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Multidimensional quantitative phenotypic and molecular
analysis reveals neomorphic behaviors of p53 missense mutants
Anasuya Pal1,2,5, Laura Gonzalez-Malerva1,5, Seron Eaton1, Chenxi Xu1, Yining Zhang1, Dustin Grief1,3, Lydia Sakala1,2,
Lilian Nwekwo 1,2, Jia Zeng1, Grant Christensen2, Chitrak Gupta4, Ellen Streitwieser 4, Abhishek Singharoy4, Jin G. Park 1✉ and
Joshua LaBaer 1,2✉

Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether
neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes
of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a
wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D
mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C
are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at
one position—R273C vs. R273H—has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA
binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided
structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway
analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of
multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large
transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a
key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study
describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53
missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
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INTRODUCTION
The tumor suppressor TP53 remains the most altered gene in
human cancer, mutated in almost 50% of all cancers. Unlike the
classical tumor suppressor genes that are typically altered by
indels and truncation mutations, more than 75% of the clinical
mutations in TP53 are missense mutations1,2, characteristic of
oncogenes. This has led to the suggestion that cancer-causing
characteristics of mutant p53 rely on both loss-of-function (LOF)
and neomorphic gain-of-function (GOF) activities3–7. However,
how different missense mutant p53 proteins promote cancer
remains unclear. One hypothesis holds that missense mutations in
the DNA binding domain (DBD) of the p53 transcription factor
alter the DNA binding properties, affecting the transcription,
downstream pathways, and the resulting cellular phenotypes. This
raises another critical question of how differently each of these
TP53 missense mutations behave.
The p53 protein controls multiple cellular programs that

suppress cancer and is activated by various stimuli which then
mediate tumor suppression by transient cell-cycle arrest, induction
of senescence, apoptosis and DNA-repair, called the canonical p53
functions7,8 and also, regulate cell metabolism, stem cell main-
tenance, invasion and metastasis prevention, called the non-
canonical functions9. As p53 is a multi-functional protein, it is likely
that each missense mutation affects these tumor suppressor
functions differently.

p53 is a homo-tetrameric transcription factor, and TP53
missense mutations in cancer occur mostly in the DBD (Supple-
mentary Fig. 1a). While residues like R248 and R273 contact the
minor groove and the major groove of DNA, respectively, other
mutations in residues not directly contacting the DNA cause
misfolding of the DBD and structural defects10,11. Mutant p53
proteins with abrogated or altered DNA binding fail to regulate
the canonical transcriptional targets of wild type (WT) protein,
leading to LOF effects. The missense mutant p53 monomers can
form hetero-tetramers with WT p53 and hinder sequence-specific
DNA binding, exerting dominant-negative (DN) effects12 and
reducing the ability of WT p53 to bind to the target genes in
presence of mutant p53, as confirmed by chromatin immunopre-
cipitation (ChIP)13. In addition to the DN effect, diverse
neomorphic GOF effects of different p53 missense mutant
proteins are also described, such as, transgenic mice with null
vs. missense TP53 alleles show a different tumor spectrum. For
example, heterozygous TP53R270H/+ (human R273H) and TP53R172H/
+ (human R175H) mice formed allele-specific tumor spectra
differing from TP53+/− mice14–16. TP53R270H/+ mice had primarily
invasive carcinomas with increased tumor burden, whereas
metastatic osteosarcomas were frequent in TP53R172H/+ mice
compared to the TP53+/− mice17. The heterozygous TP53 state,
associated with stabilization of mutant p53 and nuclear accumula-
tion, is observed in many mutant TP53-driven cancers as well as
during the early stages of tumorigenesis18,19. This in turn may
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amplify the GOF properties of the missense mutant p53 and reveal
neomorphic functions not observed for WT or null conditions20–22.
In cultured cells, mutant p53 proteins promote genomic
instability, cell proliferation, apoptosis resistance, chemoresis-
tance, cell migration and invasion23–26. In vivo, mutant p53 knock-
in mice with homozygous mutations of R248Q and G245S showed
early onset of different tumor types in comparison to the TP53 null
mice27.
Breast cancer is heterogeneous, comprising different subtypes

with characteristic molecular features, prognoses, and therapy
responses, broadly classified into basal-like, HER2 overexpressing
and luminal types28. The basal-like subtype is typically ER, PR and
HER2 receptor-negative, hence, triple-negative breast cancer
(TNBC) and displays high grade, mitotic, aggressive, metastatic
behavior, relapse with distant metastasis, and consequently has
shorter time to progression and worse disease-free survival with
the fewest treatment options29–31. TNBC is highly heterogeneous
and in turn consists of six more subtypes32,33 with prevalent TP53
mutations and somatic mutations in other genes, variable
between and within tumors34. Somatic mutations in TP53 are
known to occur early in breast cancer35 and Ductal Carcinoma In-
Situ (DCIS), preceding invasion, and the mutation frequency
increases with the grade of DCIS tumors. More than 100 different
TP53 missense mutations are found in 30% of all breast tumors36

and occurs in 88% of basal-like, 26% of luminal, and 50% of
HER2+ subtypes37. TP53 mutations are also more prevalent in
recurring tumors compared to primary breast tumors (41% and
23%, respectively), indicating the importance of TP53 mutations
for breast tumor progression38. However, the clinical significance
of different missense mutations in breast cancer progression
remains unclear.
As an atypical tumor suppressor, key questions on TP53 remain

unanswered: do different missense mutations exert unique GOF
activities that contribute to oncogenesis; and by what mechan-
isms? Although studies on a few p53 mutants show potential
neomorphic GOF of the individual mutants20,21, systematic
comparisons between many different TP53 missense mutations
have not been reported. Therefore, we generated a panel of ten
MCF10A cell lines, each expressing a different missense mutant
p53 protein, and investigated their cellular and molecular
characteristics. Our model system, MCF10A, a spontaneously
immortalized but non-transformed mammary epithelial cell line
with WT TP53 is negative for ERα, PR, and HER239 resembling
TNBC40. MCF10A recapitulates the formation of normal 3D
mammary acini-like spheroids and has been utilized to study
mammary gland development and effects of genetic alterations
on mammary cell transformation41. We characterized quantita-
tively the effect of each missense mutant p53 protein on multiple
cancer phenotypes and performed RNA-Seq and ChIP-Seq studies
to understand the molecular mechanisms driving the phenotypic
differences, with specific focus on the cell invasiveness, the early
step of metastasis frequently observed in TNBC. To quantify the
association of various biological pathways with cellular pheno-
types across the mutant p53 cell line panel, we specifically
developed customized pathway analysis methods. Our integrated
analyses from RNA-Seq and ChIP-Seq not only highlight neo-
morphic activities related to different TP53 missense mutations,
but also explain their cause by the molecular dynamics (MD)
simulation studies.

RESULTS
Characterization and quantification of multiple cancer
phenotypes of the panel of mutant p53 protein-expressing
MCF10A cell lines
We selected to study the ten most prevalent TP53 missense
mutations found in breast cancer patients (Supplementary Fig. 1a),

among which four mutations (R248Q, R248W, R273C, and R273H)
occur at residues that contact DNA (DNA contact mutations,
hereafter), and the remaining six mutations (G245S, H179R, R175H,
Y163C, Y220C, and Y234C) affect the overall structure of the DBD
(structural mutants, hereafter). In addition to the differences
among the individual mutations, it was of interest to see whether
there are generalities in how these two groups of mutations affect
cellular phenotypes, gene expression, and DNA binding proper-
ties. For the study, MCF10A cell lines stably expressing missense
mutant p53 proteins and endogenous WT TP53, were established.
Except for p53 mutant Y234C, western blots showed elevated
levels of all mutant p53 proteins (Supplementary Fig. 1b), thus
likely exerting DN effects on the endogenous WT p53 proteins.
The mutant protein levels were comparable to those of breast
cancer cell lines harboring missense TP53 mutations such as
HCC70 (TP53R248Q), MDA-MB-468 (TP53R273H), MDA-MB-
231(TP53R280K), AU565 (TP53R175H), and SK-BR-3 (TP53 R175H).
To investigate quantitatively how the missense mutant p53

proteins affect cellular phenotypes, we performed cell-based
functional assays for measuring major cancer hallmarks: 1) cell
viability in absence of growth factors; 2) resistance to apoptosis; 3)
cell migration; 4) cell invasion; 5) resistance to anoikis; and 6)
changes in mammosphere morphology and polarity. In addition
to the parental MCF10A cells with WT TP53 (WT cells, hereafter),
we included a control MCF10A cell line overexpressing the WT p53
protein (WTOE) to normalize for the protein-overexpression effects,
and the phenotypic values in mutant p53-expressing cells were
normalized as log2-transformed fold changes over the WTOE

values (Supplementary Table 1). Another control cell line with
knocked-down WT p53 (WTKD) using shRNA constructs was also
employed to underscore LOF vs. GOF activities of the missense
mutants. To confirm the knock-down, as endogenous p53 proteins
were hardly visible under normal growing conditions, we induced
and stabilized the p53 protein levels by treating with doxorubicin
and performing western blots. Supplementary Fig. 1c shows a
clear reduction of p53 proteins in WTKD cells compared to the
parental MCF10A (or WT) cells, whereas WTOE cells expressed a
very high level of V5-tagged p53 proteins.

Growth factor (GF)-independent survival
Cancer cells survive and sustain high cell proliferation rates even
in the absence of growth factors. The cell line panel was incubated
for 72 h in minimal medium with or without serum (S) and/or
epidermal growth factor (EGF or E hereafter) in combinations (+S
+E, +S−E, −S+E −S−E), and the viability was determined by the
CellTiter-glo assay. Under normal culture condition (+S+E), no
significant difference in cell viability was observed across the cell
lines (Supplementary Fig. 2a). In the absence of serum and EGF
(−S−E), WTKD cells survived better than the WT or WTOE cells
(Fig. 1a). The R248Q mutant showed significantly greater viability
than WTKD cells, indicating neomorphic GOF activity over the LOF
effects, and R273C, R248W, R175H, and R273H led to increased cell
viability but to a lesser extent. The G245S cells did not survive
without essential growth factors. In agreement with evidence that
mammary epithelial cells require EGF for the initiation of survival
signaling42, withdrawal of EGF (+S-E) decreased the viability of all
other p53 mutant cell lines, except R248Q that also survived better
than WTOE cells without serum (Supplementary Fig. 2a). Under the
GF-deprived condition (−S−E), enhanced proliferation was
observed for the mutants R175H and R248Q compared to WTOE

cells (Supplementary Fig. 2b), demonstrating an increased
capability of self-sustained proliferation. Likewise, mouse embryo-
nic fibroblasts (MEFs) extracted from the p53R172H/+ (equivalent to
human R175H) mice were more proliferative than p53+/− MEFs17.
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Resistance to apoptosis
Triggered by p53 upon DNA damage, apoptosis is a barrier to
cancer development, but mutations in TP53 abolish apoptosis43

causing resistance to drugs such as doxorubicin. To examine
doxorubicin-induced apoptosis, we measured the caspases 3/7
activities after 24-hour treatment with a range of concentrations
(0.3, 0.7, 1.0, and 3.0 µM) of doxorubicin around the reported IC50
for breast cancer cells of 1.0 µM44. Nearly all cells died at 3.0 µM,
and the results were excluded. Interestingly, when normalized to
the WTOE values, the trends of apoptosis levels across the cell lines
were different for different doses of doxorubicin. As shown in
Supplementary Fig. 3a, the trend at 0.3 µM was similar to that of
0.7 µM (Pearson’s R= 0.54) but not 1.0 µM (R=−0.40), and the
response differentials between cell lines were much larger at
0.3 µM, indicating that different p53 mutations affect the
sensitivity mostly at lower level of DNA damage. To summarize
the relative apoptotic resistance across multiple doses of
doxorubicin as a single representative value for each cell line,
we employed a scoring method of comparing the area between

the dose response curves of each cell line and the control WTOE

(Supplementary Fig. 3b). Overexpression of WT p53 did not affect
significantly the sensitivity to apoptosis from the parental MCF10A
cells (WT). The R175H cells were significantly more resistant than
WTOE, whereas G245S, R273H, R273C, R248W, and R248Q were
more sensitive (Fig. 1b). Interestingly, viability under GF depriva-
tion did not always correlate with apoptosis resistance. Mutants
like R248Q, R273C and R248W were more viable than WTOE under
GF deprivation but sensitive to cell apoptosis, whereas Y163C was
less viable but more resistant to apoptosis.

Cell migration and invasion
During cancer progression, adherent and polarized epithelial cells
undergo epithelial-to-mesenchymal transition (EMT) that allows
the cells to cut through the extracellular matrix in the basement
membrane45. WT p53 suppresses EMT, whereas mutations in p53
proteins cause destabilization of cell-cell junctions, delocalization
of β-catenin into cell cytoplasm46, and cell migration. When
migratory potential of the p53 mutant cells was measured using

Fig. 1 Effect of p53 missense mutations on hallmark phenotypes of cancer. Phenotypes were measured in three independent experiments
with replicates, and the results were normalized to the log2 fold change over the phenotype of p53 WTOE cells. The error bars represent the
standard error of mean (SEM) values, and significant differences (two-sided single-sample t-test) from the WTOE mean are indicated by red
asterisks for indicated p values. In all plots, cells were sorted by each phenotype, from less (left) to more (right) aggressive. a Survivability of
the cell line panel in absence of growth factors (serum and EGF) were measured by the CellTiter-glo assay. b Cell apoptosis was detected by
the level of activity of caspase 3 and caspase 7, and the reciprocal of luminescence were used to measure the level of resistance to apoptosis.
c Migration was assessed using the transwell assay. d Cell invasion was assessed using the transwell assay with Matrigel-coated chamber
membranes. e To measure anoikis, the death index (ratio of dead cells and live cells) was calculated for each cell line, and the reciprocal values
were used to measure the level of resistance to anoikis.
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the transwell plates (Fig. 1c and Supplementary Fig. 4a), Y220C,
R273C, R248W, and Y163C cells were significantly more migratory
than WTOE cells, whereas the least migratory mutants were G245S,
Y234C and R273H. Immunofluorescence staining for β-catenin and
vimentin on the least (G245S), moderately (R175H), and most
(Y220C and R273C) migratory cells showed that Y220C and R273C
cells displayed typical mesenchymal characteristics including a
spread “fan-like” morphology, delocalized β-catenin in the
cytoplasm, and prominent vimentin (a mesenchymal cell marker)
staining (Supplementary Fig. 4b).
Transwell chamber membranes coated with Matrigel were then

used to measure cell invasion (Fig. 1d and Supplementary Fig. 5a).
There was a clear distinction between weakly invasive Y234C,
H179R, and G245S cells and more invasive R273C, Y220C, and
R248W cells, which in general correlated with the levels of
migration. Interestingly, the R175H cells showed a moderately
increased migration but no change in invasiveness, demonstrating
that promoting migration is not sufficient for making cells
invasive. Further confirming this, when two of the migratory
mutants R175H (moderately migratory but not invasive) and
R248W (highly migratory and invasive) cells were seeded on a 3D
matrix of the type I collagen-coated wells with a Matrigel overlay,
R248W cells were detected up to 600 µm away from the base of
the well, while very few R175H cells could invade the Matrigel
overlay (Supplementary Fig. 5b). When compared to the meta-
static MDA-MB-231 TNBC cells, the most migratory and invasive
mutant p53-expressing cell lines, Y220C and R273C, were less
migratory but equally invasive (Supplementary Fig. 6), putting
these aggressive p53 mutations at an EMT induction level similar
to fully developed metastatic cancer cells.

Resistance to anoikis
To measure resistance to anoikis, which enhances tumor
metastasis47 and is often caused by loss of functional p5348, the
cell lines were grown in low-binding plates, mimicking the
detachment from the basement membrane, for 7 days to form
cell aggregates. The aggregates were stained with ethidium
bromide (EtBr) and Vybrant violet to identify dead (i.e., EtBr-
permeable) and live cells, respectively, (Supplementary Fig. 7) and
the death index (the ratio of dead to live cell counts) was
calculated (Fig. 1e). With higher death indices, Y234C and G245S
cells had greater sensitivity to anoikis than WTOE, while the other
mutant cells were more anoikis resistant, R273C and R248W being
the most resistant and forming spherical aggregates of live cells
(blue cells) detached from the 3D matrix (Supplementary Fig. 7).
Notably, anoikis resistant R248W and R273C were more sensitive
to apoptosis with doxorubicin treatment (Fig. 1b), indicating
opposing effects of the mutations on DNA damage- vs. cell
detachment-induced apoptotic programs.

The 3D mammosphere morphology
The MCF10A cells form growth-arrested, polarized hollow spheres
in 3D Matrigel matrix, called mammospheres, which resemble the
glandular epithelial architecture of mammary acini41. It was
reported that over-expression of WT p53 did not affect this
phenotype, but cells without p53 (null or WTKD) and cells with a
few hotspot TP53 mutations led to depolarized, disorganized cell
clusters with either filled or partially cleared lumen49. For high-
throughput assessment of mammosphere formation, we devel-
oped a modified ‘on-top’ method in a 96-well format, where cells
were seeded on top of a 3D Matrigel layer allowing mammo-
sphere formation within a focal plane for automated confocal
Z-stack imaging in a reduced time (~7–9 days).
When the area of the equatorial cross-section of mammo-

spheres derived from the cell lines (Fig. 2a) was measured, the WT
and WTKD cells formed mammospheres with comparable mean
areas of 471 and 449 µm2, respectively, while the WTOE cells

formed largest hollow spheres with a mean area of 785 µm2

(Supplementary Fig. 8). All mutant p53-expressing cells formed
smaller mammospheres with varying sizes, with the R273H cells
forming the smallest spheroids with a mean area of just 65 µm2,
and the maximum size variation was observed for R248Q, R248W,
and G245S. Interestingly, mammospheres formed by the two
most invasive mutants R273C and Y220C showed a significant
size difference with mean areas of 198 µm2 and 475 µm2,
respectively.
The hollowness of mammospheres was quantified by the area-

normalized DAPI signal intensities in 20 consecutive concentric
bins (or rings) from the center (Fig. 2b). The WTOE cells formed
mammospheres with cleared lumen like the WT cells, whereas
WTKD and all the p53 mutant cells except Y163C failed to clear
cells at the center. The mutants R273H, R248Q, and R273C, which
formed smaller spheroids, had prominent nuclear staining at the
inner bins indicating filled lumens, whereas the remaining
mutants had partially cleared lumens like the WTKD cells.
An important morphological characteristic of normal mam-

mospheres is the apical and basal polarization of the cells within
the peripheral layer. When the area-normalized staining
intensity of laminin, a protein that normally lines the outer
basal side of the spheroids, was measured across the 20
concentric bins (Fig. 2b), WTOE and WT cells had strong
peripheral laminin staining, indicating normal epithelial cell
polarity, whereas the laminin staining was detected inside the
mammospheres for WTKD cells, reflecting disrupted cell polarity
(Supplementary Fig. 9). The R248Q cells showed the strongest
laminin staining at the center, whereas the laminin intensity
remained constant across the bins for the mutants R273H,
G245S, and R273C that formed the dense mammospheres.
Notably, G245S-derived mammospheres showed very low
laminin levels overall, and the mammospheres formed by the
least invasive and the most anoikis-sensitive Y234C cells had
predominantly peripheral laminin staining.

Different missense mutant p53 proteins induce
heterogeneous neomorphic phenotypes
As summarized in Fig. 3a and Supplementary Table 1, different
missense p53 mutant proteins are functionally unequal, with
distinct “neomorphic” phenotypes unlike those of the WTKD cells,
and reminiscent of the phenotypic heterogeneity observed in
TNBC tumors31,50. Compared to the reference cell line WTOE, the
ten p53 missense mutants organized into groups with less or
more aggressive oncogenic behaviors, except mammosphere
polarity, where all missense mutants led to partially or fully
disrupted polarity. Across all phenotypes, p53 mutants R248W,
R273C, and R248Q were the most aggressive, which showed
increased migration/invasion, anoikis resistance and loss of cell
polarity in mammospheres, whereas the Y234C and G245S
mutants were the least aggressive. Since the expression levels of
mutant p53 proteins varied (Supplementary Fig. 1b), we also
examined whether the phenotypic differences were affected by
the relative protein levels between the cells. However, we
observed no significant correlation between protein levels and
the phenotypic trends except for a moderate, but not significant,
correlation to the Resistance to Apoptosis (Pearson’s R= 0.49,
p= 0.224).

Association of cellular phenotypes with overall survival of
breast cancer patients with missense p53 mutations
To examine whether the overall and individual phenotypic
trends were associated with clinical phenotypes, we have
performed bioinformatics analyses on publicly available
patient-based datasets of TCGA51 and METABRIC52. When the
basal-like subtype of patients with either wild-type TP53 (n= 67)
or the ten missense TP53 mutations (n= 90) used in our study
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Fig. 2 Morphology of the MCF10A p53 mutant-induced mammospheres. a Low-magnification image (scale bar: 100 μm) of the
mammospheres formed by p53 missense mutants in Matrigel by on-top method stained for nucleus (DAPI, blue), laminin (green), and
β-catenin (red). The cell lines were ordered by the degree of polarization shown below in (b) which shows the hollowness and laminin staining
of the mammospheres. The nuclear DAPI intensity was measured in 20 concentric bins from the center of the mammospheres (left panel). The
right panel shows the laminin staining intensity profiles across the bins, where laminin signal intensity in the inner bins indicate disruption of
cell polarity. The intensity value data was normalized to the total number of pixels for each spheroid.
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Fig. 3 Cellular phenotypic heterogeneity of MCF10A cell lines expressing 10 different mutant p53 proteins. a The phenotype
measurements for each of the p53 mutant-expressing cells were normalized (as log2-transformed mean fold changes) over those of the
control p53 WTOE cells and displayed as a heat map. The cell lines were sorted by the mean of the normalized values for all 6 phenotypes. The
p53 mutants are color-coded by mutant type as indicated. The detailed results are in Supplementary Table 1. b Five-year survival rates of
basal-like breast cancer patients with different missense TP53 mutations were obtained from TCGA and METABRIC datasets and visualized by
the Kaplan-Meier plot. Only the mutations with 3 or more corresponding samples were used. The mutations were color-coded by the
phenotypic aggressiveness (red: more aggressive, blue: less aggressive), and the WT TP53 curve is shown in black. c Correlation between the
overall aggressiveness and the 5-year survival rates for different p53 mutations is shown with the Pearson’s correlation coefficient (R) and the p
value. The blue bands represent the 95% confidence intervals.
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were selected and grouped by the TP53 mutation type, it was
immediately noticeable that there were only two or fewer
patients with either Y234C or G245S mutations, in agreement
with their least aggressive behaviors in our phenotypic assays
(Fig. 3a). When the 5-year overall survival rates of patients with
the remaining 8 TP53 mutations with 3 or more available
samples were then compared along with the WT p53 group,
there was a clear correlative trend between the overall
phenotypic aggressiveness and the survival rate (Fig. 3b and
Supplementary Fig. 10a). Patients with the most aggressive
R248W and R273C mutations based on our cellular assay had the
lowest survival rates, whereas those with less aggressive Y163C
and R179R mutants showed higher survival rates with a marginal
statistical significance (log-rank test p= 0.072) (Supplementary
Fig. 10b). In addition, quantitative assessment confirmed a

strong and significant inverse correlation (Pearson’s R=−0.774,
p= 0.024) between the overall phenotypic aggressiveness and
the survival rates (Fig. 3c). When the association of individual
cellular phenotypes were tested, Cell Invasion and Resistance to
Anoikis both showed significant inverse correlations with the
survival rates (Supplementary Fig. 10c), indicating strong
relevance of these cell-level phenotypes to the clinical
representation of fully developed cancer. Despite the limited
availability in clinical sample size, these suggest that the results
obtained by using our cell-based model reflect reliably the
clinical phenotypic aggressiveness and that the clinical pheno-
types may be predisposed by the type of TP53 missense
mutations and the accompanying cellular changes acquired at
the very early stage of cancer development.

Fig. 4 Transcriptomic profiles of mutant p53-expressing MCF10A cell lines and phenotype-associated pathways. For the top 15
phenotype-associated pathways for each phenotype selected based on the minimum rank in GSEA, ssGSEA, and PLSR results, the percentile
ranks are displayed as heat maps. The pathways discussed in texts are color-coded, as indicated. KP KEGG pathways, RP Reactome pathways,
WP WikiPathways, and OS MSigDB Oncogenic Signatures. RNA-Seq and pathway analysis results are in Supplementary Table 2.

A. Pal et al.

7

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2023)    78 



Fig. 5 The Hippo/YAP/TAZ pathway is strongly associated with invasiveness of cells expressing different p53 mutants. a Biplots for a PLSR
model trained on ssGSEA scores of the entire pathway terms in WikiPathways database and the vector of invasiveness is shown. The model
was based on top 5 pathway terms that were identified by cross-validated forward feature selection. Cell lines (colored by invasiveness) were
transformed and projected on a 2-component space, and the explained variance of invasiveness by each component is shown in the axis
labels. The loadings of pathway terms were scaled to fit the data range and displayed as green lines. b Biplot for a PLSR model trained on
expression values of genes in the Hippo-YAP Signaling Pathway (WikiPathways) and the vector of invasiveness is shown. Analysis performed as
described for Fig. 5a. c In the WikiPathways diagrams for the Hippo/YAP/TAZ pathways, individual genes were color-coded by the Pearson
correlations between gene expression levels and invasiveness across the 13 cell lines. d Transcriptional activity of TEAD proteins was
measured in the 13-cell line panel in triplicates by a cell-based luciferase reporter assay. The luminescence values were normalized to the log2
fold changes over the WTOE values. The difference between a group of two more invasive cells (R273C and Y220C) and four less invasive cells
(Y234C, WT, H179R, and G245S) was tested by the two-sided Student’s t-test. Pearson’s correlation between the normalized TEAD activities and
the invasiveness across the cell lines was also calculated (bottom box).
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Transcriptomic profiling and integrative quantitative pathway
analysis identified functional trends associated with
phenotypes of mutant p53-expressing cells
Given that p53 is a transcription factor and that these missense
mutations cluster in the DBD, we hypothesized that these diverse
phenotypes might arise largely from disparate transcriptional
regulatory functions of each mutant p53 protein with downstream
changes in gene expression profiles and cellular pathways.
Although non-transcriptional mechanisms, such as altered
protein–protein interactions, might also contribute to the
neomorphic phenotypic changes, in this study, we focused on
the gene regulatory effects (RNA-Seq) and the DNA binding
properties (ChIP-Seq) of different p53 mutant proteins, followed
by comprehensive bioinformatics analyses to infer molecular
mechanism underlying the phenotypic heterogeneity.
As we used unprovoked cells for phenotype measurements, we

profiled the baseline transcriptome (i.e., without p53 inducers
such as doxorubicin or irradiation) using RNA-Seq on the entire
cell panel (Supplementary Table 2a). Principal Component Analysis
(PCA) using the most variably expressed genes (n= 2383) across
the cell lines positioned all p53 mutant-expressing cell lines
separately from the control cell lines (Supplementary Fig. 11a),
among which the R273H cell line was distantly positioned,
indicating the most distinct gene expression profile. When overall
aggressiveness was overlayed onto the PCA plot, the most
aggressive R248W, R273C, R248Q, and Y220C mutants clustered
in proximity (i.e., sharing similar gene expression profiles), while
the less aggressive Y234C and G245S mutants spread out,
indicating distinct gene expression profiles between them. No
clear separation between different mutation types was observed
(Supplementary Fig. 11b). When individual phenotypes were
examined, more invasive, migratory, or anoikis-resistant p53
mutants shared relatively similar global gene expression profiles
(Supplementary Fig. 11c).
To find biological pathways that were correlatively dysregulated

with phenotypic trends among the 13 cell lines, we developed a
set of three pathway analysis methods (Supplementary Fig. 12)
tailored specifically for quantifying the associations between two
sets of continuous variables (i.e., phenotypic scores vs. gene
expression profiles across the cell lines), in contrast to conven-
tional methods such as Fisher’s exact test for analyzing discretized
data (e.g., non-invasive vs. invasive cells). We searched for
pathways that were enriched among the genes with a strong
expression-to-phenotype correlation across the 13 cell lines by
using the Gene Set Enrichment Analysis (GSEA)53 (Supplementary
Table 2a). We also computed the enrichment levels of pathways in
each cell line by the single-sample GSEA (ssGSEA)54 and then
measured correlation of the enrichment levels with the pheno-
types. Lastly, we adopted a machine-learning approach of Partial
Least Squares Regression (PLSR), a robust regression modeling
method suitable for analyzing high dimensional data with small
sample sizes55,56. Multivariate PLSR models were trained on
expression values of a given pathway gene set to fit best to the
phenotypic trends, and the pathway-to-phenotype association
was assessed by measuring correlation between the observed and
the model-predicted phenotypic values. For robust measurement
of model performance, fivefold cross-validation was employed.
A total of 2093 pathway terms were ranked for phenotype

association by the enrichment p values (GSEA, Supplementary Table
2b), the absolute phenotype correlation (ssGSEA, Supplementary
Table 2c), and the correlation between observed and model-
predicted phenotypes (PLSR, Supplementary Table 2d). When the
top terms for each phenotype were selected by using the minimum
percentile ranks of the three methods as the overall summary
metric, several terms were represented broadly across different
phenotypes, including multiple signaling and metabolic pathways
(Fig. 4). Most notably, multiple Hippo/YAP/TAZ pathway-related

terms were observed for cell invasion, GF-independent survival,
resistance to apoptosis, and disrupted mammosphere polarity, such
as “Hippo-YAP Signaling Pathway”, “YAP1_DN” (down-regulated
genes upon overexpression of YAP1), and “Cordenonsi YAP
Conserved Signature” (evolutionary conserved downstream target
gene signature of YAP). Especially for invasion, the Hippo pathway
was significantly enriched among the highly ranked gene sets (GSEA
p= 0.0004). In comparison, several KRAS-related terms were also
observed, but the enrichment was not significant (GSEA p= 0.64).
We then quantified relative association strength of each pathway to
phenotypes by performing PLSR on ssGSEA values of entire gene
sets (e.g., WikiPathways) with cross-validated feature selection.
Figure 5a shows that the fitted PLSR model with top 5

invasion-associated pathways were able to explain 88% of the
phenotypic variance and project them in 2D space by their
invasiveness from the top left (less invasive) to the bottom right
(more invasive). Further, the “Hippo-YAP Signaling Pathway” was
identified as the top contributing pathway to increased
invasiveness during the feature selection process. The Hippo/
YAP/TAZ pathway regulates a wide range of cancer phenotypes
including cell proliferation, survival, EMT, anchorage indepen-
dent growth, cell migration, invasion, and stemness57–59. In
addition, top-ranked included pathways related to SREBP (or
SREBF) (Fig. 4), a master transcriptional regulator of mevalonate/
cholesterol metabolism and a known upstream regulator of the
Hippo pathway acting via Rho GTPases60. Figure 5b shows a 2D
component projection (explaining >90% of phenotypic var-
iance) of cell lines by a PLSR model trained with the top 5
feature-selected genes in the Hippo pathway, where expression
levels of MST1 and TNIK contributed positively or negatively,
respectively, to invasiveness in the different mutant p53
background. When expression of the Hippo pathway genes
was examined, most of the genes were highly expressed in
invasive cells, with MST1 (or STK4), LATS2, and TEAD2 strongly
correlating with invasiveness (Fig. 5c and Supplementary Fig.
13a). In addition, expression of a large fraction of the down-
stream target genes of YAP/TAZ activation in the Cordenonsi YAP
Conserved Signature also positively correlated with invasiveness
(Supplementary Fig. 13b). These suggest that coordinated
transcriptional regulation of the Hippo pathway genes down-
stream of different mutant p53 proteins may govern
invasiveness.

Dysregulation of hippo pathway correlated with invasiveness
of cells with different p53 mutants
We then sought functional confirmation if the Hippo pathway
activity was concordantly regulated with invasiveness of the p53
mutant cell lines, which was significantly associated with survival
rates of basal-like breast cancer patients (Supplementary Fig. 10c).
As depicted in Fig. 5c, the tumor suppressor activity of the Hippo
pathway leads to phosphorylation of the YAP/TAZ proteins by
LATS1/2 kinases, causing their cytoplasmic retention and
degradation. In contrast, the unphosphorylated forms of YAP/
TAZ drive oncogenesis by partnering with TEAD transcription
factors to increase transcription of the relevant targets61. To test
whether activity of the Hippo pathway correlated with cell
invasion, we measured the transcriptional activity of TEAD protein
(i.e., the functional output of YAP/TAZ activation) in cells by
transfecting with the luciferase reporter plasmid with TEAD-
binding sequence motifs. As shown in Fig. 5d, the TEAD-mediated
transcriptional activation was significantly correlated with inva-
siveness (Pearson’s R= 0.73, p= 0.005) across the 13 cell lines.
Further, the two most invasive cell lines, R273C and Y220C
showed significantly higher (two-sided t-test p= 0.0001) TEAD
activities than those of the four least invasive cells. These
demonstrated that the Hippo/YAP/TAZ/TEAD axis may be a key
contributor for phenotypic heterogeneity determining the
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invasiveness of the cells expressing different missense p53
mutations, in agreement with the reported role of TAZ in breast
cancer development and aggressive phenotypes in cell/animal
models62 and breast carcinomas63. In our RNA-Seq data,

expression of WWTR1 (the gene symbol of TAZ) but not YAP1
was also elevated in invasive cell lines (Fig. 5c and Supplementary
Fig. 13a), implying the selective regulation of TAZ transcription by
different mutant p53 proteins in promoting cell invasion.
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Association of the Hippo pathway dysregulation with basal-
like molecular subtype of breast tumors and survival rates
To investigate whether the dysregulated Hippo/YAP/TAZ pathway
signature identified from the MCF10A model is relevant for other
cancer cell lines and tumors, we performed bioinformatics analysis
on the Hippo pathway activities in a broad spectrum of breast
cancer cell lines in CCLE64 as well as patient tumor sample data in
TCGA and METABRIC databases. ssGSEA analysis on RNA-Seq data
showed that elevation of genes in multiple Hippo-related pathway
was a distinct signature of the basal-like breast cancer subtype
among cell lines (Supplementary Fig. 14a, left panel) as well as
tumors (Supplementary Fig. 14b, c, left panels). Interestingly, when
analyzed by PCA based on the pathway enrichment scores, the
Hippo pathway signature was more strongly associated with the
basal-like subtypes of cell lines and tumors than other major
cancer-associated pathways including p53, PI-3K, or Ras pathways
(Supplementary Fig. 14, right panels), as indicated by the higher
Calinski-Harabasz (CH) Indices of the Hippo pathway, which
measured the strength of clustering of the basal-like sample
group relative to other subtypes. Therefore, more aggressive p53
mutants may push the cell phenotypes towards more basal-like by
inducing selectively ectopic activation of the Hippo pathway.
We then examined whether the elevated Hippo/YAP/TAZ

pathway signature was associated with clinical phenotypic
aggressiveness. When the basal-like samples in TCGA and
METABRIC were selected and clustered by ssGSEA enrichment
scores for the Hippo-related pathways, three clusters with high,
mid, and low levels of enrichments were observed (Supplemen-
tary Fig. 15a). When we then compared the 5-year survival rates,
the Hippo-high/mid groups had poor survival with a marginal
statistical significance (log-rank test p= 0.08, Supplementary Fig.
15b, top panel). Importantly, when the same method was applied
to other cancer-related pathways, we didn’t observe any
difference between the sample groups with higher and lower
pathway enrichments (Supplementary Fig. 15b, bottom panels).
These suggest that dysregulation of the Hippo/YAP/TAZ pathway
is a district signature of clinically aggressive tumors within the
basal-like subtype.

ChIP-Seq uncovered heterogeneity in DNA binding capacity
and preference
The p53 protein is a transcription factor with approximately 300
known target genes, which binds to a well-conserved motif65. To
test how different missense mutations affect the DNA binding
properties, particularly regarding invasiveness, we performed
ChIP-Seq on two invasive R273C and Y220C and two less invasive
R273H and Y234C cell lines by using an antibody against the V5
tag fused at the C-term of p53 mutant proteins. We also included
the WTOE cells as a positive control and the WT cells expressing
only endogenous WT p53 as a negative control. To enable an
integrated analysis, we matched the RNA-Seq experimental
conditions using cells under unstimulated culture conditions,
which contrasts with other p53 ChIP-Seq experiments performed
after treating cells with doxorubicin or 5-FU to elevate the p53

protein levels and induce DNA binding66,67. Thus, p53 DNA
occupancy levels in our setting were expected to reflect the lower
tonic conditions of the early-stage TP53-mutated tumor cells in the
absence of excessive DNA damage or cellular stresses.
When compared to the WTOE cells with 11,277 peaks, fewer

peaks were identified for R273C, Y220C, and Y234C cells (733,
1517, and 2145 peaks, respectively), suggesting substantially
reduced DNA binding, whereas R273H showed increased DNA
binding capacity (25,309 peaks) (Supplementary Fig. 16a). It was
particularly interesting that two mutations at the same DNA-
contacting residue, R273C and R273H, resulted in contrasting
changes in DNA binding capacity, which may underlie their
opposite phenotypic trends. Only 6.7% and 4.7% of peaks for
R273C and R273H, respectively, were identified within the
promoter regions (defined as −2500 to +100 bps of the
transcription start sites) (Supplementary Fig. 16b), markedly less
than the fractions observed in Y220C (17.3%), Y234C (21.9%), WTOE

(18.3%) as well as the entire human genome (8.7%). These
mutations at R273 apparently distinguish the DNA binding
capacity from the sequence-specific recognition within promoters,
especially R273H, which binds to more sites but not specifically. All
four mutant p53 proteins, particularly R273C and Y220C, lost
promoter binding to native transcriptional target genes of WT p53
and bound to alternative genes (Fig. 6a and Supplementary Table
3a) with a limited overlap between them (Supplementary Fig. 16c).
Pathway enrichment analysis (hypergeometric test) on the
promoter-bound genes demonstrated that the target genes of
p53 mutants shared only a small fraction of enriched pathways for
the WT p53 (Fig. 6b), implying a major alteration in downstream
cellular events. Overall, the weakly aggressive mutants, Y234C and
R273H, shared significantly more common pathways (Chi-squared
test p < 1.0e−10) with WT than the aggressive Y220C and R273C
mutants. When we examined correlation between the pathway
enrichments and invasiveness, a total of 52 pathways showed
significant inverse correlation with invasiveness (Pearson’s correla-
tion p value < 0.05, Fig. 6c and Supplementary Table 3b). Not
surprisingly, given the loss of DNA binding in the more invasive
cells, no pathways were more enriched in invasive cells. The
identified pathways included the Hippo Pathway, implying
transcriptional dysregulation by more invasive p53 mutants.
Demonstrating loss of binding to known p53-targeted genes,
p53/DNA damage/stress response-related pathways were
depleted in more invasive Y22C and R273C cells. Other invasion-
associated pathways were related to Wnt signaling, nuclear
receptor signaling, and intracellular trafficking. Together, these
results indicate that loss of binding to canonical p53 targets by
mutant p53 proteins and the concomitant neomorphic gain of
DNA binding preference may be contributing mechanisms to
heterogeneity in invasiveness induced by different missense
mutant p53 proteins.
Consistent with the absence of p53-binding inducers, we

observed the canonical p53 binding motif of RRRCWWGYYY68 in
only 15.5% of all identified peaks even for the WTOE cells. This
agrees with a previous study of WT p53 in the absence of any
stress stimuli69 but was less than 30% for other studies that used

Fig. 6 Characterization of DNA binding properties of 4 different p53 missense mutant proteins by ChIP-Seq. a Genes that were targeted
(peak detection q < 0.05) by WT and mutant p53 proteins at the promoter region are shown as a heat map. The colors represent the −log10 q
values. b Enriched pathways (hypergeometric test p < 0.05) in the identified targets of WT and mutant p53 proteins are shown as a heat map
of −log10 p values. Representative results based on the WikiPathways pathway set are shown. c Enrichment of the canonical DNA binding
motif of the p53 protein family in promoter regions for WT and mutant p53 proteins. The color represents −log10 (hypergeometric test q).
d Invasion-correlated (Pearson’s correlation p value < 0.05) pathways that were enriched in target genes (hypergeometric test p value < 0.1) of
WT or mutant p53 proteins. The terms were sorted by the pathway groups (shown in left). e Enrichment of top known transcription factor
binding motifs within identified peaks for WT and mutant p53 proteins. The color represents −log10 (hypergeometric test q). f The bar plot
shows the number of de novo motifs (p < 1.0e-10) found for WT and mutant p53 proteins. g Enrichment profile of de novo binding motifs for
WT and mutant p53 proteins are shown. The color represents −log10 (hypergeometric test p). The detailed ChIP-Seq analysis results can be
found in Supplementary Table 3.
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p53-inducing conditions67. Nonetheless, the p53-binding motif
sequence was significantly enriched for the WT p53 (hypergeo-
metric test p= 1.0e-9) followed by R273H (hypergeometric test
p= 1.0e-7), but not for other mutants (Fig. 6d). Similarly, well-
known targets of WT p53 such as CDKN1A were bound by only
p53 WTOE and R273H but not the other p53 mutants (Supple-
mentary Table 3a). When enrichment of all known transcription
factor binding motifs were compared, R273H and WTOE cells
showed a similar profile, while other mutants had reduced levels
of motif enrichment (Fig. 6e, Supplementary Fig. 16e, and
Supplementary Table 3c). Notably, the R273C mutant almost lost
overall DNA binding capacity (Fig. 6a) but appeared to gain
binding to a new motif, such as the CUX1 motif (Fig. 6e). Further, a
de novo motif discovery analysis showed that a total of 101 motifs
(FDR < 0.05) were identified across all cell lines, and R273C and
R273H bound to fewer motifs than WT, Y220C, and Y234C (Fig. 6f
and Supplementary Table 3d). When the cell lines were clustered
based on the enrichment levels of de novo motifs, R273C showed
the most distinct profile from that of WT p53 (Fig. 6f, g). Overall,
our ChIP-Seq analysis demonstrated that R273H retained similar
DNA binding capability and preference as the WT p53, while the
R273C was dissimilar.

Transcriptional regulatory function of different p53 missense
mutants inferred by integrated analysis of RNA-Seq and ChIP-
Seq data
To estimate the contribution of p53 mutant protein to altered
gene expression, we integrated the RNA-Seq and ChIP-Seq data
and quantified the fraction of the differentially expressed genes
(DEGs) that were promoter-bound by the p53 mutant protein (Fig.
7a). As p53 functions as both a direct transcriptional activator and
an indirect transcriptional repressor70, the direction of differential
expression was also examined. The mutants R273H and Y234C
induced both positive and negative gene expression changes, of
which a large fraction (64/95 and 38/137 genes, respectively)
corresponded to direct promoter-binding targets of the mutant
p53 forms (indicated by a black ring). In contrast, the invasive p53
mutants, R273C and Y220C, were biased towards upregulated
genes, and very few of the mutant DEGs were promoter binding
targets, indicating an indirect mode of transcriptional regulation
(Fig. 7b).
As the Hippo/YAP/TAZ and the SREBP pathways were identified

as the top invasion-associated pathways, we examined whether
the genes in these pathways were directly targeted by mutant p53
proteins. Interestingly, all four p53 mutants lost promoter binding
to all or most genes in the pathways that were normally bound by
WT p53 such as PDGFRB and AKT1, but less invasive mutants
Y234C and R273H gained binding to a few genes that were not
bound by WT p53 (Fig. 7c), implying pathway dysregulation and
consequent phenotypic alteration.
Examination of individual target genes of mutant p53 proteins

provided insights on the potential regulatory action of each
mutant. For example, TFAP2A was a binding target of the least
invasive Y234C mutant and displayed a twofold increase in mRNA
expression in Y234C cells, in agreement with a report that
overexpression of this gene associates with less cell migration and
invasion71. CASZ1 gene promoter was bound only by R273H, and
the expression was specifically abolished in R273H cells. CASZ1
encodes a zinc finger transcription factor and a tumor suppres-
sor72,73, and the somatic mutations in breast cancer were
associated with poor survival (Supplementary Fig. 17).
In summary, our cancer phenotype characterization and

integrated analysis at the molecular level demonstrate hetero-
geneous cellular phenotypes induced by different p53 missense
mutant proteins that can be attributed in part to the mutant-
specific changes in downstream target gene expression via both

direct and indirect regulatory mechanisms by altered DNA binding
capability and preference.

DISCUSSION
More than 100 different missense mutations occurring in TP53
may drive the heterogenous behavior of TNBC tumors. To explore
these in a consistent cellular background, we generated stable
MCF10A cell lines expressing the ten most common missense
mutant p53 proteins in breast cancer. Based on the observed
levels of mutant proteins (Supplementary Fig. 1b), the p53
tetramers in the cell lines predominantly function as mutant
p53. The quantified phenotype scores for six cancer-like cellular
behaviors for each cell line (compared to control WTOE cells) were
compared to their gene expression profiles and promoter binding
by the mutant proteins and inferred pathway-level mechanisms
underlying the heterogeneity. By not stimulating or provoking the
cell lines, except doxorubicin treatment to measure apoptotic
resistance, our assay results likely captured the functional impact
of the founding driver mutations in TP53 close to physiological
conditions at the early stage of breast cancer development in vivo.
The mutant p53-expressing cell panel showed a range of
phenotypic differences via gain-of-function, distinct from the
loss-of-function phenotypes of WTKD cells, and the direction and
the extent of the changes by each mutant was highly variable
(Figs. 3a and 8). This reflects that the mutations affect different
cellular functions of p53 to varying degree. It should be noted that
the summarized or averaged phenotypic aggressiveness (Fig. 3a)
was primarily to describe the relative differences in phenotypes
within the tested cell lines in the context of phenotypic
heterogeneity. The absolute levels of aggressiveness would
otherwise require a large comparative study with cancer cells
with a broad range of well-defined aggressiveness for each
phenotype. Notably, no obvious trend distinguishing the conven-
tional DNA contact and the structural mutants was observed
throughout the study.
Compared to breast cancer cell lines with multiple oncogenic

mutations that have been used to study cellular impacts of TP53
mutations, the isogenic MCF10A cell line model used in this study
is highly informative in measuring the p53 missense mutation-
specific changes without confounding interference from other
genetic and epigenetic alternations, although we fully acknowl-
edge that single cell line models have clear limitations in
understanding the full spectrum of functional impacts of TP53
mutations in the context of highly heterogenous TNBC. Impor-
tantly, the heterogeneous phenotypic changes induced by the ten
different p53 mutants in this study correlated well with overall
survival of the basal-like breast cancer patients (Fig. 3b, c, and
Supplementary Fig. 10), which supports the clinical relevance of
our MCF10A model system for studying cellular and molecular
mechanisms of the phenotypic heterogeneity. The results also
suggest that the type of TP53 missense mutations acquired at the
very early stage of cancer development may predispose breast
tumors to more aggressive clinical phenotypes. In agreement, the
invasive R273C and Y220C mutants showed comparable levels of
invasiveness to that of metastatic MDA-MD-231 cells (Supplemen-
tary Fig. 6) with a TP53 mutation (R280K) and other oncogenic
mutations in BRAF, KRAS, and TERT genes. However, when we
xenografted the aggressive R273C, R248W, and Y220C cells and
the less aggressive Y234C cells (n= 2 each) in the NOD/SCID mice,
no detectable tumor was observed up to 10 months post
injection, whereas the control MDA-MB-231 cells formed tumors
that metastasized to the lung and the liver within 2 months
(unpublished results), agreeing that TP53 mutation alone is not
sufficient to enable tumor formation in vivo74,75. Gaining a partial
set of cancer hallmark phenotypes in vitro from TP53 missense
mutation is not sufficient for tumor formation in vivo, which
requires additional mutations for aggressive phenotypes. We are
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Fig. 7 Integrated analysis on RNA-Seq and ChIP-Seq. a Gene expression levels, shown as log2(TPM), in each p53 mutant cell line (y axis)
were compared to the mean expression levels in the other 9 mutant p53 expressing cell lines (x axis), and the differentially expressed genes
(DEG, Z score-converted q < 0.05) were color-coded according to the correlation between expression levels and invasiveness across all cell
lines. To examine the impact of p53 binding on the direction and the degree of expressional changes, the promoter-targeted genes identified
by ChIP-Seq for each p53 mutant are highlighted with black border. b The numbers of promoter-targeted (in orange) and non-targeted (black)
DEGs by each p53 mutant are shown. c Promoter-targeted genes (peak detection q < 0.05, in black) by WT and mutant p53 proteins in the
Hippo/YAP/TAZ and the SREBP pathways are displayed as heat maps.
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currently performing genome-wide screening to find such
additional mutations that can drive TNBC development in
collaboration with specific missense TP53 mutations,
In our study, the p53 mutants R248W, R273C, Y220C, and R248Q

showed more aggressive phenotypes across all cancer hallmarks
(Fig. 3a). R248Q and R248W mutants were resistant to
doxorubicin-induced apoptosis, and, in locally advanced breast
cancer patients receiving doxorubicin monotherapy, point muta-
tions at the R248 residue were implicated in primary resistance to
doxorubicin and early relapse in patients76. Li-Fraumeni Syndrome
(LFS) patients with germline mutations at position R248 showed
faster tumor onset and worse survival than those at G24577. The
expression of the R248W mutant in p53-null H1299 lung
carcinoma cells stabilized Slug, a driver of EMT, to promote cell

invasion78, a behavior also observed in our study. In line with our
results (Fig. 2, Supplementary Figs. 8 and 9), earlier work showed
that knock-down of endogenous WT p53 in MCF10A cells led to
formation of mammary acini with partially cleared lumen and
altered staining of β-catenin and laminin V, whereas ectopic
expression of R248W led to disrupted acini with filled lumen and
increased expression of mesenchymal markers49. Further, in
agreement with our survival analysis results (Fig. 3b and
Supplementary Fig. 10), in a report on 1794 women with primary
breast cancer79, the R248W mutation (n= 8) was associated with
the poorest prognosis compared to any other missense mutations,
and missense mutations at R248 residue were also associated
significantly with shorter survival than the other TP53 hotspot
mutations80. In a recent in-vivo study81, mice with the somatic

Fig. 8 Overview of heterogeneous functional impact of different p53 missense mutations on cancer hallmark phenotypes. The
normalized phenotypic scores (as log2 fold changes over controls WTOE cells as shown in the legend) for each mutant p53 protein-expressing
cells are shown as bar plots. The cell lines were positioned by their relative phenotypic profiles calculated by PCA, while the positions of
phenotype names are approximately centered among the cells with more aggressive behavior.
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mutation Trp53R245W/+ (R248W in human) produced the most
aggressive and metastatic breast tumors with 46% metastasizing
early to the lung and the liver, whereas R172H (R175H in human)-
mutated tumors were less aggressive, and only a small fraction
disseminated to lungs.
The phenotypic effects of R273H, G245S, and Y234C mutants

were either similar to or weaker than those of WTKD (Fig. 3a).
G245S was the least aggressive of all mutants, where the only
notable cancer-like behavior was its formation of dense and
depolarized mammospheres, consistent with previous observa-
tions49. In contrast to R273C, R273H cells were apoptosis-sensitive
and less migratory and invasive, which agrees with a report that
the mutant R273H cooperated with p21 to promote Slug protein
degradation decreasing cell invasion82. The R273H cells were
resistant to anoikis, like the breast cancer cell line MDA-MB-468
harboring R273H mutation that resisted anoikis83. Breast cancer
patients with G245S mutation had better survival79 than the
patients with R248W mutation. Moreover, in LFS patients the G245
mutation associated with significantly delayed tumor onset80.
Despite exhibiting a reduced DNA binding activity than WT p53,
the G245S mutant still binds to the Gadd45 promoter84. The G245S
mutation was shown to destabilize p53 protein only by <2 kcal/
mol relative to WT p53, compared to >3 kcal/mol by R175H
mutation85. In agreement, our molecular dynamics simulations
showed similar DNA binding dynamics for mutant G245S (G242S
in mouse) and the WT p53 protein, wherein the number of protein
residues in contact with DNA was unchanged between WT and
G245S (Supplementary Fig. 18a, b). Both mutations G245S and
R273H introduce only localized changes in the protein conforma-
tion and preserve the tertiary folding found in WT p5386, providing
explanation for their limited impact on cellular phenotypes. The
rest of the p53 mutants Y163C, R175H, and H179R showed
moderately aggressive phenotypes comparable to that of WTKD.
Though the R175H protein was most abundantly expressed
(Supplementary Fig. 1b), the elevated mutant protein levels didn’t
lead to more aggressive phenotypes.
Integration of phenotype assays with the RNA-Seq and ChIP-Seq

results provided multi-level molecular profiles for inferring
functional impacts of different TP53 missense mutations. Taking
the advantage of our quantitative multi-dimensional phenotypic
and transcriptomics data, we developed a comprehensive path-
way analysis pipeline utilizing three complementary computa-
tional methods to interrogate linear relationships between the
pathway-wise gene expression matrix and individual phenotype
vectors and collectively identify the Hippo pathway as the top
term associated with aggressive phenotypes including GF-free
survival, resistance to apoptosis, cell invasion, and disrupted
mammosphere polarity (Fig. 4). A large fraction of genes in the
pathway and the downstream signature genes of YAP/TAZ
activation were elevated in more invasive p53 mutant cell lines
(Fig. 5c and Supplementary Fig. 13), in agreement with its roles in
cell proliferation, stemness, EMT, and drug resistance in breast
cancer57–59,87. Mutant p53 proteins and YAP/TAZ promote
tumorigenesis61,88,89 via direct interaction90,91 or mediated by
LATS2/MDM261. The SREBP/mevalonate pathway, another top
pathway associated with migration/invasion (Fig. 4), is also
functionally linked to the Hippo/YAP/TAZ pathway and TP53
mutations. Mutant p53 proteins (e.g., K280R) are known to
function as coactivators of SREBP-mediated transcription to turn
on the mevalonate pathway and the Rho GTPases, the upstream
activators of oncogenic YAP/TAZ functions60. WT p53 blocks
maturation of SREBP2, thus, repressing the mevalonate pathway92,
but mutant p53 upregulates the mevalonate pathway by
interacting with mature SREBP proteins93. Validating the in-silico
pathway analysis results, promoter binding to the Hippo and
SREBP pathway genes were significantly impaired in more invasive
cells (Figs. 6c, 7c), and a significant correlation was observed
between the invasiveness and the activity of TEAD, the

downstream transcriptional effector protein family of the Hippo
pathway (Fig. 5d). Further, the elevated Hippo pathway signatures
were strongly associated, even stronger than the p53 pathway,
with the aggressive basal-like breast cancer subtype in both cell
lines and tumors (Supplementary Fig. 14) and with poor survival
among the patients with basal-like tumors (Supplementary Fig.
15b), indicating that the Hippo/YAP/TAZ signature may be a
strong indicator or predictor of clinical phenotypic aggressiveness
in early-stage tumors and a potential therapeutic target for early
intervention.
Although YAP1 and TAZ proteins are considered functionally

redundant, there are reports of contextual dominance of one or
the other in certain settings. In our model system, only TAZ was
regulated concordantly with invasiveness through elevated mRNA
levels in more invasive cell lines (Fig. 5c and Supplementary Fig.
13). In agreement, TAZ protein but not YAP1 was more abundantly
expressed in highly invasive breast cancer cell lines62, and only
TAZ mRNA was significantly elevated in TNBC tumors over the ER-
positive tumors63. Directly relevant to our study, TAZ but not YAP1
was elevated in Ras-transformed MCF10A cells that formed high-
grade tumors in mice57, and overexpression of TAZ in MCF10A
cells increased cell invasion62. Further, hyperactivation of TAZ but
not YAP1 was shown to play a pivotal role in onset of basal-like
breast cancer in mouse model, and concomitant p53 knock-out
accelerated the process94. These collectively suggest that different
missense mutant p53 proteins lead to various levels of invasive-
ness via differential regulation of the Hippo/TAZ axis.
Our data showed that changes in a single amino acid resulted in

remarkable changes in the phenotype as well as the molecular
properties. For example, two different mutations at DNA-
contacting R273 residue displayed a striking difference in
phenotypic outcomes (Fig. 3a) and DNA binding (Fig. 6). The less
aggressive R273H mutant retained p53 motif-specific as well as
overall DNA binding capacity, while more aggressive R273C
showed near complete loss of DNA binding, potentially due to the
replacement of Arg with the smaller Cys. In agreement, R270H
mutation in mice (R273H in human) displayed weaker dominant
negative effects than other p53 mutants43. In MD simulation, both
R273C and R273H mutants showed fewer protein-DNA contacts
and weaker DNA interactions compared to WT p53 (Supplemen-
tary Fig. 18c). Though R273H showed some electrostatic interac-
tion with DNA that weakens over time, no such interaction was
seen for R273C. The number of R273H-DNA contacts reduced
slowly from 24 and stabilized to 6 over 100 ns during the
simulation. This reduction in contact was much more drastic for
R273C, reducing to two contacts almost instantly, and most of the
simulated models did not show any DNA contact of this residue.
Analysis of intermolecular interaction energies revealed that
R273H-DNA contact was mediated by electrostatic interactions
of the positively charged histidine with the nitrogen and oxygen
atoms of thymine 18 (Supplementary Fig. 18c). These electrostatic
interactions were eliminated in the R273C mutant, which resulted
in significantly lower interactions with the DNA. Of note, the native
arginine, with a higher pKa than histidine, formed stronger
contacts with the DNA. In addition, R273H had a subtle effect on
the thermodynamic stability and a half-life like that of WT p53,
whereas R175H caused strong structural perturbation destabilizing
the core domain95.
Though DNA contact mutations can alter crucial DNA contact

points without introducing large perturbations in overall structure
and DNA-binding surface, replacement with a large hydrophobic
side chain could prevent sequence-specific DNA binding. For
example, R248W with a hydrophobic tryptophan affected the
cancer phenotypes more severely than R248Q, with a polar and
positively charged glutamine. Surprisingly, mutant R248W showed
increased protein–DNA contact compared to R248Q through pi-
stacking interactions as deduced from MD simulation data
(Supplementary Fig. 18d). Though both mutants R248W and
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R248Q showed fewer protein-DNA contacts than WT p53, the
protein–DNA interaction changes are not as contrasting as R273H
and R273C mutants. At the G245 residue, substitution of glycine
with serine (G245S) does not severely impair the tertiary structure
of p53, and the L3 loop is conserved (Supplementary Fig. 18a),
which may explain why mutant G245S produced the least
aggressive phenotypes. In contrast, introduction of the bulky
histidine at R175 caused structural distortions and disrupted the
zinc-binding pocket of p5396, which might lead to moderately
aggressive phenotypes as in our study. Substitution of hydro-
phobic tyrosine with small cysteine residue (Y163C, Y220C, and
Y234C) created highly heterogeneous phenotypes. The Y220C
mutant protein was reported to contain a large surface crevice
and perturb the packing of the β-sandwich96, but our MD
simulation data did not show a significant change in protein-
DNA interactions. This is because the residue is located far (~30 Å)
from the protein-DNA surface, and the simulation times needed to
observe allosteric effects over such long distances are prohibi-
tively high. Overall, we observed a good correlation between the
deviation in structure and the function (phenotypes) of missense
p53 mutant proteins.

METHODS
Production of MCF10A cell lines expressing p53 mutant
proteins
The MCF10A cells (ATCC, CRL-10317) expressing WT and missense
mutant p53 proteins were made using the Gateway plasmids
generated by plasmid repository DNASU (dnasu.org). The TP53
gene inserts with missense mutations were transferred into
pLX304 (for WT p53, Addgene, # 25890) or pLenti4/V5-DEST
vectors (for missense mutants, ThermoFisher Scientific), and stable
cell lines were prepared through lentiviral transduction. DNASU
clone IDs for the plasmids are WT-p53 (HsCD00435064), Y163C
(HsCD00966033), R175H (HsCD00966046), H179R
(HsCD00966059), Y220C (HsCD00966058), Y234C (HsCD00966070),
G245S (HsCD00966022), R248Q (HsCD00966071), R248W
(HsCD00966065), R273C (HsCD00966038), and R273H
(HsCD00966072).

Cell culture
MCF10A cells (female mammary epithelial cells), including WT and
mutant 53-expressing cells, were cultured at 37 °C in a 5% CO2

humidified incubator. DMEM-F12 media (ThermoFisher #11320-
082) was supplemented with 5% Horse Serum (ThermoFisher
#16050-122), hEGF (10 ng/ml, ThermoFisher #PHG0311), hydro-
cortisone (0.5 µg/ml, Sigma #H0888), cholera toxin (100 ng/ml,
Sigma #C8052), and Insulin (10 µg/ml, Sigma #I9278). Cells were
routinely passaged with trypsin (0.25% in HBSS with 0.2 g/ml
EDTA, GE Healthcare #SH30042.01) at 80–90% confluence.
MCF10A cells were obtained from ATCC (CRL-10317,
RRID:CVCL_0598), and cell authentication has not been performed.
The cells were checked for mycoplasma infection at regular
intervals. The experiments were performed using cells with limited
passage numbers and fresh cell aliquots were used for replicate
experiments.

Western blot
Cells were grown to 80% confluency in six-well plates (Greiner
#5665-7160) and lysed using RIPA lysis buffer containing 50mM
Tris, 150mM NaCl, 1% IGEPAL CA-630 (Sigma #I9996), 0.1%
sodium azide (Sigma #S8032), cOmplete mini protease inhibitor
(Sigma #04693124001) or Halt protease and phosphatase inhibitor
cocktail (Thermo Scientific #78442), 200 µM sodium fluoride
(Sigma #S6776) and 200 µM of sodium orthovanadate (Sigma
#450243). Cells were scraped, incubated on ice for 10 min and

centrifuged at 7400 g. Lysates were quantified using the Pierce
BCA kit (#23225). Samples were run on 4–20% TGX gels from
BioRad (#567-1093) and blotted onto 0.45 µm PVDF membrane
(GE Healthcare #10600023) using the BioRad semi-dry transfer
system. Primary antibody for p53 protein from Sigma (#P6874)
diluted to 1:200 and secondary HRP-linked anti-mouse antibody
(Cell Signaling Technologies #7076) diluted to 1:3000 was used to
visualize p53 bands. The p53 mutant proteins were seen using the
V5 tag Ab (CST, Cat no 13202S). All blot images in each figure were
from the same experiment and processed in parallel.

Cell viability assay
Cells were parallelly plated in clear CellBIND 96-well plates
(Corning) for pictures and opaque white plates for chemilumines-
cent analysis (Perkin-Elmer) and allowed to grow for 24 h in
normal growth media before treatment. The following day, media
was replaced with the restricted media with or without growth
factors, serum and EGF. Human EGF (10 ng/ml, ThermoFisher) and
horse serum (5% v/v, ThermoFisher) were excluded individually or
together from normal growth media. Cells were grown for 72 h,
and cell viability analyzed by Cell Titer-Glo (Promega) on the
Envision plate reader (Perkin-Elmer). Results were calculated with
respect to untreated cells, then log2 transformed.

Apoptosis assay
Cells (4000 cells/well) were plated into both 96-well CellBIND clear
plates (Corning) for observation and Perkin-Elmer white opaque
plates. The following day, cells were treated with 0.3, 0.7, 1.0, or
3.0 µM Doxorubicin (Calbiochem) using the Biomek NX liquid
handler (Beckman Coulter) and incubated for 24 h. For evaluating
apoptosis induction, cells were treated with Caspase-Glo 3/7
(Promega) per supplier protocol and read in the Envision plate
reader (Perkin-Elmer). Results were reported as the area-between
dose-response curves of log2 fold-change relative to the MCF10A
WTOE cells as shown in Supplementary Fig. 3.

Cell migration and invasion assay
200 µl serum free media was added to the inserts, incubated at
37 °C for at least 1 h to warm the Matrigel coat. 2.5 × 105 cells (in
200 μl) in serum free media were seeded in the upper well of the
Matrigel coated (Corning) or non-coated (Corning) cell culture
insert for invasion and migration assays, respectively. The media
with serum was placed in the lower well. The plates were
incubated for 22 h. The migratory or invasive cells were first fixed
with 4% paraformaldehyde for 2 min at RT, permeabilized by
adding 500 μl of 100% cold methanol (2 min at RT) per well and
stained with 0.5% crystal violet. A media-moistened cotton swab
was used to remove any cells that did not migrate or invade
through the membrane. Cells were imaged under a microscope at
4× and 10× magnification and counted by CellProfiler97.

Immunofluorescence
This protocol was used for staining cells in a 96-well (VWR #82050-
748) format and a shaker was used during antibody incubations to
obtain uniform staining. The cells were washed twice with 1x PBS
(100 µl) and fixed with 75 µl of 4% paraformaldehyde (VWR
#AA43368-9M) per well (15 min at RT). Cells were washed with PBS
and 75 µl of Blocking Buffer (5% Goat Serum Life Technologies
#PCN5000 with 0.32% Triton X-100 Sigma #T8787 in 1× PBS)
added per well (1 h at RT). After PBS wash, 50 μl/well of primary
antibody (at recommended dilutions in Ab protocol) in the
Antibody Buffer (1% BSA and 0.3% Triton X-100 in 1x PBS) was
added and incubated at RT, shaking gently in an orbital shaker for
1–2 h for same day processing or overnight at 4 °C while shaking.
Cells were washed with PBS and 50 μl/well of secondary antibody
in Antibody Buffer (at recommended dilutions in Ab protocol) was
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added with incubation at RT, shaking gently in an orbital shaker
for 1–2 h. After final wash in 1x PBS, plates were wrapped in
aluminum foil and stored at 4 °C with 100 µl 0.05% Sodium Azide
(NaN3, Sigma #S8032) in PBS.

3D cell invasion assay
Matrigel (BD Matrigel 354230, stored at −20 °C) was thawed while
keeping in ice in a 4 °C refrigerator overnight and diluted to 3mg/
ml in ice-cold serum free media. The collagen coated 96-well plate
(Platypus tech Cat no. CMACC5.101) was removed from 4 °C and
allowed to equilibrate to RT. The underside of the plate was
checked to ensure that the seeding stoppers were firmly sealed
against the bottom of the plate. 100 µl of suspended cells (80,000
cells per well) were added into each well (control & test wells)
without disturbing the seeding stopper, lightly tapping the plate
to evenly distribute the cells in each well. The seeded plate with
stoppers was incubated at 37 °C and 5% CO2 for 6–8 h to permit
cell attachment. Using the stopper tool seeding stoppers were
removed. Reference or the control wells remained with the
stoppers till the end of the assay. Media was removed with a
pipette and the well gently washed with 100 µL of serum-free
media to remove any unattached cells. 50 µl of the Matrigel
overlay was added to each well. The plate was incubated at 37 °C
and 5% CO2 for 1 h to permit the Matrigel polymerization, and
100 µl of serum-containing media was put on top of the 3D matrix.
The plate was incubated at 37 °C for 16 h to permit cell invasion.
For end-point analysis cell seeding stoppers were removed from
the reference/control wells, Matrigel overlay was added and
allowed to form the gel. The cells were stained with 5 µM cell
tracker green (100 µl/well, 45 min, 37 °C) and 0.5 uM Vybrant Violet
dye (100 µl/ well, 30 min, 37 °C). Wells were washed with 1x PBS
and fixed using 3.7% paraformaldehyde in 1x PBS for 15 min at RT.
Images were taken with ImageXpress at different planes on the
Z axis.

Anoikis assay
Cells were plated in low-binding 96-well plates at 150 cells/well
and maintained in regular growth media for 7 days. Vybrant Violet
Dye (0.5 µM, ThermoFisher Scientific) was added to the cell and
incubated at 37 °C for a minimum of 30 min, and Ethidium
Homodimer (0.3 µM, Biotium) was then added before analysis. The
MetaXpress High Content Image Acquisition platform (Molecular
Devices) was used to capture images of a total of eight wells for
each cell line, and only the images of the entire cell mass was used
for image analysis. ImageXpress image analysis software (Mole-
cular Devices) was used to identify and count the cells stained
with either Vybrant Violet (Cy3, blue) or Ethidium Homodimer
(Cy5, red). Data was reported as a log2 ratio of live to dead cells
(Cy3:Cy5).

3D mammosphere culture and analysis
96-well black µClear plates were pre-coated with 10 µl of Matrigel
(Corning). Cells were added on top of the Matrigel, cultured for
9 days, and then fixed with 4% paraformaldehyde (Alfa-Aeser) for
15min and washed with 100mM Glycine-PBS solution to
neutralize the paraformaldehyde, followed by permeabilization
with 0.5% Triton X-100 (Sigma-Aldrich) for 15min at 37 °C.
Permeabilized cells were blocked with 10% goat serum (Thermo-
Fisher Scientific) and 20 μg/ml goat α-mouse IgG (Jackson
ImmunoResearch) for at least 1 h. The spheroids were washed
with PBS, and cell staining was done as previously described41.
The equatorial cross-section of a minimum of 50 mammospheres
per cell line was captured for the quantitative analysis. Analysis
was performed by employing custom Cell Profiler pipelines. For
identification of spheroids, the β-catenin staining was used as a
mask. The area of spheroids was determined by measuring the

diameter of cross-sections at the equatorial plane. Intensity
measurements were based on the average pixel intensity over
the object mask for each target protein. To analyze distribution of
laminin (cell polarity) and the nucleus (clearing of lumen),
concentric rings/bins were created from the center of each object,
and the average pixel intensity per ring was measured.

Survival analysis
Two clinical breast cancer datasets, TCGA51 and METABRIC52, were
obtained from cBioPortal98, and the subset of patients labeled as
“basal-like” were selected. Samples with the 10 TP53 missense
mutations used in this study were grouped by the mutation type,
whereas the samples without any TP53 mutations are considered
as the wild-type (WT) group. The 5-year overall survival rates for
the sample groups were analyzed by the Survminer (v0.4.9) R
package. Mutation groups with fewer than three samples were
excluded.

RNA-Seq
Total RNA extracted from the cells (Qiagen cat no. 74134) were
used to prepare cDNA using Nugen’s Ovation RNA-Seq System via
single primer isothermal amplification (Catalogue # 7102-A01)
automated on the Apollo 324 liquid handler from Wafergen. cDNA
was sheared to ~300 bp fragments using the Covaris M220
ultrasonicator. Libraries were generated using Kapa Biosystem’s
library preparation kit (KK8201). Fragments were end-repaired and
A-tailed, individual indexes and adapters (Bioo Scientific, catalo-
gue #520999) were ligated on each separate sample. The adapter
ligated molecules were cleaned using AMPure beads (Agencourt
Bioscience/Beckman Coulter, A63883), and amplified with Kapa’s
HIFI enzyme. The library was then analyzed on an Agilent
Bioanalyzer, and quantified by qPCR (KAPA Library Quantification
Kit, KK4835) before multiplex pooling and sequencing (2 × 75 bps,
paired end) on the NextSeq500 platform (Illumina) at the ASU’s
Genomics Core facility.

RNA-Seq data processing
Raw sequencing read data quality were analyzed using FastQC
(v0.10.1). STAR (v020201)99 was used to align reads to the Ensembl
human genome (GRCh38.p14/hg38, release 92) to counts, as
shown below.
STAR --genomeDir genome/ --quantMode GeneCounts --read-

FilesIn cell_1_R1.fastq cell_1_R2.fastq –outFileNamePrefix cell_1
--outFilterType BySJout --outFilterMultimapNmax 20 --alignSJover-
hangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999
--outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20
--alignIntronMax 1000000 --alignMatesGapMax 1000000
Duplication rate was obtained, and duplicated reads were

marked by PICARD (v2.18.3), as shown below.
java -jar picard.jar MarkDuplicates --INPUT=cell_1.bam --OUT-

PUT=marked_duplicates_cell_1.bam --METRICS_FILE=marked_-
dup_metrics_cell_1.txt --REMOVE_DUPLICATES=false
Duplication plots were generated using R package dupRadar

(v1.20.0)100. As high duplication rates were observed
(85.81–97.24%), gene counts after removal of duplicated reads
were used as a reference to check whether the expression levels
were overestimated due to PCR duplication. Next, because
mitochondrial RNA occupied a large but variable portion of RNA
pool in every sample (40–80% of all sequence reads), to avoid the
bias in calculating the total read-normalized transcript abundance,
mitochondrial RNA data were dropped. Finally, sequencing counts
were normalized to TPM (transcripts per million reads).

Enrichment and model-based pathway analysis
For quantitative pathway analysis, KEGG101, Reactome102, Wiki-
Pathways103, and the “Oncogenic Signature” gene sets
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(dysregulated genes upon experimental perturbation of cancer-
related genes) from the MSigDB104 were utilized. GSEA and
ssGSEA were performed with the gseapy software (v0.10.4)105.
PLSR analysis was done using scikit-learn (v0.23.2) package with
fivefold cross-validation (CV), and gene expression values or
ssGSEA scores of the pathway gene sets across 13 cell lines were
used for model training with the phenotype scores of the cell lines
for each phenotype as targeting vectors. Pearson’s correlation
coefficients between the model-predicted and the observed
phenotypes were calculated to evaluate the performance of the
models for each pathway. Forward feature selection was
performed with the SequentialFeatureSelector function in scikit-
learn package with fivefold CV. All plots were drawn by the
matplotlib library (v3.2.1). While GSEA and ssGSEA utilize global
rank-based statistics on the entire genes to estimate the
enrichment of a pathway gene set, PLSR performs dimensional
reduction and regression on both gene expression and pheno-
typic spaces to find latent variables (i.e., linear combinations of
genes) to maximize the covariance. The PLS1 method was used in
this study for modeling each phenotypic vector. Each gene is
weighted differently in PLSR models, thus capable of detecting the
pathway-to-phenotype association when only a subset of genes is
expressed correlatively with phenotypes.
GSEA analysis on phenotype-correlated genes for each pheno-

type and pathway gene set was performed as below by using a
data frame with expression-to-phenotype correlation values for 13
cell lines.
data= gseapy.prerank(rnk=correlation_data_frame, gene_sets= ”

pathway.gmt”, permutation_num= 10000, min_size= 10, seed= 1)
ssGSEA analysis on RNA-Seq gene expression data for each

phenotype and pathway gene set was performed as below by
using a data frame with gene expression values of 13 cell lines as
well as cells/samples in CCLE64, TCGA51, and METABRIC52 datasets.
data= gseapy.ssgsea(data=gene_expression_data_frame, gen-

e_sets= ”pathway.gmt”, min_size= 10)
PLSR regression on RNA-Seq gene expression data for each

phenotype and pathway gene set was performed as shown below
as pseudocode by using a matrix with gene expression values of
13 cell lines and an array with corresponding phenotypic values.
Model training and cross-validation was performed with a range
of 2–5 components, and the results for the number of
components with the best performance (i.e., with the largest
correlation values between predicted and observed phenotype) in
fivefold CV.
cv= sklearn.model_selection.RepeatedKFold(n_splits= 5,

n_repeats= 5, random_state= 1)
X = gene_expression_matrix
y = phenotype_array
for train_data, test_data in cv.split(X, y):
model = PLSRegression (ncomps= n_components)
model.fit(train_data, phenotype_array)
predicted_phenotype = model.predict(test_data)

TEAD reporter assay
On Day 1 of this experiment, 100 μL of cells from the thirteen cell
lines was plated into a 96-well white plate in triplicates. On Day 2,
cells were transfected with the 8xGTIIC-luciferase plasmid with
eight TEAD binding motifs (Addgene)106, in parallel with the
positive control pLX313-Renila luciferase plasmid (Addgene) in
separate wells, by using 10 μL of Lipofectamine™ 3000 (Thermo-
Fisher Scientific). After 4 h, the cells were washed twice with PBS
and replaced with 100 μL of complete media to prevent toxicity of
the Lipofectamine™ 3000 reagent to the cells. On Day 3, 100 μL of
ONE-GLO™ luciferase assay reagent (Promega) was added into the
experimental test wells and 100 μL of Renilla-Glo® luciferase was
added into the positive control wells, and the luminescence of the
samples were measured using a luminometer.

ChIP-Seq
All the MCF10A cell lines were fixed with 1% formaldehyde in PBS
and incubated for 10 min at RT. Formaldehyde was quenched with
glycine (125 mM final conc.) for 5 min at RT. Cells were rinsed with
ice cold PBS twice and scraped with 2 ml of cold PBS with protease
inhibitor (Sigma Aldrich Cat no. 04693124001). Cells were washed
two more times with cold PBS with protease inhibitor and pellets
from 20 million cells were snap frozen and stored at −80 °C. 1 ml
of ChIP lysis buffer (1% SDS,10 mM EDTA, 50 mM Tris-HCl pH8.1)
with protease inhibitors was added and the cells were sonicated in
the Covaris M220 ultrasonicator for 8 min. The time and setting for
sonication would vary with the cell-line and concentration. The
lysates were spun at maximum speed at 4 °C for 10 min and the
DNA concentration was checked. The supernatant was transferred
into fresh tube. 25–50 μl of the lysate was incubated at 65 °C
overnight with 0.1 M NaCl and run on a 2% agarose gel to check
the sonication efficiency. You should get an average fragmenta-
tion of ~500 bps. For IP, 30 μl of beads (Thermo Fisher Scientific,
Cat no. 11203D) were first washed with 1 ml of cold BSA (5 mg/ml)
in PBS at RT (three times). Then V5 antibody (Cell Signaling
Technology, Cat no. 13202 S) was added to the beads in 1 ml of
PBS+ BSA. The beads with the antibody were incubated for 4 to
6 h at 4 °C. The IP was performed on 50 μg of total DNA and the
samples were diluted accordingly in the dilution buffer (1% Triton
X-100, 2 mM EDTA, 150mM NaCl, 20 mM Tris-HCl pH 8.0). The
diluted chromatin was precleared with 15 μl of washed beads for
1 h at 4 °C. 5% of this precleared lysate was kept as input control.
PBS/BSA was aspirated from the antibody coated beads and
precleared lysate was added to incubate overnight at 4 °C on a
rotating wheel. Next day beads were collected using the magnetic
concentrator and washed six times with ChIP RIPA buffer (50 mM
HEPES, 1 mM EDTA, 0.7% Na Deoxycholate, 1% NP-40, 0.5 M LiCl
pH 7.6) at RT on a rotating platform for 10 min between every
wash. Then washed twice with 1X TE (pH 7.6) at RT. 100 μl of
Elution buffer (1% SDS, 0.1 M NaHCO3, 0.1 M NaCl) was added to
the beads and input samples (make up volume to 100 μl). The
beads were vortexed in this solution every few minutes for 30 min
in total at RT and incubated at 65 °C O/N for 12–14 h. Next day 1 μl
of proteinase K (10 mg/ml) was added and incubated at 42 °C for
2 h. The IP DNA was purified with QIAquick PCR purification kit.

ChIP-Seq data processing
The total sequencing read counts varied from 43 to 59 million
reads per samples. Quality of the reads were analyzed using
FastQC (v0.10.1). Paired-ended reads were mapped to the
reference human genome (GRCh38.p92/hg38) end to end using
Bowtie2 (v2.1.0)107.
bowtie2-build genome.fa genome_bt2
bowtie2 -x genome_bt2/ -1 cell_1_R1.fastq.gz -2 cell_1_R2.fastq.gz

--mm -S cell_1.sam
Sam files are converted to bam files and then sorted by

Samtools (v1.7)108.
samtools view -bS cell_1.sam > cell_1.bam
samtools sort cell_1.bam -o cell_1_sorted.bam
Non-primary alignment, unmapped reads were removed by

Samtools (v1.7). Duplication rates were calculated by PICARD
(v2.18.3) (duplication rate ranges from 18% to 88%) as described
above for RNA-Seq. MACS2 (v2.1.2.20181017) was used for peak
calling using BAMPE mode with the q-value cutoff of 0.05109 by
using the input genomic DNA sequencing data as the
background.
macs2 callpeak -t cell_1_IP_sorted.bam -c cell_1_Input_sorted.-

bam -B -g hs -s 300 --call-summits -q 0.05 -n cell_1 -f BAMPE --outdir
outdir
Peaks were annotated using Homer toolkit (Homer v4.9.1)110,

which was also been utilized for motif finding. Regions located
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between -2500 to +100 bps of the nearest transcription start sites
(TSS) were defined as the promoter region.
parseGTF.pl genome_annotation.gtf ann -annTSSstartOffset

−2500 -annTTSendOffset 2500 > annotations.txt
assignGenomeAnnotation annotations.txt annotations.txt -prior-

itize genome_annotation_promoter2500.txt > stat.txt
assignGenomeAnnotation cell_1_peaks.bed genome_annota-

tion_promoter2500.txt -ann annotated_cell_1_peaks.txt
annotatePeaks.pl cell_1_summits.bed genome.fa -gtf genome_an-

notation.gtf > cell_1_distance.txt
Known and de novo motifs were called by Homer toolkit. De

novo motifs comparison was done by Tomtom in MEME Suite
(v5.0.1)111.
findMotifsGenome.pl cell_1_promoterPeaks300bpSummit.bed

genome.fa outdir/ -size given -len 20 -bg WT-
OE_promoterPeaks300bpSummit.bed -mcheck HOCOMOCOv11_ful-
l_HUMAN_mono_meme_format.motifs -mknown
HOCOMOCOv11_full_HUMAN_mono_meme_format.motifs
findMotifsGenome.pl cell_1_promoterPeaks300bpSummit.bed

genome.fa outdir/ -mcheck denovo_all_cellLines.motifs -mknown
denovo_all_cellLines.motifs

Statistical analysis
For comparison of phenotypes between the control WTOE cell line
and each mutant p53-expressing cell lines, the single-sample t-
tests were performed on log2-transformed fold changes over the
WTOE to determine if the deviation from zero was significant
(p < 0.05). Data normality was tested by the Shapiro-Wilk test
(α= 0.05) with the scipy (v1.4.1) Python package for each
phenotype and cell, and the majority (75%) of data sets were
normally distributed. The means, standard errors, and the sample
size for each assay and cell are listed in Supplementary Table 1. To
test enrichment of Hippo/YAP/TAZ-related terms in the top
phenotype-associated pathways in Fig. 4, GSEA analysis was
performed on the ranked list of pathway terms, and the p
value < 0.05 was used to determine the statistical significance.

MD simulation
The simulation system was built using the crystal structure of the
DNA-binding motif of mouse p53 (PDB ID: 3EXJ)112. The system
was parameterized with the CHARMM36 force field113. The
structure was solvated with 24,923 waters to obtain a simulation
box of 122 Å × 88 Å × 81 Å. Ten Na+ ions were added to neutralize
the system. The system was prepared using Visual Molecular
Dynamics (VMD) software tool114. Mutations were generated using
VMD’s PSFGEN plugin. The system was minimized, heated to
300 K, and equilibrated for 2 ns, followed by production runs of
100 or 200 ns. All simulations were performed using the NAMD
simulation software115. Protein-DNA interactions were quantified
by calculating the number of protein-DNA contacts in each frame
of the simulation trajectory, where a contact was defined by the
number of DNA atoms within 5 Å from the given residue of the
protein. For sites that do not directly contact DNA but allosterically
control protein-DNA interactions, the effect of mutation was
quantified by the number of protein residues in contact with DNA.
Analysis of simulation data was performed using VMD.
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