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Abstract

Background: The Lycophyta species are the extant taxa most similar to early vascular plants that were once abundant on Earth. How-
ever, their distribution has greatly diminished. So far, the absence of chromosome-level assembled lycophyte genomes has hindered
our understanding of evolution and environmental adaption of lycophytes.

Findings: We present the reference genome of the tetraploid aquatic quillwort, Isoetes sinensis, a lycophyte. This genome represents
the first chromosome-level assembled genome of a tetraploid seed-free plant. Comparison of genomes between I. sinensis and Isoetes-
taiwanensis revealed conserved and different genomic features between diploid and polyploid lycophytes. Comparison of the . sinensis
genome with those of other species representing the evolutionary lineages of green plants revealed the inherited genetic tools for
transcriptional regulation and most phytohormones in I. sinensis. The presence and absence of key genes related to development and
stress responses provide insights into environmental adaption of lycophytes.

Conclusions: The high-quality reference genome and genomic analysis presented in this study are crucial for future genetic and

environmental studies of not only I. sinensis but also other lycophytes.
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Introduction

The vascular plants that currently dominate the land can be cat-
egorized into 2 major phyla: Euphyllophyta and Lycophyta. Eu-
phyllophyta includes seed plants and ferns, while Lycophyta com-
prises spore-bearing species that exhibit the greatest similarity to
the early vascular plants found in the fossil record. Lycophytes
have the longest evolutionary history among all groups of vascu-
lar plants and have had major impacts on biodiversity, soil for-
mation [1], and CO, sequestration on our planet [2]. Modern lyco-
phytes have a widespread distribution, ranging from the epiphytic
habitats (e.g., Lycopodium phlegmaria [3]) to the aquatic habits (e.g.,
Phylloglossum drummondii). Some members of the Lycophyta can
survive in a variety of extreme environments, such as deserts (e.g.,
Selaginella lepidophylla [4]), humid tropics (e.g., Selaginella kraus-
siana), and even arctic and alpine regions [3]. However, the dis-
tribution area of lycophytes has been greatly reduced when com-
pared to seed plants. Some lycophytes, including several species
in the lycopod genus Isoetes, are endangered [5, 6]. The genetic ba-

sis for environmental adaptability of lycophytes remains largely
unknown.

Lycophytes included diploid and polyploid species in many lin-
eages. So far, 4 genomes of diploid lycophytes, including Selaginella
moellendorffii [7], Selaginella tamariscina [8], Lycopodium clavatum [9],
and Isoetes taiwanensis [10], are available. However, they are scaf-
fold assemblies, not chromosome-level assemblies. To date, the
genomes of polyploid lycophytes have not yet been reported.
The perennial aquatic lycophyte, Isoetes sinensis (NCBI:txid283158)
(Fig. 1A), is a tetraploid (2n = 4x = 44) quillwort and belongs to
the family Isoetaceae that diversified 45 to 60 million years ago
[11]. Among extant representatives of the earliest differentiated
vascular plants [12, 13], I. sinensis was once widely distributed
but has now completely disappeared from most of their habi-
tats except 2 restricted sites in China [14]. Like other Isoetes, I.
sinensis possesses a Crassulacean acid metabolism (CAM) system
that is crucial for the plant adaptation to a low CO, environment
underwater [15].
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Figure 1: I. sinensis morphology and genome assembly and annotation. (A) Morphological diagram of I. sinensis. The main body of the plantis 15 to

30 cm high, consisting of a rhizomatous and trilobed corm, with a tuft of roots at the base and long imbricate leaves at the top. The sporangia are
basal and contain megaspores and/or microspores. The tissues analyzed using RNA sequencing are indicated by arrows. (B) Diagram depicts workflow
for assembly of the L. sinensis genome from PacBio HiFi long reads, Illumina short reads, and Hi-C data. (C) Circos plot represents the L. sinensis genome,
including (a) 22 assembled pseudochromosomes, (b) repeat content, (c) gene density, (d) pseudogene density, and (e) ncRNAs including IncRNAs,
miRNAs, rRNAs, snoRNAs, snRNAs, and tRNAs. Blocks of synteny of at least 5 gene pairs between the genomes are connected by linked lines at the
center of the Circos plot. Different colors represent different pseudochromosomes or syntenic blocks. A 500-kb window size was selected to slide on
the genome, and the maximum repeat content and ncRNA content on each window were 1,696 and 1,146 respectively.

Here, we report a reference genome sequence of . sinensis as-
sembled into 22 pseudochromosomes. Our comparative analyses
of its genome with I. taiwanensis and those of green algae and
land plants allow us to better understand the evolution of lyco-
phytes and the genetic basis of the environmental adaptability of
lycophytes.

Results and Discussion
Assembly of a high-quality Isoetes sinensis
genome

Our k-mer analysis revealed the genome size of L. sinensis to be
approximately 2.25 Gb with a heterozygosity value of 0.26%. We



Table 1: Statistics of I. sinensis genome assembly and annotation

Feature Isoetes sinensis

Genome size (bp) 2,131,756,688
Contig number 4,329

Maximum contig length (bp) 13,293,339
Contig N50 (bp) 2,139,932
Contig N90O (bp) 228,882
Scaffold N50 (bp) 86,663,717
Scaffold N90 (bp) 70,828,552
Gene number 57,303
Average gene length (bp) 3,031.29
Average CDS length (bp) 1,098.39
Exon number per gene 4.79
Average exon length (bp) 294.98
Intron number per gene 3.79
Average intron length (bp) 426.34

sequenced the . sinensis genome by generating 176.46 Gb (79.17 x
coverage) Illumina short reads, 97.01 Gb (43.52x coverage) PacBio
SMRT HiFi long reads, and 237.7 Gb (111.50x coverage) Hi-C data.
We subsequently assembled the 2.13 Gb L. sinensis genome into
22 pseudochromosomes consisting of 3,741 scaffolds with N50
length of 86.66 Mb (Fig. 1B, C; Supplementary Fig. S1A, S1B; Table
1; Supplementary Tables S1 and S2). The longest chromosome is
~109.03 Mb and the shortest is ~70.83 Mb (Supplementary Table
S3). Using a combination of Illumina and PacBio sequencing, we
performed RNA sequencing (RNA-seq) of small RNAs, long non-
coding RNAs (IncRNAs), and messenger RNAs (mRNAs) isolated
from different tissues of I. sinensis to facilitate genome annotation
(Supplementary Table S4). By combining homology-based align-
ments and ab initio gene models, we annotated a total of 57,303
protein-coding genes, 75% of which were supported by RNA-seq
data (Table 1). In total, 52,531 coding genes (92%) were assigned to
functional categories using the InterPro, NR, Swiss-Prot, and KEGG
databases. BUSCO (96.5%) and CEGMA (98.39%) analyses suggest
that our genome assembly exhibits a high degree of complete-
ness (Supplementary Table S5). LTR Assembly Index (LAI) valueis
9.71, which was not high but among the top LAI values reported in
polyploid genomes [16]. The lengths of exons and transcripts are
comparable among I. sinensis and its closely related species I. tai-
wanensis and S. moellendorffii, while I. sinensis has fewer exons per
gene and shorter introns (Fig. 2A and Supplementary Fig. S1C).
We annotated 33,515 noncoding RNA (ncRNA) genes, including
8,975 transfer RNA (tRNA), 17,453 ribosomal RNA (rRNA), 1,797
microRNA (miRNA), 1,194 small nuclear RNA (snRNA), 279 small
nucleolar RNA (snoRNA), and 3,817 IncRNA genes (Fig. 1C; Table
1; Supplementary Tables S6-512). Further, we annotated 12,886
pseudogenes containing frameshift mutations, premature stop
codons, or both (Supplementary Table S13).

Gene and genome evolution

Our maximum likelihood (ML) phylogeny of 19 species of evolu-
tionarily representative land plants and green algae indicates that
L. sinensis and I. taiwanensis diverged from S. moellendorffii about
300 million years ago (Fig. 3). One hypothesis has suggested that
the tetraploid I sinensis originated from hybridization between the
diploid Isoetes yunguiensis and I. taiwanensis [17]. We attempted
to distinguish the I. sinensis genome into 2 subgenomes using
genomic information from I. taiwanensis. However, genome-wide
comparison (Supplementary Table S14) and phylogenetic analy-
sis (Supplementary Fig. S2A) showed that the similarity between
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pairs of chromosomes of I. sinensis was greater than that between
L. sinensis and I. taiwanensis, suggesting that I. sinensis was not di-
rectly derived from the hybridization of I. yunguiensis and I. taiwa-
nensis. We further performed k-mer and SubPhaser analysis. Clus-
tering of counts of 13-mers identified 2 groups of chromosomes.
However, pairs of chromosomes, such as Chr 3 and Chr 4, were
found in the same groups (Supplementary Fig. S3A). In addition,
SubPhaser analysis identified 9 chromosomes in subgenome 1 and
13 chromosomes in subgenome 2 (Supplementary Fig. S3B). These
results suggested that our analyses were not able to identify the
2 subgenomes of I. sinensis. To facilitate the subsequent analysis,
we adopted an approach similar to that used for the Artemisia
argyi genome assembly [18] and artificially divided the I sinen-
sis genome into 2 subgenomes, A and B, based on the lengths of
chromosome pairs (Supplementary Table S3). Gene numbers were
comparable between the 2 subgenomes, with 93.4% of subgenome
A genes as homoeologs of 95.0% of subgenome B genes
(Supplementary Fig. S2B). We found high collinearity be-
tween allelic chromosome pairs (i.e.,, AO1 and B01) but weaker
collinearity between other regions (Supplementary Fig. S4A and
Supplementary Tables S15 and S16), indicating the stabil-
ity of I sinensis as a tetraploid species. Abundant synteny
blocks were observed between I. sinensis and I. taiwanensis
(Supplementary Fig. S4B), suggesting that collinear blocks were re-
tained after polyploidization. The collinearity between seed-free
and seed plants was little known due to lack of chromosomal
genome assembly of seed-free plants. We found only 2 plausible
synteny blocks between L. sinensis and Arabidopsis thaliana and Zea
mays (Supplementary Fig. S4C), which illustrates the very limited
collinearity between . sinensis and seed plants.

Gene family expansions and contractions are often closely re-
lated to the adaptive evolution of species [19]. We distinguished
expansion and contraction of gene families among represen-
tative plant species using homology-based methods. In total,
2,108 and 3,153 families had undergone expansion and contrac-
tion in I sinensis, respectively (Fig. 3). Expanded gene families
were mostly enriched for energy metabolism functions such as
photosynthesis and oxidative phosphorylation, while contracted
gene families were mostly enriched in lipid metabolism func-
tions such as linoleic acid metabolism and fatty acid degradation
(Supplementary Fig. S5). Notably, many more gene families that
had expanded (4,687) and fewer that had contracted (1,817) were
found in I taiwanensis than in I. sinensis (Fig. 3), suggesting high
genetic variation within Isoetes.

Diploid A and B subgenomes shared 15,280 orthologous gene
families, which include 3,007 and 2,103 multicopy gene families in
the A and B subgenomes, respectively. Of the orthologous single-
copy gene sets in . taiwanensis, 909 and 1,187 genes had been lost
from the A and B subgenomes, respectively, of I. sinensis. These
gene losses were also coincident with the smaller chromosome
size of L. sinensis (96.8 Mb on average) relative to that of I. taiwanen-
sis (150.9 Mb). Furthermore, 6,578 genes that exist as a single copy
in I taiwanensis still exist as a single copy (1 copy per subgenome)
in each of the 2 I sinensis subgenomes. To understand the effect
of polyploidization on gene expression, we analyzed the gene ex-
pression bias between pairs of chromosomes in I. sinensis by us-
ing a similar approach reported in Brassica juncea [20]. On average,
5,206 gene pairs showed homoeolog expression dominance. No-
tably, the number of dominant genes was comparable between
11 pairs of chromosomes. The exception was found in Chr 10,
where two times more dominant genes in Chr B10 than that
in Chr A10 (Supplementary Fig. S6). These results suggest that
polyploidization might have affected the relative expression of
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Figure 2: Genomic features of the I. sinensis genome. (A) Boxplot showing intron, exon, and transcript length comparisons among the genomes of I.
sinensis, I. taiwanensis, and S. moellendorffii. Boxes indicate the first quartile, median, and third quartile with whiskers extending up to 1.5 times the
interquartile distance. (B) Frequency distribution of Ks based on the distribution of substitution rates of paralogs in 3 lycophytes (L. sinenss, I.
taiwanensis, S. moellendorffii) and 2 ferns (A. filiculoides and S. cucullata). The two Ks peaks (0.4 and 1.8) indicate 2 WGDs in I. sinensis. (C) Pie chart
illustrating of the major classes of repetitive DNA in L. sinensis. LINE, long interspersed nuclear element; LTR, long terminal repeat; SINE, short
interspersed transposable element; TR, tandem repeat. (D) The relative ages of LTR retroelements computed as Kimura distances suggest a long period
of retroelement transposition activity. (E) Boxplot showing distributions of LTR family lengths in I. sinensis, I. taiwanensis, and S. moellendorffii. (F)
Maximum likelihood phylogeny analysis of Gypsy retroelements showing the expansion of Gypsy in L. sinensis and L. taiwanensis.



Reference genome of Isoetes sinensis | 5

Oryza sativa
+1422/3021 | +18662570

Zea mays
+5569/-1331
+497/-483

Vitis vinifera
+2053/-2362

+583/-6526

+441/-6384

Arabidopsis thaliana
+3323/-1963

—— Amborella trichopoda
+383/-2842 +842/-10435

Gnetum montanum
+2457/-5776

+263/-10926

Cycas panzhihuaensis
+3017/-2478
+554/-2113

+82/-10456

Picea abies
+2612/-5109

Salvinia cucullata
+1140/-1932

+398/-18486

Azolla filiculoides
+1908/-1619

+269/-834

Gene families

Expansion/ Contraction
Isoetes sinensi.

+2108/-3153

+672/-4340

+79/-1561 Isoetes taiwanensis
L +4687/-1817 @
+972/-19938

Selaginella moellendorffii

+9488/-8156
+1057/-1014 —

Marchantia polymorpha
+1015/-32662

+252/-1075

Physcomitrella patens
+4975/-32159

+107/-1297 Chara braunii
+1520/-36799

Klebsormidium nitens
+11/-955 +1135/-35958 .'u_.-:

.‘..-.-" \ ) ~
MRCA (46317) 4 —quessgg/ﬂ gvgrogfride '
+ b
D

Chlamydomonas reinhardtii —
+1185/-40427

Figure 3: Evolution analysis of gene families in I. sinensis and 19 selected evolutionarily representative green algae and land plants. The phylogenetic
tree was constructed from the ML method. The green numbers on the branches of the phylogenetic tree indicate the number of expanded gene
families, and the red numbers refer to the number of constricted gene families. The supposed most recent common ancestor (MRCA) contains 46,317
gene families. Totals of 2,108 and 3,153 families had undergone expansion and contraction in L. sinensis, respectively. Only 1 subgenome of I. sinensis
was used. The number in the blue circle indicates the retained duplicates from WGDs.

i
]
I
]
¥




6 | GigaScience, 2023, Vol. 12, No. 1

homoeologs and likely equally affected the 2 subgenomes except
Chr 10.

Whole-genome duplications and repeat elements

Analysis of synonymous substitutions per synonymous site (Ks)
suggests the occurrence of 2 whole-genome duplications (WGDs)
with median values of 0.4 and 1.8 in I. sinensis, and the strong peak
~1.8 may represent the Ks values of homeologs of the A and B
subgenomes (Fig. 2B and Supplementary Tables S16 and S17). The
2 WGDs are consistent with a previous 1KP transcriptome study
thatreported 2 WGDs (ISTEa and ISTEB) in Isoetes tegetiformans and
Isoetes echinospora [21], but in contrast to the single WGD found in
L. taiwanensis [10], which suggests a complex evolutionary history
within Isoetes.

In I. sinensis, repetitive sequences occupy 63.15% of the genome
(Supplementary Tables S18 and S19), a much higher proportion
than in the genomes of I. taiwanensis and S. moellendorffii [7, 10].
These repetitive sequences were evenly distributed across the
genome of I. sinensis (Fig. 1C). Most of the repeats in the I. sinensis
genome (53.67%) are long terminal repeat (LTR) retrotransposons
(Fig. 2C), and more than 30% of LTR insertions in the I. sinensis
genome occurred recently (Fig. 2D). LTRs in L. sinensis are shorter
than those in I. taiwanensis but longer than those in S. moellendorffii
(Fig. 2E). We found fewer repeats in each subgenome of I. sinensis
than that in L. taiwanensis but a greater number of LTR/Copia and
Gypsy elements in each chromosome of I. sinensis than that in I.
taiwanensis (Supplementary Table S19), which suggests that LTR
copies have likely increased since the divergence of I. sinensis and
L. taiwanensis. Next, we generated a phylogenetic tree to compare
the evolution of the LTR retrotransposon Gypsy in L sinensis, I. tai-
wanensis, and S. moellendorffii. In addition to transposons similar
to those in S. moellendorffii, we found that many species-specific
transposons had evolved in I. sinensis and I. taiwanensis, indicating
the expansion of Gypsy in Isoetes (Fig. 2F).

Transcriptional regulation

We identified 1,461 sequences that encode transcrip-
tion factors (TFs) belonging to 52 families in I sinensis
(Supplementary Tables S20 and S21). We found that 2.86%
of the protein-coding genes in I. sinensis encode TFs, relatively
fewer than in other land plants but more than in green algae
[22]. Genes that encode AP2/ERF, MYB, and bHLH family members
accounted for the highest proportion TF-encoding genes in I.
sinensis (Fig. 4A). When we compared the number of TFs encoded
by the diploid A and B subgenomes of I. sinensis and other plant
genomes, we found that the number of TF-encoding genes in-
creased likely along with organismal complexity, although we
did note some exceptions [23]. For example, we found a larger
number of genes encoding AP2/ERF, AP2/B3, CSD, and PPP1 in the
subgenomes of L. sinensis than in the genomes of ferns (Fig. 4A).
Interestingly, the gene encoding GeBP (GL1 enhancer binding pro-
tein) has been lost from I. sinensis but is present in S. moellendorffii
and bryophytes (Fig. 4A and Supplementary Table S20). Next,
we analyzed the evolution of TF families and detected many
I. sinensis-specific subfamilies, as exemplified by the 2R-MYB
family, which performs essential plant stress response functions
and represents the second largest TF family in I. sinensis. A total
of 90 2R-MYB-encoding genes were found in the genome of I.
sinensis. Phylogenetic analysis suggests that twenty-one 2R-MYB
TFs belong to 7 ancient subfamilies, including S28, 521, S22, S23,
S18, S8, and S68, which have functions in stress response and
development [24, 25]. Among the other nine 2R-MYB TF subfam-

ilies, 6 of them contain only I. sinensis sequences, suggesting a
species-specific expansion of 2R-MYB TFs within I. sinensis (Fig. 4B
and Supplementary Dataset S1). We observed that most MYBs
within group NS5 were located on a pair of chromosomes of I.
sinensis (Supplementary Dataset S1), which may suggest their
tandem duplication before polyploidization.

Phytohormones

Although the genome sequences of I. taiwanensis and S. moel-
lendorffii are available, little is yet known about phytohormone
in the Lycophyta. To better understand phytohormone regula-
tion in L sinensis, we investigated both conserved and lost genes
that related to synthesis, transport, and signal transduction of
phytohormones.

The auxin biosynthesis pathway in flowering plants is con-
served and includes one TAA (encoding tryptophan aminotrans-
ferase in Arabidopsis) and 5 YUCCA homologs encoding flavin
monooxygenase-like enzymes [26]. However, only 1 YUC was
found in I sinensis. There is no TAA-encoding gene in . sinensis,
although its paralog TAR was detected (Supplementary Fig. S7
and Supplementary Datasets S2-S6). The I. sinensis genome pos-
sesses the auxin signal transduction components AUX1 and a
small number of SAUR genes that are not found in early land
plants, suggesting that these genes could have evolved in the ly-
cophytes. Interestingly, I. sinensis does not carry the JAA1 and GH
genes that are present in seed plants, suggesting a stepwise ac-
quisition of auxin signaling during land plant evolution.

Abscisic acid (ABA) is generated under environmental stress
and leads to a series of reactions that allow plants to adapt
to adverse conditions [27]. Almost all the genes involved in
ABA biosynthesis, except XD and AAO, are present in I. sinensis
(Supplementary Fig. S7 and Supplementary Datasets S7-S11). The
PYL receptor mediates the ABA response in cells via a complex be-
tween ABA and PYL that inhibits a PP2C (group A phosphatase
2C) to activate SnRK2, a SNF1-related protein kinase 2. While
genes encoding PP2C and SnRK2 exist in I. sinensis, only 1 ho-
molog encoding the PYL receptor (PYL5) was found. Genes en-
coding downstream TFs, such as AREB/ABFs, which are involved
in desiccation tolerance, were also detected in I. sinensis. In addi-
tion, almost all of the genes involved in the cytokinin/ethylene-
controlled signal transduction pathways exist in I. sinensis, ex-
cept for those encoding the receptor CKR in the cytokinin sig-
naling pathway, and 1-aminocyclopropane-1-carboxylate oxidase,
which exists only in seed plants [28] (Supplementary Fig. S7 and
Supplementary Datasets S12-S19). Jasmonic acid (JA) and gib-
berellin (GA) signaling pathways play important roles in response
to biotic stress [29]. We identified almost all of the genes that con-
stitute the JA and GA pathways in L. sinensis (Supplementary Fig. S7
and Supplementary Datasets 520-524). Like other plants, L. sinen-
sis contains genes that encode JA biosynthetic enzymes such as
LOX, AOC, AOS, JAR1, and OPR3, as well as genes encoding COI1
receptor and MYC transcription factor orthologs. Among the few
exceptions are genes encoding GA synthesis and transport func-
tions such as PIL and GA30X that are present in the genomes of
green algae and early land plants but have been lost from the I.
sinensis genome. Taken together, the presence of these orthologs
suggests nearly intact ABA, cytokinin, ethylene, JA, and GA signal-
ing pathways in I. sinensis.

On the other hand, we found a paucity of genes in-
volved in the strigolactone (SL) and salicylic acid (SA) sig-
naling pathways in I sinensis (Supplementary Fig. S7 and
Supplementary Datasets S25-528). For example, apart from only
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Figure 4: Transcription factors in I. sinensis. (A) Heatmap illustrating the numbers of transcription factors in I. sinensis compared with 13 evolutionarily
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Supplementary Dataset S1 showing the detailed tree.

1 MAX2 gene, I sinensis has lost many other genes with func-
tions in SL signaling. Furthermore, only a few components of the
BR pathway (BRI1-like and DET?2) can be detected in I sinensis
(Supplementary Datasets S29-532). As for SA signaling, we de-
tected genes encoding CUL3 but none encoding NPR or BOP in I.
sinensis.

We further compared the genes involved in phytohormone
between I. sinensis and I. taiwanensis. Except for a small num-
ber of genes found only in I sinensis, such as GA20X and
AOC3, and the genes found only in I. taiwanensis, such as BAKI,
ACO4, ACS2, ACS4, and JAZ, most of genes are conserved with
slight copy number variation between these 2 Isoetes species
(Supplementary Table S22). This result might suggest a conserved
phytohormone regulation between I. sinensis and I. taiwanensis.

CAM photosynthesis

CAM is a metabolic pathway that concentrates CO; in plant cells
to help some land plant species avoid drought and aquatic plant
species avoid CO, limitation [30]. This adaptation is widespread
in Isoetes, wherein carbon accumulates as malic acid during
the night and enters the Calvin cycle during the day to im-
prove CO, utilization [15]. Recently, the evolutionary path of
CAM in L talwanensis has been described [10]. As does I tai-
wanensis, . sinensis possesses genes encoding both bacterial-
and plant-type phosphoenolpyruvate carboxylase (PEPC)
(Supplementary Fig. S8A, B), a key enzyme in CAM and C4
photosynthesis in various plant species. I. sinensis expresses the
bacterial-type PEPC at a low level and expresses the plant-type
PEPC at a high level in roots, shoots, and sporangia, in contrast to
the higher expression of bacterial-type PEPC than plant-type PEPC
during development in I. taiwanensis (Supplementary Fig. S8C). In
addition, I. sinensis lacks a gene encoding phosphoenolpyruvate
carboxykinase (Supplementary Fig. S7B), which participates in 1
of 2 important decarboxylation pathways in I. taiwanensis, sug-
gesting differences in mechanisms of CAM across aquatic plants.

Stomatal development

Some aquatic plant species do not develop stomata or have
nonfunctional stomata occluded by wax [31]. Functional stomata
are important for Isoetes to adapt to amphibiotic conditions.
However, we found that some key genes for stomata develop-
ment, such as SPEECHLESS (SPCH), MYB88, and MUTE [32, 33],
are not present in the genomes of either I. sinensis or I. taiwa-
nensis (Supplementary Fig. S9), suggesting specialized stomatal
regulation in Isoetes. I. taiwanensis leaves have relatively fewer
stomata than do those of I sinensis [34]. Thus, we compared the
L. sinensis and . taiwanensis genes likely involved in stomatal
development or regulation [35] and identified 45 of these genes
in the I. sinensis genome and 39 in the I. taiwanensis genome, from
a total 75 genes that could have been involved in these processes
(Supplementary Fig. 59). The absence of some putative stomatal
development genes from each genome might have contributed
to the differences in stomatal number and regulation of stomatal
development between I. sinensis and I. taiwanensis.

Adaptation to environmental stresses

Land plants are often threatened by adverse abiotic environmen-
tal conditions that limit their growth and development. By com-
paring the genomes of I. sinensis and I. taiwanensis, as well as tran-
scriptomes of 19 lycophytes from the 1KP project [36], we ana-
lyzed the genetic basis of lycophyte adaptation to environmental
stresses.

Cold sensing and response

Our comparative analysis did not detect many of the key
genes responsible for cold sensing or response in lycophytes
(Supplementary Fig. S10 and Supplementary Datasets S33-545).
First, as a temperature stress sensor, Ca’t can induce
temperature-responsive gene expression [37, 38]. Annexin 1
(ANN1) is the essential Ca?* osmotic transporter that mediates
cold-triggered Ca’* influx and freezing resistance [37]. However,
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ANNT1 is absent in I sinensis and most of the other lycophytes
(Fig. 5A and Supplementary Fig. S9A). Second, EARLY FLOW-
ERING 3 (ELF3), ELF4, and LUX ARRYTHMO (LUX) can form an
evening complex to perceive temperature changes and regulate
plant growth by directly repressing the expression of PIF4 under
cold temperatures [39]. ELF4 was also not detected in all of the
lycophytes (Fig. SA and Supplementary Fig. S10A). Third, cold
stress activates the transcription of TF-encoding genes, including
those encoding C-repeat binding factors (CBFs) [40]. OST1 is a
positive regulator in CBF-dependent cold signaling, while EGR2
phosphatase is a negative regulator of plant-freezing tolerance
via inhibition of OST1 kinase activity, which thereby reduces the
expression of CBFs during cold stress responses. In addition, the
negative transcriptional regulator of CBFs, MYB15, is degraded
during cold stress. We did not detect EGR2 and MYB15 in all of the
lycophytes (Fig. 5A and Supplementary Fig. S10A). The absence of
these homologs suggests a diversification between lycophytes and
model plant Arabidopsis in the cold-sensing and response pathway.

Drought and salinity sensing and response

Drought stress stimulates local production and accumulation
of the hormone ABA in plant organs, which is an important
way to improve water efficiency and drought resistance in
plants [41]. ABA signaling is mediated by the ABA receptors
PYR, PYL, and RCAR and by the PP2Cs and SnRK2s [42, 43]
that interact with them. The genes that encode these pro-
teins are present in lycophytes (Supplementary Fig. S11A and
Supplementary Datasets S46-566). ABA-activated SnRK2s are
phosphorylated and phosphorylate the plasma membrane
NADPH oxidase RbohD/F that generates O?~ and subsequently
H,0; [38]. Leucine-rich repeat receptor kinases HPCA1 and GHR1
then sense this extracellular H,O, and activate Ca’* signaling
via Ca®* channels [44, 45]. In Arabidopsis, HyO,- and ABA-induced
stomatal closure is impaired in the hpcal mutant [44, 45]. How-
ever, the absence of the HPCA1 from I. sinensis and many other
lycophytes might adversely affect the drought resistance of these
species (Fig. 5B and Supplementary Fig. S11A).

Salinity is another important environmental factor inducing
abiotic stress in plants and can result in hyperosmotic stress
in plant cells [46]. In Arabidopsis, the salt overly sensitive (SOS)
pathway comprises the SOS3 and SCaBP8 calcium sensors, the
SOS2 protein kinase, and the SOS1 plasma membrane Nat/H* an-
tiporter. When an Arabidopsis plant experiences salt stress, SOS3
and ScaBP8 sense the calcium signal, interact with SOS2, and ac-
tivate its kinase activity, which then activates the reverse trans-
port activity of SOS1 [47, 48]. Calcium signals in this system
in Arabidopsis are mediated by the Ca?*-permeable transporters
AtANNT and AtANN4 [49, 50]. The absence from the lycophytes
of genes encoding the Ca?* transporters ANN1 and ANN4 and
those encoding the downstream sensor SOS3 and ScaBP8 might
thus limit the adaptability of lycophytes to salt stress (Fig. 5B and
Supplementary Fig. S11B).

On the other hand, we also observed some con-
served pathways between lycophytes and angiosperms
(Supplementary Figs. S11A-C) that might contribute to the
adaption to drought and salinity in lycophytes.

Cadmium stress

Water pollution and eutrophication result in heavy metal stress
that critically endangers I. sinensis [51]. Cadmium (Cd) is a heavy
metal with high toxicity to plants [52]. Uptake of cadmium oc-
curs in root cells, mainly mediated by NRAMPS, and its root-to-

shoot transport is completed by HMA2 and HMA4 [53]. HMA3 me-
diates an effective detoxification mechanism that limits Cd trans-
port to shoots by accumulating Cd in vacuoles [53]. Cadmium ac-
cumulation in leaf 1 (CAL1) encodes a defensin-like protein that can
chelate cytosolic Cd and promotes secretion of Cd into intercellu-
lar spaces such as the cell wall apoplast and xylem to decrease the
concentration of Cd in the cytosol during transport of Cd within
the plant [54]. Homologs of HMA3 and CAL1 are not present in
the I sinensis and many lycophytes (Supplementary Fig. S12 and
Supplementary Datasets S67-568), which could limit the ability of
lycophytes to control the transport and accumulation of Cd.

The activities of phytohormones are important for plants to
adapt to heavy metal stress [55]. For example, cadmium enhances
the activity of Gretchen Hagen 3 (GH3), a gene present in algae and
land plants that reduces the level of active indole-3-acetic acid
(IAA) by esterifying it with an amino acid, resulting in increased
lignin synthesis and peroxidase activity during plant defenses to
heavy metal toxicity [56]. Treatment of plants with Cd resulted
in the accumulation of ETR2 and ERF1, which encode ethylene
receptors, whereas the abundance of transcripts for brassinos-
teroid (BR)-related genes such as DWARF and BR6ox, decreased,
suggesting that Cd-mediated BR biosynthesis feedback is inhib-
ited when the BR contents increase [57]. BR homeostasis also re-
quires the transcription factor BZR1 [58]. However, the homologs
of all genes relevant to heavy metal response mentioned above
are absent of I. sinensis and those of most lycophytes (Fig. 5C and
Supplementary Fig. S12), which could adversely affect their ability
to adapt to Cd stress.

Conclusion

Here, we present a high-quality assembly and annotation of the I.
sinensis genome, which represents the first sequenced tetraploid
genome with chromosome-level assembly for a seed-free plant.
Comparative analysis between I. sinensis and its close related
diploid species I. taiwanensis revealed the features of genome and
polyploidy in lycophytes. We found the differences in CAM and
stomatal regulation between I. sinensis and L. taiwanensis. Compari-
son of the genome of I. sinensis with genomes representing the evo-
lutionary lineages of green algae and land plants has revealed that
L. sinensis possesses some common genetic tools, such as those
associated with transcriptional regulation and involved in ABA,
cytokinin, ethylene, JA, and GA signaling pathways. On the other
hand, we have also shown that some key genes involved in im-
portant genetic pathways, including strigolactone, salicylic acid,
and stress responses (cold, drought, salinity, and cadmium), have
been lost or not detected in the L. sinensis and many lycophytes.
These findings are crucial for the understanding of lycophyte de-
velopment and their adaptation to adverse abiotic environmental
conditions.

Methods
Plant materials and genome sequencing

L. sinensis shoot materials were harvested from Yangdongcun,
Beilun District, Ningbo, Zhejiang Province of China. DNA was ex-
tracted using a modified cetyltrimethylammonium bromide pro-
cedure. DNA concentrations and purity were evaluated by Nan-
oDrop and its quality analyzed by agarose gel electrophoresis.
Paired-end libraries with a 350-bp inserts were prepared by follow-
ing the Illumina protocols and then sequenced in PE150 mode on
the Illumina HiSeq X Ten platform (RRID:SCR_016385). A total of
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176.46 Gb paired-end reads were obtained for genome survey. The
read mapping rate of the Illumina sequencing was 98.58%, cover-
ing 99.95% of the I. sinensis genome. For the PacBio Sequel analy-
sis, the libraries for single-molecule real-time (SMRT) genome se-
quencing were prepared according to the manufacturer’s protocol
for the sequencing platform and then sequenced with SMRT se-
quencing at43.52x coverage using 4 cells. A total of 97.01 Gb reads
were obtained for the genome assembly. High-throughput chro-
mosome conformation capture (Hi-C) sequencing libraries were
produced as follows: nuclei were isolated and fixed with the cross-
linking agent paraformaldehyde and then the cross-linked DNA
was treated with restriction enzymes. Biotin was then added to la-
bel the ends of oligonucleotides during terminal repair. Adjacent
DNA fragments were joined using nuclease ligases. Protein was
digested with a protease to dissociate the protein from the DNA.
Then the genomic DNA was extracted and randomly sheared into
350-bp fragments using a Covaris crusher. The library was pre-
pared according to manufacturer’s instructions (Illlumina) and se-
quenced on a HiSeq X Ten DNA system to obtain 150-bp paired-
end sequences.

RNA-seq and full-length transcriptome
sequencing

RNAs from roots, shoots, and sporangia of I. sinensis were ex-
tracted using a RNeasy Plus Mini Kit (Qiagen). After that, rRNA
was removed from total RNA samples using the RiBO-Zero Kit
(Ilumina). The isolated mRNA (~1% of total RNA) was used as
template to synthesize complementary DNA (cDNA), then the
cDNA was sheared into small fragments. Paired-end libraries were
prepared from various tissues by following the Illumina protocols
and sequenced with PE150 mode on the Illumina HiSeq X Ten
platform. Pooled samples from the roots, shoots, and sporangia
pooling sample were used for the PacBio Sequel analysis. The li-
braries for SMRT genome sequencing were prepared according to
the manufacturer’s protocol for the sequencing platform and then
sequenced on a PacBio Sequel II with SMRT sequencing.

Genome assembly and annotation

Before de novo genome assembly, Illumina short reads were used
for preliminary evaluation of the genome size, heterozygosity, and
repeat sequence proportions by k-mer analysis. After data filter-
ing and quality control, the short reads were first assembled us-
ing SOAPdenovo (RRID:SCR_010752) software to generate contigs.
These contigs were further used to construct scaffolds according
to their pair-end relationships. The quality value (QV) score gener-
ated from Merqury (RRID:SCR_022964) was 46.1448, and the cor-
responding error rate was 2.4295e-05.

De novo genome assembly of the PacBio long reads from I
sinensis genomes was performed using Hiflasm (RRID:SCR_021069)
[59]. The primary contigs were polished by aligning PacBio SMRT
reads using the NextPolish software with the default parameters
[60]. The consensus sequences for scaffolds were further polished
based on llumina paired-end reads using Pilon (RRID:SCR_01473
1). The total length of this assembly was 2,131.51 Mb, with a contig
N50 up to 2,673 kb.

For the chromosome-level assembly, the clean Hi-C sequenc-
ing data were mapped to the draft genome using the Burrows—
Wheeler Aligner (BWA) [61], and the repeated and unmatched
data were removed by SAMtools (RRID:SCR_005227) [62]. Only
unique valid paired-end reads were retained for subsequent
chromosome-level assembly. Draft genome scaffolds were clus-
tered according to interactions using the ALLHIC software

(RRID:SCR_022750) [63]. Finally, about 90.10% sequences were
grouped into 22 pseudochromosomes. Transcripts were aligned
using Bowtie 2 (v.2.3.4.1) [64] software with the parameters (-no-
mixed -no-discordant). The transcriptome was then quantified
using RSEM (RRID:SCR_000262) (v.1.3.1) [65] with default parame-
ters. After RNA-seq analysis, we found a total of 43,154 expressed
genes accounting for 75.3% of the total predicted genes, which
proved the high reliability of our genome annotation.

Genome completeness assessment

Genome completeness was evaluated using BUSCO (RRID:SCR_0
15008) [66] and CEGMA (RRID:SCR_015055) [67] analyses. BUSCO
detected 84.7% complete and 3.2% fragmented BUSCO gene mod-
els in the assembly. CEGMA results suggested that 98.39% of core
eukaryotic genes have been assembled. Small fragment library
reads were selected and aligned to the assembled genome using
BWA software (RRID:SCR_010910). Finally, 98.58% of small frag-
ment reads mapped to the I. sinensis genome. LAI was evaluated
by LTR _retriever (RRID:SCR_017623) (v2.9.0) [68].

Repeat sequence annotation

The repetitive sequences in I. sinensis were estimated by de novo
strategies using RepeatModeler (RRID:SCR_015027), RepeatScout
(RRID:SCR_014653), LTR_FINDER (RRID:SCR_015247) [69], MITE-
Hunter (RRID:SCR_020946) [70], and PILER-DF [71]. A homology-
based search for repeat sequences was carried out using Repeat-
Masker (RRID:SCR_012954) [72] to search Repbase (RRID:SCR_021
169).

LTRs were identified using LTR_FINDER [69] and LTRharvest
(RRID:SCR_018970) [73], the results of which were then inte-
grated with LTR_retriever [68] to build an accurate, nonredundant
species-specific LTR database. Subsequently, we used homology-
based prediction methods to annotate, filter out false posi-
tives, and annotate comprehensive and accurate species LTR
sequences, including intact LTRs, solo LTRs, and LTR-related
sequences.

LncRNA sequencing and analysis

Total RNA was extracted from each I. sinensis sample using the
RNeasy Plus Mini Kit, and rRNA removal was performed using
a RiBO-Zero Kit. Isolated RNA was used for cDNA library con-
struction, using the dUTP method [74]. These libraries were se-
quenced on an [llumina HiSeq X Ten platform. The purity, concen-
tration, and integrity of RNA were checked using the agarose gel
electrophoresis, the Qubit 2.0 Fluorometer, and the Agilent 4150
TapeStation, respectively. After trimming adapters and filtering
out low-quality reads, a total of 14.02 Gb clean reads were gen-
erated. The transcriptome was mapped to the reference genome
using TopHat?2 [75]. Transcripts greater than 200 bp in length and
containing at least 2 exons were considered IncRNA candidates.
Four computational approaches, including CPC [76], CNCI [77],
Pfam (RRID:SCR_004726), and PhyloCSF [78], were combined to
evaluate the protein-coding capability of the IncRNA candidates.

Small RNA sequencing and analysis

Small RNA libraries for I. sinensis were constructed using a Small
RNA Sample Pre Kit for [llumina HiSeq sequencing. Raw reads
were filtered by removing 3’-adapters, primers, and low-quality
sequences using Cutadapt (RRID:SCR_011841) v1.9.1. Clean reads
of 18 to 30 nucleotides were screened for subsequent analysis.
The clean reads were mapped to Silva (RRID:SCR_006423), GtR-
NAdb database (RRID:SCR_006939), Rfam (RRID:SCR_007891), and
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Repbase (RRID:SCR_021169) to remove rRNAs, tRNAs, snRNAs,
snoRNAs, and other ncRNAs and repeats. The remaining reads
were compared with reference miRNAs in the miRbase (RRID:
SCR_003152) to annotate miRNAs. These reads were then mapped
to the genome using Bowtie 2 (RRID:SCR_016368) [64].

Predictions of genes and noncoding RNAs

Gene annotation was performed by combining evidence drawn
from ab initio prediction, homology-based gene prediction, and
transcript evidence from RNA-seq data for I. sinensis. The ab ini-
tio gene prediction was conducted using 2 ab initio gene predic-
tors, Augustus (RRID:SCR_008417) [79] and Genscan (RRID:SCR_0
13362), with default parameters. Orthologous protein sequences
were then aligned to the genome assembly using GeneWise (RR
ID:SCR_015054) [80]. In addition, the transcriptome data of the
whole plant were used to predict genes using PASA [81]. Evidence
Modeler [82] was used to generate a single high-confidence gene
model set. Finally, 57,303 protein-coding genes were predicted
for I. sinensis and all protein-coding genes were annotated to the
public protein databases at KEGG (RRID:SCR_012773), SwissProt
(RRID:SCR_021164), TrEMBL, and InterProScan v5.11-51.0 (RRID:
SCR_005829), with an E-value cutoff of 1e=°. Pseudogenes were
detected by exonerate (RRID:SCR_016088) (v.2.4) using the protein
data of Salvinia cucullata, Azolla filiculoides [8], and I. sinensis.

We used 2 strategies to annotate noncoding RNAs, including
de novo prediction and direct RNA sequencing of small RNAs and
IncRNAs. rRNA fragments were identified using BLAST against
rRNA sequences of reference species in the Pfam database. tR-
NAs were identified using tRNAscn-SE. Additionally, other types
of noncoding RNA, including miRNAs and snRNAs, were identified
at the Rfam database using INFERNAL (RRID:SCR_011809) [83].

Identification of WGD

In order to search for genome-wide duplications in the I. sinen-
sis genome, we used the Whole-Genome Duplication Integrated
analysis tool for WGD and intragenomic collinearity detection as
well as Ks estimation and peak fitting [84]. The WGD analyses were
performed using all paralogous gene pairs.

Gene family and phylogenomic analysis

Gene families for the 19 species were analyzed and clustered us-
ing OrthoMCL (RRID:SCR_007839) (v. 2.0.9) with default param-
eters [85]. The 19 species, including A. thaliana, Vitis vinifera, Z.
mays, Oryza sativa [86], Physcomitrella patens [87], Marchantia poly-
morpha [26], A. filiculoides, S. cucullata, Amborella trichopoda [88], Cy-
cas panzhihuaensis [89], Picea abies [90], Gnetum montanum [91], S.
moellendorffii [7], . sinensis, I. taiwanensis [10], Mesostigma viride [22],
Chlamydomonas reinhardtii [92], Klebsormidium nitens [93], and Chara
braunii [94], were used in the analysis. Gene families were clus-
tered using OrthoMCL software with default parameters. During
OrthoMCL gene family clustering, we defined single-copy gene
families as genes existing as 1 copy in selected species and ob-
tained a total of 66 single-copy gene families for further analy-
sis. These single-copy genes were aligned using software MAFFT
(RRID:SCR_011811) (v.7.490), and then ProTest (v.3.4.2) was used
to find the best model of amino acid replacement in the single-
copy gene alignments. Before phylogeny construction, Gblocks
(RRID:SCR_015945) (v.0.91b) [95] (-b5 = h) was used to remove gap
regions of the multiple sequence alignments. A phylogenetic tree
was constructed using RAXML (RRID:SCR_006086) (v.8.2.12) [96]
with the ML algorithm and 1,000 bootstrap replicates.

Reference genome of Isoetes sine

Based on a calibration of divergence times using C. reinhardtii
and G. montanum from TimeTree (RRID:SCR_021162), the diver-
gence times for the inferred species tree were calculated using 18s
(RRID:SCR_021161) (v.1.81) [97]. Gene families were used to calcu-
late the expansion or contraction of the gene families in each lin-
eage using CAFE (RRID:SCR_005983) (v.4.2.1) with P < 0.05 [98]. P
values were used to estimate the likelihood of the observed gene
family sizes given average rates of gain and loss and were also
used to determine expansion or contraction for individual gene
families in each node.

Phylogenetic analysis of TF, phytohormone, CAM,
and stress response—related genes

To identify TF, phytohormone, CAM and stress response re-
lated genes, we performed comparative genomic analysis of the
genomes of . sinensis and 13 representative plants or algae (in-
cluding A. thaliana, V. vinifera, Z. mays, P. patens, M. polymorpha, A.
filiculoides, S. cucullata, P. abies, G. montanum, S. moellendorffii, I. tai-
wanensis, M. viride, and C. reinhardtii) and transcriptomes of the
other 19 lycophytes from the 1KP project [36]. BLASTP search (P <
le-5) was performed using well-studied proteins (mostly from A.
thaliana) as queries to identify the homolog genes in L. sinensis. The
redundant sequences were deleted, and subsequently, candidates
were examined for the conserved domain(s) of respective gene
families using SMART (RRID:SCR_005026). Amino acid sequences
of our target genes were aligned using Muscle. The alignments
were then manually inspected using MEGA 7. MEGA 7 was run
with 1,000 bootstrap replicates to generate the neighbor-joining
phylogenetic trees [99].

Comparison of relative expression of homoeologs
in the pairs of chromosomes of I. sinensis

We adopted the method used to analyze homoeolog expression
in Brassica juncea [20] and focused on genes with 1:1 homoeologs
between pairs of chromosomes of I. sinensis. DEG pairs with fold
change >2 were defined as dominant gene pairs. The dominant
genes were defined as the genes with higher expression in domi-
nant gene pairs, and the lower ones within dominant gene pairs
were defined as subordinate genes. The rest of the genes with 1:1
homoeologs were defined as neutral genes.
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Supplementary Fig. S1. Hi-C links and length of gene and CDS.
Supplementary Fig. S2. High similarity between 2 subgenomes of
L. sinensis.

Supplementary Fig. S3. k-mer and SubPhaser analyses were not
able to separate the subgenomes of I. sinensis.

Supplementary Fig. S4. Collinearity analysis of the I. sinensis
genome.

Supplementary Fig. S5. KEGG analysis of expansion and contrac-
tion gene families during I. sinensis evolution.

Supplementary Fig. S6. Histograms of expression of 1:1 homoe-
ologous genes between pairs of chromosomes among I. sinensis
sporangia, shoot, and root tissues.

Supplementary Fig. S7. Phytohormone biosynthesis and signaling
pathways in L. sinensis.

Supplementary Fig. S8. CAM-related genes in . sinensis.
Supplementary Fig. S9. Stomatal regulation-related genes in I.
sinensis and I. taiwanensis.

Supplementary Fig. S10. Temperature stress-related genes in I.
sinensis and other lycophytes.
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Supplementary Fig. S11. Salinity and drought stress-related
genes in I. sinensis and other lycophytes.

Supplementary Fig. S12. Cadmium stress-related genesin I sinen-
sis and other lycophyte species.

Supplementary Table S1. Statistics of the I. sinensis genome
sequencing.

Supplementary Table S2. Statistics of the I sinensis genome
assembly.

Supplementary Table S3. Statistics of chromosome length of the
L. sinensis genome.

Supplementary Table S4. Statistics of the I. sinensis RNA-seq
libraries.

Supplementary Table S5. Genome completeness assessment
based on BUSCO for the I. sinensis genome assembly.
Supplementary Table S6. Summary of annotated noncoding RNA
genes in I sinensis.

Supplementary Table S7. List of annotated tRNA genes in
L. sinensis.

Supplementary Table S8. List of annotated rRNA genes in
L. sinensis.

Supplementary Table S9. List of annotated snRNA genes in
L. sinensis.

Supplementary Table S10. List of annotated snoRNA genes in
L. sinensis.

Supplementary Table S11. List of annotated miRNA genes in
L. sinensis.

Supplementary Table S12. List of annotated IncRNA genes in
L. sinensis.

Supplementary Table S13. List of annotated pseudogenes in
L. sinensis.

Supplementary Table S14. Genome-wide comparisons and gene
coverage analyses of L. sinensis and I. taiwanensis.

Supplementary Table S15. Specific gene pair information for the
2 subgenomes of L. sinensis.

Supplementary Table S16. Collinearity analysis between the pro-
posed homeologs in I. sinensis.

Supplementary Table S17. Ks values of blocks in I. sinensis.
Supplementary Table S18. Summary of repeat distribution in I.
sinensis and relative species.

Supplementary Table S19. Summary of repeats in I. sinensis and
relative species.

Supplementary Table S20. Numbers of transcription factor genes
in representative land plants and green algae.

Supplementary Table S21. IDs and sequences of transcription
factor genes in I. sinensis.

Supplementary Table S22. IDs of phytohormones genes in L. sinen-
sis and I. taiwanenss.

Supplementary Datasets S1-S68. Phylogenetic relationships of
proteins from I. sinensis and other evolutionarily representative
species.

Data Availability

The raw data of genome sequencing for I. sinensis have been
deposited in the NCBI SRA with the following accession num-
bers: SRR17422691 (Illumina); SRR17422560, SRR17422559,
SRR17422562, and SRR17422561 (Hi-C); and SRR17640823,
SRR17640824, SRR17640825, and SRR17640826 (PacBio). The
genome assembly and annotation have been deposited in the
China National GeneBank DataBase with accession number
CNAO0072254. The raw data of RNA sequencing, including IncRNA
sequencing, small RNA sequencing, mRNA-seq, and full-length
transcriptome sequencing of different tissues, have been de-

posited in the NCBI Gene Expression Omnibus (GEO) with
accession number GSE198197. All additional supporting data are
available in the GigaScience GigaDB database [100].
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