mito-
chondria by regulating the transcription of PTEN-induced putative kinase 1 (PINK1) 
[56, 57] and the autophagic adaptor protein sequestosome-1 (p62/SQSTM1) [58]. Inter-
estingly, p62, in turn, has been found to interact with the Nrf2-binding site on Keap1, 
thus competing with Nrf1. Consequently, elevated p62 levels result in Nrf2 pathway acti-
vation, creating a positive feedback loop [58, 59]. Due to its protective role during cel-
lular stress, Nrf2 activation represents a promising therapeutic strategy in acute tissue 
trauma as well as age-related diseases, comprising neurodegenerative diseases as well 
as OA and OP [60–64]. Indeed, Nrf2 deficiency was found to induce age-related OP in 
female mice [65] and OA in different mouse models [66].

Hypoxia‑inducible factor (HIF)‑1/2α pathway

Hypoxia-inducible factor-1 α and 2 α (HIF-1/2α) are highly conserved transcription fac-
tors, which both heterodimerize with HIF-1β upon hypoxia, forming the transcription 
factors HIF-1 and HIF-2, respectively. Subsequent binding to the hypoxia responsive ele-
ment sequence promotes a positive transcriptional response [67]. However, HIF-1 and 
HIF-2 differ regarding the target genes, as demonstrated in the case of OA, where these 
transcription factors mediate virtually opposite effects [68].

Under normoxic conditions, the oxygen-dependent degradation domains of the HIF-α 
subunits are post-translationally hydroxylated by prolyl hydroxylases, which promotes 
their interaction with the von Hippel-Lindau tumour suppressor protein and induces 
subsequent ubiquitination and proteasomal degradation [69]. Hydroxylation of specific 
proline residues and subsequent ubiquitination does not occur under hypoxic condi-
tions, allowing HIF-α subunit accumulation and nuclear translocation. In the nucleus, 
the HIF-α subunit dimerises with HIF-1β and binds to hypoxia responsive element-con-
taining promoter regions, regulating the transcription of hundreds of target genes [70, 
71].

It is understood that crosstalk occurs between the oxygen- and redox-responsive path-
ways. Indeed, hypoxia leads to mitochondrial ROS accumulation resulting from ineffi-
cient electron transfer through the electron transfer chain due to oxygen limitation—the 
terminal electron acceptor [72]. Mitochondrial ROS, in turn, trigger hypoxia-induced 
transcription through HIF-1/2a [73, 74]. HIF-1 has been reported to alleviate hypoxia-
related mitochondrial ROS generation in different ways. For example, it can act as a 
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regulator of mitophagy by inducing the gene expression of Bcl-2/adenovirus E1B 19-kDa 
interacting protein, an essential factor in beclin1-dependent autophagy and mitophagy 
[75], thus promoting cell and tissue protection as well as tissue regeneration after injury, 
as demonstrated during fracture healing [76]. In detail, mitophagy-driven elimination 
of dysfunctional mitochondria prevents mitochondrial ROS accumulation, and conse-
quent apoptotic cell death and senescence, as demonstrated in different animal models, 
including a surgery-induced OA model [75, 77]. By contrast, HIF-1 was observed to be 
involved in the reduction of mitochondrial cristae, mitochondrial biogenesis, and oxi-
dative stress levels by induction of Hes-related family BHLH transcription factor with 
YRPW motif, a negative regulator of PINK1, in the context of hepatocellular carcinoma 
[78].

Interestingly, HIF-1 transcription was found to be enhanced upon oxidative stress, 
resulting in an induction of different sets of HIF-1 target genes in pulmonary artery and 
vascular smooth muscle cells [79, 80]. It has been assumed that ROS upregulates HIF-1 
transcription via NFκB pathway activation and subsequent binding of p50 and p65 at a 
newly identified NFκB binding site in the HIF-1 promoter region [79]. As well as this 
NFκB binding site, additional Nrf2-binding sites, AREs, were found recently in HIF1α 
promoters [81]. Enhanced HIF-1 expression might counteract degradation of the protein 
and thus allow HIF-1 signaling under mild hypoxia conditions [82].

Beyond the transcriptional level, HIFs have also been demonstrated to be post-trans-
lationally regulated by ROS. Indeed, acetylated HIF-1 can be inactivated by the redox-
sensing deacetylase SIRT1. During hypoxia, SIRT1 is assumed to be downregulated due 
to decreased NAD+ levels, thus promoting HIF-1α acetylation and its subsequent acti-
vation. In the case of SIRT1-mediated HIF-2α inactivation, contradictory findings have 
been observed [83–85], which might be explained by a cell type-dependent regulation 
[86]. Moreover, enhanced ROS levels were found to stabilize HIF-1 and HIF-2 by reduc-
ing the posttranscriptional hydroxylation of the HIF subunits most likely via inhibition 
of post-translationally hydroxylated by prolyl hydroxylases [87, 88].

Taken together, it is clearly reported that mitochondrial ROS accumulation correlates 
with HIF-α stabilization during hypoxia, while exogenous ROS enhance HIF-1 protein 
levels under normoxia [89], demonstrating the close relationship between the hypoxia- 
and redox-sensitive pathways.

Evidence of compromised antioxidant defense in OA and OP patients

It is understood that enhanced ROS production and subsequent oxidative stress under 
pathophysiologic conditions mainly results from mitochondrial dysfunction, an upreg-
ulation of ROS-producing enzymes, and coincident impairment of the antioxidant 
defense system [90, 91]. The Nrf2 promoter consists of CpG islands, which are thought 
to be epigenetically modified upon aging, thus blocking the transcription of Nrf2 [92]. 
Accordingly, enhanced Nrf2 promoter hypermethylation was reported in both OP 
patients and ovariectomized mice [93]. In agreement with these findings, decreased 
Nrf2 protein levels were observed in cartilage of aged or OA donors and OA chondro-
cytes [94, 95]. This dysregulation of Nrf2 inevitably promoted mitochondrial dysfunc-
tion and thus enhanced ROS production [95–97]. The coincident reduction in cellular 
antioxidant expression results in a reduced ability to counter oxidative stress and thus 
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enhanced cellular damage—a vicious cycle. An overview of the redox balance in cell 
fate decision, including proteins of the cellular antioxidant defense and ROS-associated 
markers, is given in Fig. 1.

Regarding cellular antioxidant enzymes, a significant correlation between decreas-
ing GSH/GSSG and bone mineral destiny (BMD) was reported in postmenopausal 
women [98]. Accordingly, GSH/GSSG ratios were significantly lower in chondrocytes 
isolated from elderly donors as compared to cell derived from young donors [99]. This 
change in the GSH/GSSG ratio might result from a reduction in NADPH, the co-fac-
tor of glutathione reductase, the synthesis of which might be dysregulated in aging and 
senescence, as recently reviewed [100, 101]. In addition to the decline in active GSH, 
significantly lower SOD and CAT levels were found in respective tissue samples of OA 
and OP patients [93, 102–104]. Additionally, enhanced post-translational lysine acety-
lation and thus SOD2 inactivation was reported in human OA cartilage and in aged 
rats [105, 106]. Fu et al. described that the addition of SIRT3, which was substantially 
decreased upon aging, induced deacetylation, and subsequent SOD2 activation [105]. 
Although there are reports about a positive correlation between age and SIRT1 protein 
levels, implying a cellular response towards enhanced cellular stress [107], animal stud-
ies revealed a simultaneous decline in the enzymatic activity of the NAD-dependent 
deacetylase, which might result from an age-related decrease in systemic NAD+ biosyn-
thesis [108]. Indeed, CD38 expression and activity, one of the main NADases, was found 
to be increased upon aging and cause the age-associated NAD reduction, promoting 
decreased sirtuin activity and enhanced mitochondrial dysfunction [109].

Taken together, the decrease in the cellular antioxidant defense system results in 
enhanced oxidative stress with age. Accordingly, enhanced levels of malondialdehyde 
(MDA) and 4-hydroxynonenal (4-HNE), the major aldehydic products and thus most 
commonly used biomarkers of lipid peroxidation, were found in cartilage as well as syn-
ovial fluid or cells of OA patients [106, 110–112]. Moreover, mitochondrial and genomic 
DNA damage in human chondrocytes was associated with age and OA [113, 114]. In 
postmenopausal women, a positive correlation between urinary 8-hydroxy 2′-deoxy-
guanosine (8-OHdG), a marker for DNA damage, and serum receptor activator of NFκB 
(RANK) ligand (RANKL) was found [115]. Furthermore, plasma NO and serum MDA 

Fig. 1  Overview of the redox balance in cell fate decision. The decrease of cellular antioxidant defense 
mechanisms (blue area) results in an increase of oxidative stress, driven and characterized by various factors 
(gray area). Alterations in the redox balance differentially effect cellular behavior and fate, ranging from 
physiological to pathophysiological processes
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levels were significantly higher in women suffering from OP as compared to the con-
trol group [116]. In agreement with this, ROS-related protein damage, which was deter-
mined by plasma advanced oxidation protein products (AOPPs) levels, was significantly 
elevated in postmenopausal OP women. These AOPPs levels were positively corre-
lated with markers of bone turnover, bone-specific alkaline phosphatase, and tartrate-
resistant acid phosphatase 5b and negatively correlated with lumbar BMD of the overall 
cohort [117].

ROS‑mediated cell fate decision in OA
OA is a multifactorial disease, mainly associated with age, sex, and obesity, but can also 
result from other risk factors, such as genetic predisposition and injuries of joint-related 
tissues. In contrast to idiopathic OA, which cannot be assigned to a certain inducer, 
posttraumatic OA (PTOA) is considered to be a result of preceding joint injuries. While 
PTOA accounts for only approximately 12% of all symptomatic OA cases, it has been 
presumed that between 20 and 78% of cases of ankle OA are posttraumatic [118, 119].

The pathomechanisms of idiopathic OA and PTOA are considered to be largely simi-
lar, comprising cell death, low-grade inflammation, oxidative stress, and consequent cel-
lular dysfunction. The last is very complex and includes ROS- and/or cytokine-triggered 
chondrocyte phenotypical alteration, such as hypertrophy and senescence. Driven by 
the pathophysiologic conditions, hypertrophic and senescent cells exhibit a dysfunc-
tional behavior characterized by excessive production of pro-inflammatory mediators 
and matrix-degradative enzymes, for example, matrix metalloproteinases (MMPs) and a 
desintegrin metalloproteinases with thrombospontin motive (ADAMTS), driving ongo-
ing cartilage degeneration—the major hallmark of OA [120]. While chondrocyte hyper-
trophy is primarily considered as a physiologic mechanism associated to endochondral 
ossification in the growth plate during skeletal development or fracture healing, this 
so-called terminal differentiation of chondrocytes can also be observed in OA carti-
lage [121]. Although the underlying mechanisms promoting the phenotypical alteration 
from a mature articular chondrocyte towards the hypertrophic phenotype has not been 
completely understood, there is common agreement that this process is triggered by 
pathophysiologic conditions, including oxidative stress [122], and that accumulation of 
hypertrophic chondrocytes in cartilage tissue contributes to OA pathogenesis. Accord-
ing to their role during endochondral ossification, hypertrophic chondrocytes in OA car-
tilage not only express high levels of collagen type 10, but also catabolic (i.e., ADAMTS5 
and MMP-13), pro-inflammatory (i.e., CXCL1 and IL-8), and ossification-related mark-
ers (i.e., RUNX2 and alkaline phosphatase) [123]. Regarding their secretome, hyper-
trophic chondrocytes share various markers with senescent chondrocytes [120], which 
will be described in the section “Role of ROS in SIPS” in more detail.

It should be noted that ROS-mediated changes in cellular function are not limited to 
chondrocytes. As a whole-joint-disease, several joint-related tissues and their respec-
tive cell types are affected by the pathophysiologic environment and oxidative stress. 
Accordingly, ROS accumulation modulates the behavior and fate of fibroblasts and mac-
rophages in the synovial membrane or osteoblasts and osteoclasts in the subchondral 
bone. Similar to the phenotypical alterations in chondrocytes, synovial and bone-related 
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cells develop a pro-inflammatory and catabolic phenotype, thus contributing to OA pro-
gression as reviewed elsewhere [11].

Besides the ROS-mediated phenotypical alterations in articular chondrocytes, the 
stressful environment may also result in chondrocyte death, which is similarly associ-
ated with cartilage destruction. As the exclusive cartilage-building cell type expressing 
collagen type II and aggrecan, the most abundant structural macromolecules in hyaline 
cartilage, mature articular chondrocytes are essential to maintain tissue homeostasis. 
A decline in chondrocyte number is highly detrimental due to the high hypocellularity 
of cartilage, which consists of only 2–5% of cells. Moreover, cell death and subsequent 
release of intracellular components and membrane fragments may function as damage-
associated molecular patterns (DAMPs), further fueling inflammatory processes [124]. 
Thus, particularly lytic cell death, such as ferroptosis, necroptosis, and pyroptosis, con-
tributes to progressive cartilage degeneration, creating a vicious cycle.

Taken together, both, chondrocyte cell death and survival represent a critical aspect 
in OA progression. Indeed, surviving chondrocytes might cause even more harm than 
those undergoing regulated cell death. This largely depends on two aspects: (i) the form 
of regulated cell death—either “clean” or “dirty”—and (ii) the phenotype of the surviv-
ing chondrocyte—either functional or dysfunctional. In short, a damaged chondrocyte 
undergoing apoptosis might be less harmful than an apoptosis-resistant, senescent 
chondrocyte, releasing proinflammatory and catabolic mediators.

In the following paragraphs, we will focus on the decisive role of ROS in cell fate deci-
sion of chondrocytes under pathophysiologic conditions.

ROS in regulated cell death

Regulated cell death can occur as a physiologic process in embryonal development and 
plays a pivotal role in tissue homeostasis maintenance. It might at first appear para-
doxical that cell death maintains tissue integrity, but elimination of damaged and thus 
dysfunctional cells indeed prevents chronic inflammation and diseases [125]. Poten-
tial consequences of insufficient clearance of dysfunctional cells are elaborated in the 
next chapter focusing on senescence (see “Role of ROS in stress-induced premature 
senescence”).

Several modi of regulated cell death have been described in OA, comprising apoptosis, 
necroptosis, pyroptosis, and ferroptosis [124, 126–128]. Although each type of cell death 
is characterized by different effector proteins, all of them can be directly or indirectly 
induced by oxidative stress. In terms of ROS-associated regulated cell death, p53 is con-
sidered to be a crucial key mediator [129]. In contrast to apoptosis, which is largely con-
sidered to be a clean and rather anti-inflammatory mode of regulated cell death, there 
are several pro-inflammatory and thus detrimental forms of regulated cell death. The 
pro-inflammatory feature of ferroptosis, necroptosis, and pyroptosis results from cell 
membrane disruption and the consequent release of intracellular components, which 
act as DAMPs. These mediators can bind to so-called pattern recognition receptors, 
such as toll-like receptors 2 and 4, on synovial cells and chondrocytes, thus promoting a 
pro-inflammatory response and consequent production of matrix-degradative enzymes 
[120].
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In contrast to necrosis, which is characterized by passive membrane rupture, the 
loss of cell integrity in ferroptosis, necroptosis, and pyroptosis is a controlled pro-
cess. In the case of necroptosis and pyroptosis, membrane permeabilization is medi-
ated by integration of pore-forming oligomers of mixed lineage kinase domain-like 
(MLKL) and gasdermins (GSDMD), respectively. This mechanism appears to be simi-
lar to Bax/Bak-mediated mitochondrial outer membrane permeabilization in apopto-
sis [130].

In the following section, we will give a short overview of apoptotic, ferroptotic, 
necroptotic, and pyroptotic cell death, and particularly focus on the executive role of 
oxidative stress in this context. The involvement of ROS in the different modi of cell 
death is outlined in Fig. 2.

Fig. 2  ROS involvement in regulated cell death. While apoptotic cell death (blue background) is considered 
as a largely silent and non-inflammatory form of cell death, other forms such as necroptosis, ferroptosis, 
and pyroptosis (gray background) are thought to promote a pro-inflammatory response. Regardless of 
the pathophysiologic consequences, ROS and mitochondrial dysfunction (mtROS) play a decisive role in 
the execution of all described forms of regulated cell death. Apaf-1 apoptosis activating factor-1, DAMP 
damage-associated molecular patterns, GPX4 glutathione peroxidase 4, GSDMD gasdermins, MOMP 
mitochondrial outer membrane permeabilization, MPT mitochondrial permeability transition, (mt)ROS 
mitochondrial) reactive oxygen species, NLRP3 nucleotide-binding domain and leucine-rich repeat protein-3
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Apoptosis

In general, the plasma membrane of apoptotic cells remains intact during the self-
elimination process, preventing the release of intracellular components, which might 
act as immunogenic DAMPs. Therefore, apoptosis has commonly been considered 
to be an “immunologically silent” form of cell death. However, recent studies refute 
this theory, because apoptotic cells have indeed been described to release DAMPs 
under certain circumstances [131]. Currently, apoptotic cells are regarded to be meta-
bolically active and highly communicative cells, which exhibit a distinct secretome, 
including nucleosome components and pro-regenerative apoptotic extracellular vesi-
cles, as well as anti-inflammatory and immunomodulatory metabolites [132–134]. 
These new findings imply that apoptotic cells might be involved in the modulation of 
posttraumatic and pathophysiologic processes, thus being more than just damaged 
cells waiting for phagocytic clearance [133].

Mechanistically, two main pathways of apoptosis can be distinguished—the intrinsic 
and extrinsic pathways—which can both be activated by ROS as previously reviewed 
[135]. In the case of intrinsic apoptosis, which is mainly associated with mitochon-
drial dysfunction or ER stress, ROS can activate the cell cycle regulators p53 and JNK, 
which induce pro-apoptotic Bcl-2 family proteins such as Bak and Bax—antagonists 
to anti-apoptotic proteins Bcl-xL and Bcl-2 in the outer mitochondrial membrane 
(OMM)—eventually causing mitochondrial outer membrane permeabilization and 
subsequent apoptosis [136, 137]. At low stress levels and potentially reversible cellu-
lar damage, p53 induces a cell cycle arrest allowing DNA repair. In this case, cell fate 
is thought to be mainly influenced by the p53 level, including a complex regulation 
mechanism of posttranscriptional modification and thus activation of the cell cycle 
regulator, occurring in pulses [138]. However, p53-induced cell cycle arrest might also 
lead to senescence.

Moreover, ROS accumulation results in oxidation of cardiolipin, the signature phos-
pholipid in the inner mitochondrial membrane, as well as mitochondrial depolarization 
and subsequent opening of Bax/Bak channels in the OMM, resulting in mitochondrial 
outer membrane permeabilization. Taken together, these processes cause the release of 
pro-apoptotic mediators, such as cytochrome c and apoptosis-inducing factor (AIF). 
AIF is translocated to the nucleus, where the protein causes chromatin condensation 
and DNA fragmentation, thus initiating caspase-independent apoptosis. By contrast, 
cytochrome c interacts with apoptosis activating factor-1 and procaspase-9, forming the 
apoptosome. Subsequent autoactivation of caspase-9 initiates the caspase cascade by 
activation of the downstream executioner caspases-3, -6, and -7 [139]. Release of pro-
apoptotic cytochrome c and AIF can also occur upon ROS-mediated mitochondrial per-
meability transition, leading to osmotic swelling and OMM rupture [140].

In addition to intrinsic apoptosis, ROS were found to be involved in extrinsic apopto-
sis mediated via transmembrane death receptors, comprising Fas, tumor necrosis fac-
tor (TNF)-related apoptosis-inducing ligand receptor 1/2, and TNF receptor 1 (TNFR1). 
Indeed, the extrinsic pathway, which mediates caspase-8 activation and caspase-3 and -7 
engagement, similarly to the intrinsic pathway, was found to be rather inefficient. There-
fore, a crosstalk between the extrinsic and intrinsic (“mitochondrial”) pathways exists, 
which amplifies extrinsic death signals by additional ROS production [135].
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In OA, ROS-induced apoptosis is considered to be the predominant form of chon-
drocyte death, in particular, after joint injuries. There is strong evidence that posttrau-
matic ROS accumulation might primarily result from mitochondrial dysfunction [141]. 
Accordingly, mitochondrial stabilization by the mitoprotective drug SS-31 significantly 
ameliorated chondrocyte apoptosis by attenuating strain-dependent mitochondrial ROS 
(mtROS) production [142, 143]. Moreover, Nrf2/ARE-pathway induction and conse-
quent expression of antioxidant target genes, for example, HO-1 and SOD2, enhanced 
the anti-apoptotic response in chondrocytes [144]. Similar anti-apoptotic effects in 
chondrocytes were reported for the deacetylase SIRT1, which was ascribed to differ-
ent potential mechanisms: First, SIRT1 promotes p53 deacetylation, thus serving as a 
negative regulator to apoptosis-associated Bcl-2 decline and Bax increase [145]. Second, 
particular cell protective effects of SIRT1 were reported to result from autophagy or 
mitophagy activation [146].

Ferroptosis

Ferroptosis is a relatively newly discovered form of regulated cell death, which was ini-
tially described as iron-dependent. To date, the exact underlying mechanisms of this 
ROS-dependent mode of cell death have not been completely elucidated. In addition 
to oxidation of labile iron, GPX4 inactivation and subsequent lipid peroxidation have 
been identified as the main hallmarks of ferroptosis [147]. On a biochemical level, GSH 
depletion and impaired GPX4 activity as well as Fe2+-driven ROS production (Fenton 
reaction) result in oxidative stress and lipid peroxide accumulation, initiating cell death 
[148]. Nanopore formation and consequent Ca2+ influx eventually results in membrane 
rupture and the release of pro-inflammatory cell components [149].

Whether iron is essential in lipid peroxide production and subsequent initiation of 
ferroptosis remains to be clarified. However, there are a number of mainly GPX4-tar-
geted drugs and compounds, which are known to induce ferroptotic cell death, including 
GPX4-degrading or -inhibiting substances as well as inhibitors of the cystine-glutamate 
antiporter system, pronouncing the decisive role of the antioxidant system in ferroptosis 
[150]. In comparison to other common forms of cell death, such as apoptosis or necrop-
tosis, ferroptotic cells have a unique mitochondrial phenotype, characterized by shrink-
age and increased membrane density of this organelle, as well as crista reduction or loss 
and OMM rupture [147, 151]. Moreover, it is assumed that changes in the mitochondrial 
metabolism and thus excessive mtROS production might promote ferroptosis [148].

Both hallmarks of ferroptosis, iron dyshomeostasis and enhanced lipid peroxida-
tion, are strongly associated with OA, as previously reviewed elsewhere [152]. In brief, 
increased of Fe2+, Fe3+, and total iron concentrations, as well as the main reactive prod-
ucts of lipid hydroperoxides, 4-HNE and MDA, have been reported in cartilage, synovial 
tissue and synovial fluid of OA patients. At the same time, reduction in GPX and GSH 
levels or the GSH/GSSG ratio was observed in plasma, cartilage tissue, and synovial 
fluid, respectively.

The crucial role of ferroptotic cell death in OA progression was recently confirmed 
in rodent PTOA models [153–155]. Interestingly, antioxidant treatment with natural 
phenol theaflavin-3,3′-digallate protected human chondrocytes from erastin-induced 
ferroptosis by promoting the Nrf2-pathway and thus increasing GPX4 and HO-1 
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expression. Accordingly, theaflavin-3,3′-digallate treatment prevented injury-induced 
chondrocyte ferroptosis and OA progression in  vivo [155]. Similarly, anti-ferroptotic 
and thus chondroprotective effects of the iron-chelating agent deferoxamine were found 
to be mediated by enhanced Nrf2 signaling and subsequent increase of the antioxidant 
defense system in chondrocytes [154].

Necroptosis

In the case of necroptosis, the initial steps are similar to those of extrinsic apoptosis. In 
brief, TNFR1 activation by TNF results in TNFR1 complex I formation, which includes 
the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)—a key regulator of 
diverse cellular processes ranging from inflammation and cell survival to apoptosis and 
necroptosis. The mode of regulated cell death is determined by the presence (apoptosis) 
or absence (necroptosis) of active caspase-8 [156].

Following TNFR1 complex I assembly, caspase-8 inhibition activates the necroptotic 
pathway by the interaction of RIPK1 and RIPK3, which form the so-called necrosome 
(complex IIB) [157]. Subsequently, the MLKL is recruited and phosphorylated, initiating 
MLKL oligomerization. Integration of the pore-like oligomers into the cell membrane 
results in sodium and calcium influx and potassium efflux, eventually leading to its dis-
ruption [158, 159]. Indeed, mtROS were observed to induce RIPK1 autophosphorylation 
and consequent activation of the apoptotic and necroptotic pathways [160]. Moreover, 
there is evidence that RIPK1, RIPK3, and/or MLKL are translocated to the mitochon-
drial membrane, initiating mtROS production and subsequent execution of necroptotic 
cell death, as reviewed elsewhere [161]. It is assumed that the necrosome activates fur-
ther target proteins, such as the mitochondrial phosphatase PGAM5, which interacts 
with RIPK3, thus inducing mitochondrial fragmentation in a dynamin-related protein 
1 manner [162]. Furthermore, RIPK3 was found to activate the rate-limiting enzyme 
pyruvate dehydrogenase complex, which connects glycolysis to aerobic respiration. This 
activation results in enhanced aerobic respiration and higher mtROS production [163]. 
Interestingly, MLKL was required for RIPK3-mediated phosphorylation of PGAM5 and 
pyruvate dehydrogenase complex, implying that RIPK3 translocation to the mitochon-
drial target proteins might depend on necrosome formation [162, 163].

In agreement with the aforementioned reports, addition of ROS-scavengers, for exam-
ple, butylated hydroxyanisole, or electron transfer chain inhibitors, such as amytal (amo-
barbital), were found to suppress TNF-induced necroptosis [160, 164, 165]. In addition, 
adenoviral overexpression of mitochondrial SOD2 was observed to protect endothelial 
cells from NO-mediated accumulation of superoxide in mitochondria and consequent 
necroptosis [166]. The pro-necroptotic role of ROS was also confirmed in an ex  vivo 
human cartilage trauma model, in which antioxidative therapy using N-acetyl cysteine 
efficiently protected chondrocytes from injury—and TNF/cycloheximide-induced apop-
tosis as well as necroptosis [124, 128]. Moreover, it could be demonstrated that addition 
of the pan-caspase inhibitor zVAD after cartilage trauma or during TNF/cyclohex-
imide stimulation resulted in a shift from apoptosis to necroptosis in chondrocytes. 
This increase of necroptotic cells was associated with enhanced release of intracellular 
DAMPs as well as elevated NO and prostaglandin E2 production [124], which confirms 
the pro-inflammatory consequences of necroptosis.
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Pyroptosis

The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflamma-
some, also referred to as NLR family pyrin domain containing 3, is a stress sensor and 
key mediator of inflammation—associated with many inflammation-related diseases 
[167]. In addition to NLRP3, the NLRP3 inflammasome consists of a caspase recruit-
ment domain (CARD)-containing adaptor protein termed apoptosis-associated speck-
like protein containing a CARD and pro-caspase-1. In the canonical pathway, NLRP3 
activation induces autoproteolysis of pro-caspase-1 into the effector caspase-1. Active 
caspase-1 further leads to the cleavage of pro-interleukin-1β (pro-IL-1β), pro-IL-18, and 
GSDMD, initiating oligo-GSDMD pore formation and subsequent cytokine release and 
pyroptosis [127, 168].

There is evidence that oxidative stress represents a major trigger of inflammasome 
activation and consequent pyroptotic cell death [169]. In this context, elimination of dys-
functional mitochondria and thus reduction of excessive mtROS production was found 
to have an attenuating effect on pyroptosis [170]. ROS-induced activation of the NLRP3 
inflammasome is thought to be mediated by the thioredoxin interacting protein detach-
ing from thioredoxin under oxidative stress [171]. Furthermore, ROS-related pyropto-
sis might also be induced by activation of redox-sensitive pathways, including ERK and 
p38 MAPK as well as NFκB [172]. By contrast, the Nrf2/HO-1 signaling pathway was 
found to attenuate the expression of NLRP3 as well as of caspase-1 and IL-1 β in various 
cell types [173, 174]. In line with this, Nrf2/HO-1 pathway inhibition was hypothesized 
to promote pyroptosis in OA [175], while enhanced Nrf2 signaling by the addition of 
the antihistamine loratadine or the flavonoid licochalcone A was described to allevi-
ate NLRP3-related pyroptosis as well as consequent inflammation and OA progression 
in human chondrocytes and in a murine injury-induced OA model, respectively [176]. 
Moreover, pioglitazone-mediated peroxisome proliferator-activated receptor γ (PPAR-γ) 
activation alleviated lipopolysaccharide/ATP-induced pyroptosis and arthritis by pro-
moting both, the Nrf2- and PPAR-γ coactivator-1 /Δψm signaling pathways [177]. The 
latter has been described to support mitochondrial function under oxidative stress and 
increase mitochondrial biogenesis as well as mitophagy [178, 179]. Further evidence of 
the decisive role of ROS in pyroptotic cell death was provided by Lui et al., who observed 
that ubiquitin-specific protease 7 overexpression results in NOX4-dependent ROS pro-
duction and chondrocyte pyroptosis. Ubiquitin-specific protease inhibition, by contrast, 
prevented NLPR3 inflammasome formation, IL-1β and IL-18 production, pyroptosis, 
and monosodium iodoacetate-induced OA in mice [180].

Role of ROS in SIPS

Cellular senescence is described as an irreversible state, characterized by alterations in 
the cell-cycle regulation leading to permanent cell cycle arrest. In general, cellular senes-
cence is not detrimental per se. It plays an important role in embryonic development, 
wound healing, and tumor suppression [181]. However, chronic senescence has been 
described as a pathophysiologic process in age-related and degenerative diseases [182]. 
In contrast to replicative senescence, which is associated with a limitation in cell division 
through telomere shortening (Hayflick limit) [183, 184], stress of a physical or chemi-
cal nature and consequent DNA damage and/or oxidative stress, has been considered 
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to be a major driver of so-called SIPS. Both, replicative senescence and SIPS share simi-
lar characteristics, including changes in cell morphology and enhanced senescence-
associated β-galactosidase (SA-β-Gal) activity [185]. About two decades ago, Price et al. 
were the first who described that human chondrocytes located in close proximity to OA 
lesions were stained positively for SA-β-Gal and had a shortened telomere length [186]. 
Furthermore, it was demonstrated that senescent chondrocytes accumulate in human 
articular cartilage with increasing age or after injury, which was hypothesized to be 
driven by oxidative stress as one of the main triggers [187, 188].

Another hallmark of senescence—and maybe the most detrimental one in regards 
to tissue homeostasis—is the senescence-associated secretory phenotype (SASP). 
Transient senescence and consequent SASP mediator release are thought to promote 
tissue repair and regeneration, whereas an enduring senescence can lead to chronic 
inflammation [189, 190]. Under physiologic conditions, SASP attracts immune cells 
which eliminate damaged and senescent cells. This mechanism can be impaired during 
aging because of immune system dysfunction [191]. Due to the inefficient removal of 
damaged cells in cartilage tissue, recent studies suggested that senescent chondrocytes 
substantially contribute to OA progression most likely due to excessive secretion of 
SASP factors [120, 192]. ROS and mitochondrial dysfunction play an important role 
in chondrocyte production of SASP components, which is mainly driven by the NFκB 
signaling pathway [193, 194]. The SASP secretome of senescent chondrocytes con-
tains proinflammatory cytokines and chemokines (e.g., IL-6, IL-8, and CXCL1) as well 
as proteases (e.g., MMPs and ADAMTS), creating a degenerative microenvironment 
[120]. Moreover, SASP factors contribute to the spreading of senescence [195, 196], 
therefore, leading to an accumulation of dysfunctional, senescent cells. Accordingly, 
intraarticular injection of senescence cells resulted in enhanced pain, impaired mobil-
ity, and OA-associated radiographic and histological alterations of the joint in healthy 
mice [192].

In regards to oxidative stress, increased ROS levels induce directly (via MKK3/6-
p38 pathway) or indirectly (via DNA-damage response and ATM/ATR pathway) the 
transcription of p16 [also known as cyclin-dependent kinase inhibitor 2A (CDKN2A)], 
p53 (encoded by TP53), and p21 (encoded by CDKN1A) [193, 197]. These proteins 
are involved in cell cycle regulation and promote a non-proliferative phenotype upon 
activation. The transcription factors p16 and p21 are both cyclin-dependent kinase 
inhibitors, which bind to CDK4/6 and CDK2, respectively, thus controlling retino-
blastoma protein activity and preventing entry into the S phase of the cell cycle [182]. 
Furthermore, the p53-p21 pathway appears to play a crucial role in cell fate decision 
by inhibiting or inducing apoptosis in a damage-dependent manner. Human diploid 
fibroblasts treated with low, sublethal H2O2 doses, were found to undergo a senescent-
like growth arrest. Higher H2O2 concentrations, in turn, induced apoptosis and led 
to increased p53 levels compared to growth-arrested cells [198]. Induction of DNA 
damage and apoptosis via caspase 3, caspase 8, and caspase 9 by high H2O2 levels was 
also observed in human bronchial epithelium cells [199]. In agreement with this, expo-
sition to low H2O2 or doxorubicin doses represent frequently used models to study 
SIPS in human chondrocytes, while high doses resulted in ROS-mediated apoptosis 
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[200, 201]. In addition to ROS and p53 levels, another cell cycle regulator might play a 
substantial role in cell fate decision. Yosef et al. showed that p21 knockdown leads to 
a decreased cell survival of senescent cells, implying a shift from senescence towards 
apoptosis in the absence of p21 [202]. Overall, it has been proposed that the p53-p21 
pathway is essential in initiating senescence [203], whereas p16 is assumed to maintain 
the senescent phenotype [204, 205]. Numerous studies showed that p21 decreases in 
senescent cells with time, whereas the p16 level remains elevated [206, 207]. Addition-
ally, it was demonstrated that p53-induced senescence could be reversed by p53 inacti-
vation in cells with low p16 activity. However, when p16 was present at high levels, p53 
inactivation was insufficient to restore cell replication [208]. Although p16 expression 
was observed to correlate with several SASP factors in human chondrocytes, neither 
SASP expression nor OA severity was attenuated by somatic p16 inactivation in chon-
drocytes of adult mice [209]. It was concluded that p16 is a biomarker for dysfunc-
tional cells, but the driver of OA is probably the extensive SASP mediators release by 
senescent chondrocytes rather than impaired replication potential. This assumption is 
supported by Coppé et al., who provided evidence that p16 is not required for SASP 
production and suggested the secretory phenotype to be a damage response which 
might occur independently of the cell cycle arrest [210]. Overall, it remains to be clari-
fied whether the loss of replicative function of mature and thus postmitotic chondro-
cytes is relevant in OA progression.

ROS-mediated damage of mtDNA and lipid peroxidation is known to result in mito-
chondrial dysfunction and thus excessive ROS production due to inefficient electron 
transfer. In this way, mitochondrial dysfunction promotes senescence and vice versa 
[211, 212]. One mechanism to restore the function of damaged mitochondria is the 
fusion with a healthy one to replace damaged lipids. However, in senescent cells, the 
mitochondrial dynamics are impaired, frequently leading to elongated, enlarged, and 
hyperfused mitochondria [213, 214]. The large size of mitochondria in senescent cells 
compromises the removal of dysfunctional mitochondria by means of mitophagy. 
Moreover, it has been demonstrated that p53 is not only involved in senescence induc-
tion, but is also able to inhibit mitophagy-mediated mitochondrial degradation through 
interaction with Parkin [215, 216]. Additionally, the expression of PINK1, which is 
involved in mitophagy and mitochondrial fission, appears to be diminished in senescent 
cells [211]. In a murine OA model, oral application of the mitophagy-inducing drug 
Urolithin A was found to prevent cartilage degradation and reduce synovial inflam-
mation as well as the expression of the SASP factors p16 and p21 in senescent human 
chondrocytes [217, 218]. Together, these studies suggest that impaired mitochondrial 
dysfunction and disturbed mitophagy both represent a substantial therapeutic target 
against chondrosenescence.

Furthermore, recent studies demonstrated that Sirt1 and Sirt6 are downregulated 
in senescent chondrocytes. While Sirt1 suppresses the expression of SASP factors, 
Sirt6 presumably promotes DNA repair [219]. Accordingly, increased Sirt1 and Sirt6 
expression attenuates OA progression by diminishing chondrocyte senescence [220–
222]. Together, these reports suggest that an upstream targeting by means of anti-
oxidants or mitophagy-inducing drugs might be promising to prevent ROS-induced 
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premature chondrocyte senescence. However, most pharmacological strategies 
against chondrosenescence focus on the stabilization of the chondrocyte phenotype 
by means of senomorphics or selective elimination of dysfunctional cells by senolytics 
[223]. The latter approach has currently gained considerable attention. Indeed, selec-
tive removal of senescent chondrocytes by senolytic-induced apoptosis attenuated 
post-traumatic OA progression and enhanced cartilage regeneration in mice [188]. 
These data not only underline that senescence could be a promising target for pre-
venting or delaying OA, but also that the survival of damaged and thus dysfunctional 
cells might be more detrimental than regulated cell death.

The involvement of ROS in cellular senescence and the main hallmarks of senescent 
cells are outlined in Fig. 3.

Fig. 3  ROS as a driver of senescence. Enhanced ROS levels result in cellular damage and consequent cell 
cycle arrest mediated via p53, p21, and p16. Moreover, ROS damages mitochondrial DNA (mtDNA) and 
causes lipid peroxidation initiating mitochondrial dysfunction and thus lead to enhanced ROS generation. 
Other senescence features are the expression of senescence-associated β-galactosidase (SA-β-Gal), 
downregulation of Sirt1 and Sirt6, upregulation of p21 and p16, presence of enlarged mitochondria, 
inhibition of mitophagy, and secretion of senescence-associated secretory phenotype (SASP) factors mainly 
driven by the NFκB
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ROS‑mediated cell fate decision in bone remodeling and fracture healing 
under physiologic conditions
During early life, the balance between bone formation by osteoblasts and bone resorp-
tion by osteoclasts is strictly regulated. Bone remodeling is locally mediated by growth 
factors, such as members of the transforming growth factor β superfamily, and cytokines, 
such as IL1, IL6, and TNF, as well as systemically by hormones and vitamins, includ-
ing parathyroid hormone, estrogen, and vitamin D. Osteoclast precursors differentiate 
in response to the monocyte/macrophage colony-stimulating factor and RANKL, which 
are expressed by, for example, osteoblasts and stromal cells. Osteoprotegerin (OPG), 
similar to RANK, the receptor of RANKL, is a receptor of the TNF family and acts as a 
decoy receptor for RANKL, thereby inhibiting osteoclast differentiation and activity. The 
balance of RANKL/OPG is regulated by various osteotropic factors, including estrogen, 
parathyroid hormone, IL1, IL17, and TNF.

In addition to the above-mentioned mediators, ROS play a critical role in the regula-
tion of physiologic bone remodeling and fracture repair, having striking effects on both 
osteoblast and osteoclast lineage activities, including replication of undifferentiated cells, 
cell recruitment, and function of differentiated cells [90, 224–227]. Under healthy condi-
tions, ROS generated by osteoclasts activate and keep bone resorption in balance with 
osteoblast bone formation. Exogenous ROS, mainly H2O2 and superoxide, result in oste-
oclastogenesis and osteoclast activity by initiating RANK signaling in macrophages and, 
in turn, endogenous ROS generation in osteoclasts is stimulated by RANKL to enable 
bone resorption. Endogenous ROS production activates TNF receptor associated fac-
tor 6, NOX1, and the transcription factors NFκB and nuclear factor of activated T-cells 
[226]. This cell type increases the expression of Tartrate-resistant acid phosphatase 5b, a 
multifunctional enzyme, which promotes ROS generation and is significantly elevated in 
OP patients [228].

Bone fracture healing is a complex and dynamic process that involves the coordinated 
activity of various cell types and molecular mechanisms, resulting in an uneventful 
repair of the injured bone under physiologic conditions. The regeneration starts with 
an inflammatory phase, characterized by a high abundance of cells of the innate and 
adaptive immune systems, which remove cell debris and secrete various pro- and anti-
inflammatory cytokines and mediators [229]. These factors recruit mesenchymal and 
vascular progenitor cells to the injury site, initiating the repair phase. This phase, which 
lasts for several weeks following the fracture, is characterized by the formation of a soft 
callus, which consists of fibrous tissue, cartilage, and woven bone. Mesenchymal stem 
cells (MSCs) differentiate into chondrocytes, which produce cartilage, or osteoblasts, 
which produce bone [230]. Additionally, blood vessels grow into the callus, providing 
oxygen and nutrients to support tissue growth. During endochondral ossification in the 
fracture callus, chondrocytes can directly undergo transdifferentiation to osteoblasts, 
thereby contributing to the overall bone formation. During the remodeling phase, which 
can last for several months or even years following the fracture, the callus is gradually 
replaced by mature bone tissue. Osteoblasts and osteoclasts collaborate to resorb the 
newly formed bone tissue and replace it with more structurally sound bone, respectively. 
Many factors that can affect the rate and quality of fracture healing include age, nutri-
tion, and the presence of comorbidities such as diabetes or OP [231].
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Oxidative stress plays a crucial, but multifaceted role during bone regeneration 
[232]. During the early stages of fracture healing, oxidative stress is involved in the 
inflammatory response. ROS are mainly generated by immunomodulatory cells [233] 
and are thought to contribute to the recruitment of further immune cells to the 
fracture site and to the induction of neovascularization [234]. It is known that low 
ROS levels stimulate angiogenesis and, therefore, blood flow in a vascular endothe-
lial growth factor-dependent manner [234], which indicates an important role of 
endogenous ROS production in the early phase of fracture healing. During chondro-
cyte transdifferentiation to osteoblasts in the fracture callus, ROS are also impor-
tant because they stimulate hypertrophy in chondrocytes and induce mineralization 
via the ERK and p38 MAPK pathways [122]. Therefore, ROS are crucial for cell fate 
decision during endochondral ossification. Additionally, ROS can activate signaling 
pathways that promote the proliferation and differentiation of bone-forming cells 
[235]. Oxidative stress is critically involved in mitochondrial fragmentation, which 
is associated with osteoblast differentiation via the ERK1/2 pathway. By contrast, 
excessive ROS production during this stage can also contribute to tissue damage and 
thus impair fracture healing. In particular, during the later stages of fracture healing, 
oxidative stress can have detrimental effects. Excessive ROS production is known to 
disturb bone-forming cell function, influence cell fate decision in mesenchymal stem 
cells (MSCs) towards the adipogenic lineage, and impair the production of extracellu-
lar matrix proteins [236], as described in more detail below. Moreover, excessive ROS 
production increases osteoclast differentiation from macrophages by RANK signal-
ing as described above, supporting enhanced bone resorption during fracture callus 
development [237]. Additionally, excessive oxidative stress can also impair angiogen-
esis, which is critical for the delivery of nutrients and oxygen to the fracture site [232, 
238]. This can lead to delayed healing and an increased risk of non-union.

One aspect of the fracture healing process that has received increasing attention in 
recent years is the role of cellular senescence. As described above, oxidative stress signal-
ing is critically involved in stress-induced premature cell senescence. In the context of 
fracture healing, senescence per se has been shown to play a role in both the early and 
late stages of this process [239, 240]. During the inflammatory phase of fracture healing, 
senescent cells are thought to contribute to the clearance of damaged tissue by cytokine 
secretion and promote the differentiation of mesenchymal stem cells into osteoblasts 
[241]. However, senescence can also have adverse effects on fracture healing, particu-
larly when senescent cells accumulate in the later fracture callus [240, 242]. Saul et al. 
demonstrated that the highest accumulation of senescence marker during fracture heal-
ing occurs in the mesenchymal cell population. These cells produce extracellular matrix 
proteins that are less functional than those produced by non-senescent cells, which 
may reduce the quality of the new bone tissue. Furthermore, senescence can impair 
the ability of cells to respond to mechanical stimuli by inducing changes in the cell’s 
cytoskeleton [243]. Because mechanotransduction is critical for efficient fracture heal-
ing, ROS-induced senescence might hamper the regeneration process. The expression 
of SASP proteins like IL-6 or TNF by senescent cells might also impair fracture healing. 
Indeed, treating mice with senolytics during fracture healing reduced the expression of 
SASP markers and significantly accelerated bone regeneration [240, 244].
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ROS‑mediated cell fate decision in OP
OP is globally the most common metabolic- and inflammation-associated bone disorder 
[245, 246]. It is characterized by reduced bone mass and a degenerated bone microarchi-
tecture. Compromised bone strength predisposes OP patients to a higher susceptibility 
to fracture. The bones become weak and brittle, thus, patients suffer from fragility frac-
tures, which may arise even from a low-impact fall. Such OP fragility fractures predomi-
nantly occur at the spine and the hip, however, other anatomical structures, including 
the proximal humerus and the distal forearm, can also be affected [247]. The average life-
time risk (%) of a 50-year-old woman to suffer a major OP fracture has been calculated 
at approximately 50% and in men at 22% [248, 249]. There are two types of OP, which are 
generally distinguished: Primary OP that can generally affect individuals of both sexes 
and all ages, but frequently appears after menopause in women through estrogen decline 
(type I OP) or is associated with age in women and men (type II OP, also termed as 
senile OP). Secondary OP results from prolonged therapeutic drug treatments, medical 
disorders, or a decrease in physical activity [245, 246].

Overall, oxidative stress is known to play a substantial role in the pathogenesis of OP. 
In the case of OP type I, for example, estrogen deficiency was demonstrated to inhibit 
mitochondrial β-oxidation of fatty acids, thus elevating ROS generation in mitochondria 
and peroxisomes [250]. In general, ROS accumulation has been associated with osteo-
blast and osteocyte apoptosis, as well as an impairment of both, mineralization and oste-
ogenesis in bone [90, 251, 252]. Moreover, redox imbalance mediated by excessive ROS 
production causes elevated osteoclast differentiation from macrophages, supporting 
enhanced bone loss and thus OP development [237]. In the following paragraphs we will 
focus on two major pathophysiologic aspects in OP bone; (i) ROS-mediated disturbance 
of immune and bone cell fate regulation, and (ii) mitochondrial dysfunction resulting 
from compromised mitophagy.

Role of ROS in immune cell regulation

The term “immunoporosis” emphasizes the significant role of both, innate immune cells 
and cells of the adaptive immune system in the pathogenesis of OP [253]. Cells from 
the innate immune system share the developmental niche with bone cells, indicat-
ing the close relationship between the immune system and the skeletal tissue. Myeloid 
lineage cells, such as macrophages, monocytes, dendritic cells, neutrophils, and mast 
cells as well as cells of the lymphoid lineage, such as natural killer and innate lymphoid-
like cells, are involved in OP development by secreting various pro-inflammatory fac-
tors [253–255]. In addition to cytokines, including IL-6, IL-1β, TNF-α, and interferon 
(IFN) γ, immune cells produce high levels of ROS, thus activating osteoclastogenic bone 
resorption. Overall, immune cell-derived ROS and pro-inflammatory cytokines interact 
directly or indirectly with bone cells and contribute to an inflammatory state, driving the 
pathogenesis of OP.

Macrophages are the predominant cells in mediating the inflammatory response 
upon traumatic injuries and aging [226, 256]. The bone microenvironment can influ-
ence the metabolic state and the interaction of osteoclasts with macrophages. Depend-
ing on the local conditions, bone marrow macrophages can be polarized into M1 
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(pro-inflammatory) or M2 (anti-inflammatory) macrophages. Inflammatory stimuli, 
including ROS generated from damaged or necrotic tissue, cause a shift in macrophage 
polarization from the M2 to the M1 phenotype, the latter being associated with an 
elevation in cytokines and thus further immune cell recruitment. Moreover, M1 mac-
rophages themselves generate high levels of ROS that reinforce osteoclastogenesis and 
bone resorption [226]. Besides macrophages, mast cells can be found in various connec-
tive tissues, including bone tissue. Under inflammatory conditions, mast cells become 
activated by ROS and are able to promote osteoclastogenesis by producing pro-inflam-
matory mediators, such as histamine, enzymes, and various cytokines released from 
their secretory lysosomes, also called granules [257, 258]. As mentioned above, age-
related inflammation and oxidative stress promote cellular senescence. The SASP of 
senescent cells augments both, myelopoiesis and immune cell recruitment, including 
myeloid-derived suppressor cells, regulatory monocytes, and macrophages (regulatory 
macrophages/inactivated M2c macrophages) into the aging tissue. This inflammatory 
condition mediated by senescent cells leads to a compensatory immunosuppression, 
which restrains the low-grade inflammation in the aged tissue [259, 260]. Accordingly, 
immunosuppression hampers the elimination of senescent cells, which results in a nega-
tive feedback-loop on immunosuppressive cells, enhancing their release of inflamma-
tory cytokines and ROS, thereby modulating other immune cells, inhibiting the immune 
response, and impairing tissue homeostasis [259, 260].

Accompanying the low-grade inflammation in aging tissues, including bone, the 
function of the immune system decreases continuously—a ROS-driven process that 
is termed immunosenescence. One hallmark of immunosenescence in aging is the 
decrease of cells of the adaptive immune system. Lymphocytes are the representatives 
of the adaptive immune system, consisting predominantly of T and B lymphocytes. A 
decline in naïve CD4+ and CD8+ T-cells, and simultaneous induction of regulatory T 
cells by myeloid-derived suppressor cells has been demonstrated in immunosenescence 
[260, 261]. Considering the high expression of Nrf2 and thus ARE-regulated antioxidant 
enzymes in myeloid-derived suppressor cells, it is unsurprising that this cell type exhibit 
an enhanced resistance to ROS. Oxidative stress is thought to promote T cell activation 
and their differentiation in so-called Th17 cells. These inflammatory T cells stimulate 
osteoclastogenesis in a direct or an indirect manner and also inhibit osteoblastogenesis 
by producing cytokines, such as IL-6, IL-17, and TNFα [262]. Recent studies suggested 
that B cells are involved in the regulation of the RANKL/OPG axis, and RANKL genera-
tion by B cells promotes the bone mass loss caused by estrogen deficiency [263].

In postmenopausal OP (OP type I), estrogen deficiency is strongly associated with 
immunosenescence that results in oxidative stress and bone loss in women [255, 262]. 
Notably, it has been demonstrated that the decline in estrogen levels and consequent 
immunosenescence is characterized by reduced IFNγ, decreased T lymphocyte pro-
duction and proliferation, and a reduction of antioxidant enzymes, including SODs 
and CAT activities in peripheral blood mononuclear cells [264]. Regulatory B cells, 
a subset of B cells, are, under physiologic conditions, able to suppress the action of 
cytokines and osteoclast stimulators, such as IL-1 and TNFα, as well as T cells, like 
Th17 cells that are involved in inflammatory bone loss. Indeed, the impairment of 
regulatory B cells together with the inability to release IL-10 might be a contributory 



Page 22 of 41Riegger et al. Cellular & Molecular Biology Letters           (2023) 28:76 

factor towards the establishment of pro-inflammatory conditions leading to bone loss 
in postmenopausal OP [265]. Taken together, immunosenescence is not only a result 
of oxidative stress, but also a potential cause of excessive ROS generation in OP bone.

Role of ROS in bone cell fate regulation

Bone marrow-derived MSCs that give rise to the osteoblast lineage, together with 
osteocytes, are long-lived cells in the skeletal tissue, and, therefore, more predis-
posed to molecular changes during aging [300]. Accordingly, impaired MSC activity 
and function, including compromised osteogenic differentiation and commitment, 
appear to be responsible for the reduced number of osteoblasts in aging bone. There-
fore, enhanced ROS levels caused by estrogen deficiency can influence the cell fate of 
both osteoprogenitor cells and mature osteoblasts by altering their biosynthetic activ-
ity and inducing senescence or apoptosis in OP [251]. Moreover, studies have shown 
that ROS promote the commitment of mesenchymal progenitor cells to the adipocyte 
lineage at the expense of osteogenic differentiation. Indeed, ROS-mediated lipid oxi-
dation causes PPARγ interaction with β-catenin, inducing degradation of the latter, 
and thereby impairing Wnt/β-catenin signaling-related bone formation. In addition, 
the decrease in wnt/β-catenin signaling is suggested to be responsible for the increase 
of bone marrow adipose tissue and bone loss in skeletal aging [266].

Osteocytes are terminally differentiated osteoblasts and are embedded in lacu-
nae of the mineralized bone matrix. They are the most abundant cells (90–95% of all 
bone cells) within bone tissue. Osteocytes are connected by long cell projections with 
osteoblasts and osteoclasts on the mineralized surfaces of bone and sense the signals, 
including hormones and mechanical stimuli, to initiate bone remodeling. Increased 
ROS due to estrogen deficiency cause osteocyte apoptosis, which contributes to oste-
oclastogenesis [267, 268]. Indeed, these apoptotic osteocytes are able to trigger bone 
resorption through osteoclastogenic RANKL and additionally inhibit Wnt/β-catenin 
signaling-induced bone formation by release of Dickkopf-related protein 1 and scle-
rostin release. Furthermore, osteocytes have also been demonstrated to regulate cel-
lular senescence in bone and bone marrow cells in mice [269]. Therefore, oxidative 
stress and consequent osteocyte ablation is involved in altered mesenchymal lineage 
commitment, causing impairment of osteogenesis and induction of osteoclastogen-
esis. Moreover, osteocyte deficiency in mice results in mobilization of hematopoietic 
lineage cells and differentiation towards the myeloid lineage, with increased common 
myeloid precursor cells, neutrophils, and monocytes, all of which can participate 
in ROS generation in the aging bone. Besides excessive ROS production by diverse 
immune cells as well as old and damaged bone cells, it has been shown for both, oste-
ocytes and osteoblasts that a deletion of mitochondrial antioxidative SOD2 activity 
leads to age-related OP, for example, via dysregulated RANKL expression [9, 270]. 
Additionally, the decline in estrogen, which is a well-known antioxidant, reducing, for 
example, peroxide production by mitochondria, can lead to a diminished antioxidant 
status and consequently cause decreased autophagy and increased apoptosis in osteo-
cytes [227].

The influence of ROS in cell fate regulation is schematically outlined in Fig. 4.
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Role of mitochondrial dysfunction and mitophagy in OP

Unbalanced ROS generation due to mitochondrial dysfunction has been demonstrated 
to be associated with OP [308]. Because mitochondria are the main source of aerobic 
energy production in the cell, they are involved in essential cell processes, including cell 
metabolism and differentiation [271]. However, inflammatory and metabolic diseases, 
such as OP, are associated with aberrant mitochondrial function and thus enhanced 
ROS production [272]. Several studies have demonstrated the consequences of oxidative 
stress on mitochondrial function, including impaired ATP synthesis, decreased mito-
chondrial membrane potential, and altered calcium homeostasis [273].

Mitochondrial dynamics accompany MSC fate commitment. Under physiologic con-
ditions, mitochondria display a fragmented phenotype generated by mitochondrial 
shaping proteins, for example, fission and fusion proteins, and only a few deep invagi-
nations in the cristae are localized around the nucleus of MSCs. By contrast, in mature 
osteoblasts and adipocytes, mitochondria form an interconnected, elongated network 
and exhibit higher cristae density. During MSC differentiation, mitochondrial biogen-
esis is activated and mitochondria are reorganized resulting in its distribution through-
out the cytoplasm. Moreover, osteoblastogenesis and adipogenesis are associated with 
an increase in mitochondrial membrane potential, respiratory enzyme complexes, and 
oxygen consumption. Consequently, intracellular ATP generation in differentiating cells 
is primarily based upon oxidative phosphorylation and not on glycolysis, resulting in 

Fig. 4  Role of ROS in bone cell fate regulation. ROS (reactive oxygen species) generation due to 
aging and estrogen deficiency is accompanied by increased cellular senescence characterized by the 
senescence-associated secretory phenotype (SASP) in the bone tissue. The SASP facilitates the accumulation 
of adipocytes in the bone marrow at the expense of osteoblast formation by inducing peroxisome 
proliferator activated receptor gamma (Pparγ) in mesenchymal progenitor cells (MSCs). Additionally, the SASP 
promotes myeloid progenitor development from the hematopoietic stem cell (HSC) lineage. Consequently, 
an elevated monocyte level is associated with an increase of osteoclast formation. Apoptotic osteocytes 
are involved in increased bone resorption by producing an unbalanced RANKL level. Moreover, apoptotic 
osteocytes induce sclerostin and Dickkopf-related protein (Dkk) 1 production, which inhibits Wnt/b-catenin 
mediated osteogenesis
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greater ATP but also ROS generation [274]. It has been demonstrated that MSCs are 
able to use mitochondrial transfer to rescue aerobic respiration and thereby modulate 
their cell metabolism. In response to ROS and DAMPs, including damaged mitochon-
dria and mitochondrial products, such as mtDNA, MSCs use various transfer mecha-
nisms to transfer intact mitochondria to injured cells [275]. Moreover, it was observed 
that macrophages are able to promote MSC osteogenic differentiation by mitochondrial 
transfer, implying that MSCs act as donor as well as recipient cells. However, under OP 
conditions, pro-inflammatory M1 macrophages transfer oxidatively damaged mitochon-
dria to MSCs [276]. These damaged mitochondria affect intermediates of the tricarbox-
ylic acid (TCA) cycle, including succinate, in the recipient MSCs. In agreement with this, 
succinate levels have been shown to be elevated in metabolic and inflammation-related 
diseases. This abnormal succinate accumulation in MSCs may be caused by decreased 
activity of oxidases, such as succinate dehydrogenase. Moreover, metabolic intermedi-
ates of the TCA cycle, such as succinate, have been demonstrated to be key regulators 
of various biological processes and able to stimulate osteoclastogenesis and inflamma-
tory gene expression [276, 277]. For example, extracellular succinate is able to stimulate 
osteoclastogenesis by binding to its receptor on osteoclastogenic lineage cells. Addition-
ally, age-related increased ROS result in osteoblast dysfunction by affecting MSC mito-
chondrial dynamics. Therefore, it has been shown that ROS overgeneration, for example, 
is able to promote mitochondrial fission and fragmentation and is associated with the 
dysregulation of mitochondrial dynamics proteins, including mitochondrial dynamin-
related protein 1 and mitofusin 2 [278]. Consequently, oxidative stress can negatively 
affect mitochondrial function, leading to an impaired energy supply and resulting in 
osteoblast dysfunction.

Senile OP (type II OP) is commonly associated with senescence and decreased 
autophagic activity [279]. Autophagy is a highly conserved cellular process, whose main 
function is the lysosomal degradation and recycling of damaged intracellular compo-
nents, such as organelles and proteins [280]. It greatly participates in cell metabolism 
under physiologic and pathologic conditions, thus contributing to bone cell homeo-
stasis. Various studies demonstrated that autophagy is also involved in the regulation 
of osteoblast mineralization and osteoclast differentiation. Conditional knockdown of 
autophagy-related genes, such as autophagy-related gene (ATG) 7 and ATG5 in osteo-
blasts, causes impaired bone mineralization and increased osteoclastogenesis, respec-
tively, leading to bone mass loss [280]. Besides “bulk” or “non-selective” autophagy, 
which indiscriminately secludes and degrades intracellular products, “selective” 
autophagy degrades specific targets and organelles, such as RNA, protein aggregates, 
or mitochondria [281]. Mitophagy, therefore, is a process by which damaged or dys-
functional mitochondria are selectively removed through autophagy, which represents 
a decisive mechanism in maintaining mitochondrial quality and cellular homeostasis. 
Malfunctioning of the respiratory chain complex proteins results in energy deficiency 
and ROS accumulation. Moreover, the release of mtDNA and other DAMPs from dam-
aged mitochondria is thought to trigger inflammation and ROS generation, contributing 
to the pathogenesis of OP [280, 281]. Studies have shown that ROS-induced mitochon-
drial damage activates mitophagy in osteoblasts in order to remove damaged mitochon-
dria and maintain mitochondrial function and cellular homeostasis. In this way, the cell 
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can prevent excessive ROS production by dysfunctional mitochondria. However, ROS-
generated AOPPs can cause more severe damage, thus inducing mitochondrial ROS in 
osteoblastic cells, exacerbating oxidative stress, and promoting apoptosis [282].

Several signaling pathways involved in the regulation of mitophagy have been iden-
tified, with the Pink1/Parkin pathway being the best studied regulatory pathway [282]. 
Pink1 is a serine/threonine kinase possessing an N-terminal mitochondrial target 
sequence for localization at the mitochondrial surface, specifically at the OMM. Under 
physiologic conditions, Pink1 expression is increased during osteoblast differentiation 
to maintain mitochondrial homeostasis. Mitochondrial damage, initiated by increased 
ROS in aging bone or due to estrogen deficiency, enhances the presence of Pink on the 
mitochondrial surface in MSCs (Fig. 5). Therefore, the activity of Pink serves as a sensor 
of mitochondrial damage. The accumulated Pink1 subsequently recruits and activates 
the ubiquitin E3 ligase, Parkin, to amplify mitophagy signaling. Parkin ubiquitinates 
OMM proteins, such as voltage-dependent anion channel 1. These ubiquitinated OMM 
proteins bind to mitophagosomes either by direct binding to microtubule-associated 
protein 1A/1B-light chain 3 (LC3) II embedded in the membrane of autophagosomes, 
or indirectly through p62/Sqstm1. The latter contains an LC3-interacting domain, which 
enables binding to LC3. Binding of the ubiquitinated OMM proteins to the autophagy 
receptors p62/Sqstm1 and LC3 is necessary to initiate mitophagy (Fig. 5). In aging bone, 
as mentioned above, MSCs lose their differentiation potential towards the osteoblast lin-
eage and, instead, differentiate into adipocytes, resulting in bone loss and fat accumula-
tion in the bone marrow. Using an optineurin knockout mouse model,, the mitophagy 
receptor optineurin was previously shown to play a critical role in the cell fate decision 
of MSCs and the bone-fat balance by regulating fatty acid binding protein 3 degradation 

Fig. 5  Role of ROS in regulating mitophagy in OP. Age and estrogen deficiency cause enhanced reactive 
oxygen species (ROS) generation in MSCs. ROS lead to mitochondrial dysfunction accompanied by a reduced 
mitochondrial membrane potential (ΔΨm). Subsequent PINK1 accumulation at the outer surface of the 
mitochondrial membrane initiates mitophagy by recruitment of Parkin that promotes ubiquitination (green 
dots) of OMM proteins (OMMP). Ubiquitinated proteins bind directly or indirectly to autophagy receptor LC3 
via p62 on mitophagosomes. Aberrant mitophagy may result in increased apoptosis, promoting marrow 
adipogenesis as well as suppressing osteogenesis, all consequently contributing to OP development
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mediated by selective autophagy [283]. Furthermore, UNC51-like autophagy activating 
kinase 1 (ULK1), another adaptor protein associated with mitophagy, can interact indi-
rectly with LC3 to induce mitophagy. Ulk1 gene knockout demonstrated the significant 
relevance of unimpaired mitophagy in maintaining bone homeostasis in a bone metas-
tasis mouse model, because Ulk1 deletion caused an increased expression of osteoclast 
function-related genes, including carbonic anhydrase 2 and cathepsin k, and led to bone 
loss [284].

Sirt3-mediated mitophagy in MSCs has a protective effect against OP development. 
Therefore, it has been demonstrated that, for example, increased mitochondrial Sirt3 
expression ameliorated MSC senescence caused by advanced glycation end products by 
promoting mitophagy in senile OP [32]. Mitophagy in osteoclasts also plays a crucial 
role in maintaining bone homeostasis. Therefore, ROS released from damaged mito-
chondria and blockade of mitophagy in macrophages has been shown to cause NLRP3 
inflammasome activation, which generates inflammatory factors that stimulate osteo-
clastogenesis [285].

It is clear that manipulation of proteins that regulate and restore mitophagy may rep-
resent a therapeutic approach to prevent or ameliorate OP. For example, Pink1/Par-
kin-mediated mitophagy activated by rapamycin can significantly decrease osteoblast 
apoptosis by eliminating damaged mitochondria in a model of oxidative stress-induced 
osteoblastic cell dysfunction [286]. Besides rapamycin, metformin has been shown to 
diminish ROS generation in MSCs and to enhance osteogenesis and bone formation in 
mice by promoting autophagy [287]. Moreover, mitophagy upregulation is able to dimin-
ish the plasma AOPP concentration in mice, thus inhibiting osteoblast apoptosis and 
bone loss induced by the accumulation of these harmful oxidative stress products [282].

Oxidative stress and mitochondrial dysfunction as therapeutic targets in OA 
and OP
As described in the sections above, oxidative stress and mitochondrial dysfunction 
can adversely affect cellular behavior and fate, thus contributing to OA and OP patho-
geneses. Therefore, both, cellular antioxidant defense mechanisms and mitochondria 
represent promising and longstanding therapeutic targets to circumvent harmful con-
sequences of ROS on cartilage and bone tissue. In addition to a myriad of natural anti-
oxidants, including alkaloids, flavonoids, phenols, and terpenoids, which have been 
extensively discussed in previous reviews [227, 288], new small molecules and peptides 
possessing direct or indirect antioxidative features are of considerable interest. SS-31 
(elamipretide), for example, is a unique small peptide, which stabilizes the inner mito-
chondrial membrane by specific binding to the phospholipid cardiolipin. In this way, 
SS-31 prevents ROS-mediated cardiolipin peroxidation, maintains mitochondria cristae 
structure, and supports efficient ATP production, while preventing apoptosis by promo-
tion of the cytochrome c-cardiolipin interaction [142, 143]. MDL-800 and SRT1720, by 
contrast, are selective sirtuin activators for SIRT6 and SIRT1, respectively. Binding of 
MDL-800 or SRT1720 to the allosteric site of these deacetylases results in an increased 
affinity to their substrates, thus enhancing their enzyme activity [146, 221]. Interestingly, 
resveratrol was also demonstrated to act as a sirtuin activator by inducing the AMPK 
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pathway and subsequently elevating intracellular levels of the enzyme’s cofactor NAD+ 
[289].

There are various therapeutic strategies and antioxidant agents to pharmacologically 
address oxidative stress and mitochondrial dysfunction in OA and OP. Table 1 summa-
rizes therapeutic agents of different classes, which have mostly been described in the 
sections above, and provides a short overview of the respective therapeutic targets and 
effects.

Table 1  Overview of different therapeutic agents, the individual therapeutic targets, and effects

Therapeutic agents Class Therapeutic target Therapeutic effects References

SS-31 (elamipretide, 
MTP-131)

Small peptide, mitopro‑
tectin

Mitochondria, cardiolipin Stabilization of MIM via 
binding to cardiolipin; 
cell protection (prevents 
cytochrome c release);
maintenance of 
mitochondrial function 
(mitoprotection)

[142, 143]

Omaveloxolone Nrf2 activator Nrf2/ARE-pathway Upregulation of anti‑
oxidant target genes, 
e.g., HO-1 and SOD2; 
cell protection (anti-
apoptotic response); 
maintenance of tissue 
homeostasis

[144, 290]

Theaflavin-3,3′-digallate Natural phenol (black 
tea), antioxidant

Nrf2/ARE-pathway Upregulation of antioxi‑
dant targets, e.g., GPX4 
and HO-1; prevention of 
ferroptosis (upregulation 
of FTH-1, SLC7A11, and 
GPX4);
maintenance of tissue 
homeostasis

[155]

Deferoxamine Iron chelator Nrf2/ARE-pathway,
HIF-1a

Upregulation of antioxi‑
dant targets, e.g., HO-1, 
and NQO-1;
prevention of fer‑
roptosis (reduction of 
ACSL4, LOX15, P53, and 
LPCAT3);
stabilization of HIF-1a,
increase of osteogenic 
differentiation/ improve‑
ment of fracture healing

[154, 291]

Licochalcone A Natural phenol (Glycyr‑
rhiza roots),
antioxidant

Nrf2/ARE-pathway;
NFκB pathway

Inhibition of NFκB 
pathway; preven‑
tion of LPS-induced 
pyroptosis (reduction 
of NLRP3, GSDMD, 
caspase‐1, IL‐1β, and 
IL‐18); upregulation of 
antioxidant targets, e.g., 
Nrf2 and HO-1,

[176]

Pioglitazone Antidiabetic drug (thia‑
zolidinedione)

Nrf2/ARE-pathway, mito‑
chondria (via PGC1-α/ 
Δψm pathway)

Activation of Nrf2- and 
PGC1-α/Δψm pathway,
Prevention of LPS/
ATP-induced pyroptosis 
(downregulation of 
NLRP3, caspase-1, IL‐1β, 
IL‐18, and GSDMD-N); 
increase of mitochon‑
drial function and 
biogenesis (lower ROS 
production)

[177]
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Conclusions
Mitochondrial dysfunction and oxidative stress do indeed play a decisive role in cell fate 
decision. Whether ROS has beneficial or harmful consequences depends on several fac-
tors. Under physiologic conditions, ROS are essential regulators of developmental and 
regenerative processes, such as stem cell differentiation, and constitute an inherent com-
ponent of cellular communication. However, excessive ROS accumulation contributes to 
a pathophysiologic environment and can have an impairing effect on tissue repair and 

Table 1  (continued)

Therapeutic agents Class Therapeutic target Therapeutic effects References

SRT1720 SIRT1 activator SIRT1 Activation of autophagy; 
maintenance of tissue 
homeostasis

[146, 292]

NAC Antioxidant ROS (as direct scavenger 
and precursor of glu‑
tathione)

Cell protection (prevents 
apoptosis and necrop‑
tosis); downregulation 
of redox-sensitive signal‑
ing; maintenance of 
tissue homeostasis

[142, 146]

Simvastatin Statin, Senomorphic HMG-CoA Antioxidative properties 
(upregulation of SOD2, 
suppression of NOX2, 
NOX4);
increase of osteogenesis; 
maintenance of tissue 
homeostasis

[293, 294]

Resveratrol Natural phenolic com‑
pound, Senomorphic

SIRT1
Mitochondria 
(mitophagy) via mTOR/
AMPK pathway

Induction of antioxidant 
defense by HO-1 and 
Nrf2; reduction of iNOS 
and NO, induction of 
autophagy, suppres‑
sion of NFkB signaling 
pathways; maintenance 
of tissue homeostasis

[220, 289]

Urolithin A Natural postbiotic 
compound

Mitochondria 
(mitophagy)
Nrf2-pathway

Improvement of 
mitochondrial function 
(enhances mitophagy); 
induction of Nrf2 and 
thus antioxidative pro‑
teins; maintenance of 
tissue homeostasis

[217]

MDL-800 Allosteric activator of 
SIRT6

SIRT6 Attenuation of ROS 
activity and downregu‑
lation of senescence 
markers; maintenance of 
tissue homeostasis

[221]

Metformin Antidiabetic drug 
(biguanide), AMPK 
agonist

Mitochondria/ 
mitophagy (via mTOR/
AMPK pathway)

Reduction of ROS pro‑
duction and senescence; 
Increase of osteogen‑
esis and autophagy; 
maintenance of tissue 
homeostasis

[23, 295]

Rapamycin (Sirolimus) Makrolide (macrocyclic 
lacton)

Mitochondria/ 
mitophagy (via mTOR/
AMPK pathway)

Increase of PINK1/
Parkin-dependent 
mitophagy; inhibition of 
apoptosis; maintenance 
of tissue homeostasis

[282]

ACSL4 acyl-CoA synthetase long-chain family member 4, AMPK AMP-activated protein kinase, FH-1 ferritin heavy 
chain 1, HMG-CoA hydroxymethylglutaryl-coenzyme A, iNOS inducible NO synthase, LOX15 15-lipoxygenase, LPCAT3 
lysophosphatidylcholine acyltransferase 3, MIM mitochondrial inner membrane, NQO-1 NAD(P)H dehydrogenase (quinone 
1), PGC-1 PPAR-γ coactivator-1, SLC7A11 light chain subunit of the cystine/glutamate anticarrier
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homeostasis. The same applies for ROS-induced cell death and senescence, which firstly 
may appear to represent detrimental processes, but can also contribute to tissue regen-
eration and health.

Overall, the consequences of oxidative stress strongly depend on the cellular antioxi-
dant defense status, which is closely associated with age and life style. While a healthy 
cell can readily cope with enhanced ROS levels, a cell exposed to several stress factors, 
comprising pro-inflammatory mediators and DAMPs, might be unable to circumvent 
irreversible macromolecular damage. This also applies in tissues in which transiently 
occurring senescent cells are normally eliminated by phagocytotic immune cells, while a 
defective clearance due to aging or general alterations in immune cell response results in 
chronic senescence and subsequent degeneration.

Taken together, mitochondrial dysfunction and oxidative stress represent a major tar-
get in age-related and degenerative diseases as we here illustrated with the example of 
OA and OP. By increasing the cellular antioxidative defense system or reducing mito-
chondrial ROS production, harmful consequences of excessive ROS levels can be pre-
vented, allowing the maintenance of physiologic processes and regeneration to proceed.
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