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Abstract
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate trau-
matic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential
diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing
to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized
that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid
changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Ira-
q/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatog-
raphy/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed
by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications.
Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI,
PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and
anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein
E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomark-
ers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory
process that warrants further investigation. Future validation studies in larger cohorts are required to determine
a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.

Keywords: apolipoprotein E (APOE); arachidonic acid (AA); ethanolamides; mild TBI; oxylipins

1Roskamp Institute, Sarasota, Florida, USA.
2Open University, Milton Keynes, United Kingdom.
3James A. Haley VA Hospital, Tampa, Florida, USA.
4U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA.
5U.S. Army Aeromedical Research Laboratory, Fort Novosel, Alabama, USA.

*Address correspondence to: Laila Abdullah, PhD, Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; E-mail: labdullah@roskampinstitute.org

ª Aurore Nkiliza et al., 2023; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons
License [CC-BY] (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Neurotrauma Reports
Volume 4.1, 2023
DOI: 10.1089/neur.2023.0045

643



Introduction
Traumatic brain injury (TBI) and post-traumatic stress
disorder (PTSD) are signature wounds of the Iraq/
Afghanistan wars.1,2 Among 28% of the service mem-
bers who experience a TBI, 33–65% also develop
PTSD.3–6 Even though 82.3% of these injuries are clas-
sified as mild TBI (mTBI), a proportion of mTBI pati-
ents experience chronic symptoms.7 mTBI is caused by
a direct impact on the brain, resulting in biochemical
changes that correspond with altered states of con-
sciousness,8–10 whereas neurobiological changes in
PTSD are associated with witnessing a traumatic
event.11 Despite the differences in etiologies of PTSD
and TBI, there is a substantial overlap of symptoms,
including changes in cognition and psychological
health.4,12,13 Both mTBI and PTSD also share several
pathophysiological features such as neuroinflamma-
tion, oxidative stress, and excitotoxicity.13 As such,
there remains a need for objective blood biomarkers
that can be utilized routinely, both in the field and bed-
side settings, to help with a differential clinical diagno-
sis of mTBI and PTSD.14,15

Transport of proteins, lipids, and solutes in and out
of the brain is regulated by the blood–brain barrier
(BBB).16 After severe brain injuries, a disruption of
the BBB allows the leakage of brain proteins and
other factors into the periphery.17,18 In the absence of
an overt BBB disruption in mTBI, transfer of brain
products into the periphery could occur by a passive
efflux of brain-derived material into the cerebrospinal
fluid (CSF) through the glymphatic or exosomal trans-
ports into the periphery.19–21 In 2018, the combination
of glial fibrillary acidic protein (GFAP) and ubiquitin
carboxyl-terminal hydrolase-L1 (UCH-L1) was appro-
ved by the U.S. Food and Drug Administration as a
blood test for detecting intracranial lesions in mild/
moderate TBI adult patients within 12 h of injury.22

Recently, GFAP and UCH-L1 were shown to dis-
tinguish mTBI and non-TBI trauma23 and identify
mTBI patients with computed tomography abnormal-
ities.24 However, the utility of these blood biomarkers
for a differential diagnosis of chronic mTBI and
PTSD remains unknown.25–29

Studies show that TBI-triggered brain lipid changes
are reflected in the blood, suggesting that blood lipids
could be used as biomarkers for TBI.30–33 Among
brain lipids, n-6 arachidonic acid (AA; 20:4n-6),
linoleic acid (LA; 18:2n-6), and n-3 docosahexaenoic
acid (DHA; 22:6n-3) are polyunsaturated fatty acids
(PUFAs) that represent important components of the

brain membrane phospholipids (PLs).34,35 These
PUFAs are precursors of oxylipins—metabolites syn-
thesized by cyclooxygenase (COX), lipoxygenase
(LOX), and cytochrome P450 (CYP)—that regulate
multiple physiological processes within the brain,
including synaptic transmission, vasodilation, neuronal
morphology, blood flow, and inflammation.36–40 Etha-
nolamides are derived from PLs and are endocannabi-
noids shown to exert anti-inflammatory and analgesic
effects.41

Another factor linking lipid metabolism to TBI and
PTSD is the apolipoprotein E (APOE) gene, which has
three major polymorphisms: E2, E3, and E4. Among
these, the E4 allele is associated with a high risk of
developing late-onset Alzheimer’s disease (AD).42 Epi-
demiological studies have reported an association
between the presence of the E4 allele among TBI
patients with the risk of developing AD with age.43,44

The E4 allele is associated with poor functional and
cognitive outcomes in both TBI and PTSD.45,46 An
increase in AA-to-DHA ratios was found in the
serum of E4+ pre-clinical AD patients,47 suggesting
an imbalance toward increased production of proin-
flammatory lipid metabolites derived from AA.48,49

Evidence suggests that the LOX enzyme is dysregulated
in the context of AD, and there is a reduced expression
of 15-LOX in the hippocampus of post-mortem AD
patients.50 As such, E4-associated changes in blood
oxylipins in TBI could indicate underlying neurode-
generative processes after inflammatory and oxidative
stress.

We hypothesized that bioactive lipid metabolites
of PUFAs would be elevated in mTBI, PTSD, and
mTBI + PTSD groups compared to healthy controls.
Hence, the objective of this exploratory study was to
characterize whether plasma oxylipins and ethano-
lamides differ between controls, mTBI, PTSD, and
mTBI + PTSD diagnostic groups using a cohort of
active-duty military soldiers returning to combat
zones in the Middle East.

Methods
Study participants
Samples from a published cohort evaluating major lipid
profiles and genetic contributions were used for the
current study.51,52 The study was approved by brigade
commanders and by the institutional review board at
Headquarters U.S. Army Medical Research and Mate-
riel Command. In 2010 and 2011, volunteering soldiers
from two brigade combat teams were recruited and
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enrolled at a designated military installation *30 days
before a 12-month deployment to the Middle East.
There were no inclusion/exclusion criteria given that
participation was voluntary, and all soldiers were
deemed medically fit for deployment (see Fig. 1 for
the flowchart).51 Screening for mTBI was performed
with the Defense and Veterans Brain Injury Center–
Brief Traumatic Brain Injury Screen.53 Classification
of mTBI required both the endorsement of an injury-
related event and an altered state of consciousness.51,52

A classification of PTSD was based on a score ‡35 on
the PTSD Checklist–Military Version (PCL-M).54 Par-
ticipants were considered controls if they reported
no history of PTSD, TBI, and depression and were
negative for both PTSD and depression screens.51

Post-concussive symptoms were assessed using the
Neurobehavioral Symptom Inventory (NSI); depres-
sion, alcohol dependency, anxiety, stress level, sleep

quality, and daytime sleepiness were also assessed.55–59

Neurocognitive functioning was assessed using Central
Nervous System–Vital Signs.60 Non-fasting pre-coded
whole blood was collected in ethylenediamine tetra-
acetic acid tubes and processed on-site by study staff
blinded to participants’ diagnoses. Whole blood was
centrifuged at room temperature at 1380g for 5 min
to collect plasma, which was aliquoted in 1.5-mL
Eppendorf tubes and then shipped on dry ice and
stored frozen in �80�C freezers upon arrival until
experimentation.52,61 The lipid experiments below
were performed between 2019 and 2020.

Ethanolamide assay
Plasma (100 lL) was spiked with 5 lL of ethanolamide
internal standard (IS) mix (see Supplementary Meth-
ods Table S1). Three volumes of methanol (MeOH)
were combined with samples and centrifuged at

FIG. 1. Flowchart of 120 volunteer soldiers who participated in the study. Flowchart shows the breakdown
of 120 participants and their diagnostic classifications, which are then further stratified by APOE E4 allele
carrier status. APOE, apolipoprotein E; PCL-M, PTSD Checklist–Military Version; PTSD, post-traumatic stress
disorder; TBI, traumatic brain injury.

Nkiliza et al.; Neurotrauma Reports 2023, 4.1
http://online.liebertpub.com/doi/10.1089/neur.2023.0045

645



10,800 revolutions per minute (RPM) for 10 min at
4�C. Approximately 70% of the supernatant was col-
lected before adding 160 lL of H2O. For solid phase
extractions (SPEs), cartridges (Oasis PRiME HLB 1 cc
Vac Cartridge, 30 mg Sorbent; Waters Corporation,
Milford, MA) were pre-conditioned as per the manu-
facturer’s instructions, loaded with the samples in
1 mL of 5% MeOH, and dried for 5 min. Ethanolamides
were eluted by applying 500 lL of 90:10 acetonitrile
(ACN)/MeOH (v/v%) to the cartridges, then vacuum
dried and reconstituted in 50 lL of 50% ACN for filter-
ing with 0.2-lm centrifuge filters (ThermoFisherScien-
tific, Waltham, MA), centrifuged at 10,800 RPM for
10 min at 4�C, and subjected to reversed-phase liquid
chromatography (LC)/mass spectrometry analyses.

Separation of ethanolamides was performed with
a Thermo Scientific� UltiMate� 3000 LC system
using a Kinetex 2.6-lm XB-C18 100 Å, 100 · 1.0 mm
column (Phenomenex, Torrance, CA), where solvent
A contained 10% ACN and solvent B consisted of
MeOH with an addition of 5 mM of ammonium ace-
tate and 0.1% acetic acid as a modifier in both mobile
phases. Separation was achieved within 7 min under
isocratic conditions at 90% B throughout the run.
Full-scan fragmentation spectra of analytes were acq-
uired using parallel reaction monitoring at 17,500 res-
olution, automatic gain control (AGC) target was set to
2e5, maximum injection time (max IT) of 100 ms, and
an isolation window of 2 m/z. Normalized collision
energies were optimized for each species (Supplemen-
tary Table S1).

Oxylipin assay
Plasma (250 lL) was spiked with 5 lL of 10 mg/mL of
butylated hydroxytoluene and 5 lL of eicosanoid IS
mix (see Supplementary Table S1). The quality control
(QC) sample was spiked with 5 lL of an unlabeled
standard mix containing all target analytes (see Supple-
mentary Table S2) at a concentration of 1 lg/mL, then
750 lL of ice-cold MeOH +2% formic acid (FA) was
added to the samples, then centrifuged at 10,800
RPM at 4�C for 10 min, and supernatant was collected
followed by SPE cleanup as above. Flow-through was
collected, combined with 500 lL of H2O + 2% FA,
reloaded twice, washed with 500 lL of 5% MeOH
+2% FA, and dried completely. Analytes were eluted
with 500 lL of 90:10 ACN/MeOH (v/v%) + 2% FA in
16 lL of 30% glycerol, dried under a gentle stream of
nitrogen, and reconstituted in 100 lL of 40% ACN
+2% FA and filtered as above. Isolated oxylipins were

separated by reversed-phase LC on the UltiMate�
3000 LC using a Kinetex 2.6-lm XB-C18 100 Å,
100 · 1.0 mm column (Phenomenex), where solvent
A contained 5% ACN and solvent B 95% ACN with
an addition of 0.1% of acetic acid as a modifier in
each mobile phase. The flow rate was 100 lL/min,
and, for the gradient, mobile phase composition
started at 45% B, increased to 55% B for 11 min, and
re-equilibrated for 4 min at 45% B.

Full-scan fragmentation spectra of analytes were
acquired using parallel reaction monitoring at 17,500
resolution, AGC target was set to 5e5, with max IT
time of 200 ms and isolation window of 1.3 m/z (see
Supplementary Table S2 for the inclusion list).

Data processing and statistical analysis
Peak areas were integrated using TracefinderTM soft-
ware, and a mass window of 5 ppm was used for all
ion plots. Concentrations were calculated relative to
IS concentrations and normalized using a QC sample.
Each sample was injected in triplicate and those with
a coefficient of variance >20% were excluded from
analysis. SPSS software (SPSS, Inc., Chicago, IL)
and MetaboAnalyst 5.0 were used for statistical anal-
ysis. Kendall’s tau-b correlations were performed on
the data. Data were normalized, scaled, and analyzed
with Ward’s clustering method, and the top analytes
were selected by analysis of variance (ANOVA).
Heatmaps were generated using z-transformed vari-
ables, and significance testing of each analyte was
performed using mixed linear modeling (MLM) to
examine the independent effects of APOE and diag-
nosis as fixed factors on lipid outcomes (dependent
variables), with a diagonal covariance matrix and
repeated measurements incorporating technical rep-
licates as a random factor to account for random
noise in the data sets.62 A Benjamini-Hochberg
(BH) correction was performed on all multiple com-
parisons after MLM analyses.52 For non-normally
distributed data, the Kruskal-Wallis test was applied.
The p-value threshold for significance was a false dis-
covery rate <0.1.

Results
Ethanolamides and oxylipins correlate
within lipid classes
All participants in this study were males (controls = 52,
PTSD = 34, mTBI = 21, and mTBI + PTSD = 13). There
were no significant differences in allelic distribution
of APOE, age, race, education, or previous number of
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deployments between diagnostic groups with and with-
out E4 stratification (Table 1). Based on self-report,
16 controls, 7 TBI, and 11 PTSD participants reported
that the current deployment was their first deploy-
ment. Five TBI and 9 TBI + PTSD participants
reported experiencing brain damage in the past year.
Several lipids (DiHOME, EpOMEs, and HODEs)
had a positive correlation with each other (cluster 1;
Fig. 2A). Additionally, HETEs, DiHETEs, and EETs
were positively correlated with each other (cluster 2;
Fig. 2A).

There were significant associations between self-
report measures on psychological health (Zung Self-
Rating Anxiety Scale [ZAS] and Perceived Stress
Scale [PSS]) and post-concussive symptoms (NSI)
with ethanolamides and oxylipin species (Fig. 2B). Spe-
cifically, NSI scores were positively associated with
plasma 15-HETE and two DiHET species. There was
a positive association between PSS scores and plasma

HETE species and 2-AG, but a negative association
with 9(10)-DiHOME levels (Fig. 2B).

Subclasses of bioactive lipid metabolites
are differentially affected in mTBI, PTSD,
and mTBI + PTSD diagnoses
To examine the class effects of AA and LA metabo-
lites derived from different enzymatic pathways, we
grouped the oxylipin species based on their biosyn-
thetic pathways (Fig. 3). These studies showed that
AA-derived oxylipins generated by CYP pathways
were elevated among participants with PTSD and
mTBI + PTSD (BH-corrected p < 0.05; Fig. 3A).
Among non-E4 carriers, these oxylipins were signifi-
cantly increased in the PTSD group compared to con-
trols (Fig. 3B). The same oxylipin subgroup was also
increased in the E4+ mTBI + PTSD group versus the
E4+ controls (BH-corrected p < 0.1; Fig. 3B). Non-E4 car-
riers showed that 14(15)-DiHET and 11(12)-DiHET

Table 1. Basic Demographics of the Study Population

Control n = 52 mTBI n = 21 PTSD n = 34 mTBI+PTSD n = 13

APOE E4 - + - + - + - +
Numbers n = 37 n = 15 n = 16 n = 5 n = 24 n = 10 n = 8 n = 5
Age (mean – SD) 27 – 7 27 – 8 25 – 4 30 – 11 28 – 8 23 – 4 30 – 7 29 – 4
Education (mean – SD) 13 – 1 13 – 1 13 – 1 13 – 2 13 – 1 13 – 1 14 – 2 14 – 1
Race (n) Black 1 0 1 1 2 2 0 0

White 29 10 11 4 18 7 7 3
Pacific Islander 2 0 1 0 0 1 1 0
Hispanic/Latino 4 1 2 0 3 0 0 2
Native American 1 0 0 0 0 0 0 0
Asian 0 1 0 0 1 0 0 0
Other 0 2 1 0 0 0 0 0

First deployment (Yes) 11 5 5 2 6 5 0 0
TBI and PTSD No reported TBI events 35 14 0 0 0 0 0 0

Knockout without concussion 2 1 0 0 0 0 0 0
Concussion with LOC 0 0 6 3 5 5 7 4

Reported brain damage
in prior year (Yes)

0 0 5 0 3 6 5 4

Diagnosed with PTSD ever
in life (Yes)

0 0 1 0 24 10 8 5

Total number of deployments 0 11 6 5 2 6 5 0 0
1 15 6 5 0 12 3 2 1
2+ 11 3 6 3 6 2 6 4

Medication use (n) None 33 14 15 5 14 10 5 4
Anti-depressants 0 0 1 0 5 0 1 0
Anti-inflammatories 1 1 0 0 1 0 1 1
Analgesics 0 0 0 0 1 0 1 0
Sedatives & hypnotics 0 0 1 0 0 0 1 0
Anti-bacterial 1 0 0 0 1 0 0 0
Cardiovascular medications 2 0 0 0 3 0 0 0
Gastrointestinal agents 1 0 0 0 2 0 0 0
Allergy medication 0 1 0 0 0 0 0 0
Headaches/migraines 0 0 1 0 1 0 0 1

NSI (mean – SD) 5 – 7 7 – 7 13 – 14 10 – 6 30 – 15 24 – 15 26 – 21 25 – 12
ZAS (mean – SD) 30 – 5 29 – 6 33 6 11 31 – 4 38 6 10 37 6 9 36 6 8 31 – 8
PSS (mean – SD) 28 – 13 27 – 15 28 – 13 26 – 11 29 – 8 29 – 8 28 – 9 32 – 4

Statistics: Kruskal-Wallis with B-H correction or Chi-square as appropriate. Bolded numbers indicate significant differences between groups against
their respective controls. For medication use, 5 participants on multiple medications. Abbreviations; mTBI: mild traumatic brain injury, PTSD, post-trau-
matic stress disorder; NSI, Neurobehavioral Symptoms Inventory; ZAS, Zung Self-Rating Anxiety Scale; PSS: Perceived Stress Scale.
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FIG. 2. Plasma oxylipins and ethanolamide correlations. (A) Heatmap showing correlation coefficients.
(B) Table showing significant correlations between self-report measures, ethanolamides, and oxylipins.
Statistics: Kendall’s tau-b correlations. corr. coeff., correlation coefficient; NSI, Neurobehavioral Symptoms
Inventory; PSS, Perceived Stress Scale; ZAS, Zung Self-Rating Anxiety Scale.

FIG. 3. Plasma levels of grouped AA- and LA-derived oxylipins. Heatmap shows the average z-score of all
persons within each diagnosis group regarding their E4 status. Statistics: one-way ANOVA and LSD post hoc
comparison followed by BH correction (*BH-corrected p < 0.1). Black asterisks represent significant
differences between diagnosis groups and their respective controls within the same genotype group. AA,
arachidonic acid; ANOVA, analysis of variance; CYP, cytochrome P450; BH, Benjamini-Hochberg; LA, linoleic
acid; LOX, lipoxygenase; LSD, least significant difference; mTBI, mild traumatic brain injury; PTSD, post-
traumatic stress disorder.
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were increased in the PTSD group, whereas 8(9)-DiHET
was increased in the mTBI + PTSD group compared to
the control group. Among E4 carriers, AA oxylipins
derived through the CYP pathway, except for 8(9)
EET, were significantly increased in the mTBI + PTSD
group compared to the control group (Fig. 4A). E4 car-
riers with mTBI + PTSD and PTSD alone had a higher
level of plasma 11(12)-DiHET than non-E4 carriers
with the same diagnosis (Fig. 4A). Among E4 carriers,
levels of 20:4EA (anandamide) were increased in mTBI
+ PTSD compared to controls (Fig. 4B).

Oxylipins are increased in mTBI + PTSD and further
modulated by APOE E4
Hierarchical clustering was performed for determin-
ing their inter-relationship with each other (Fig. 5A).
Compared to controls, persons with mTBI + PTSD

had a clustering of many ethanolamide species.
HODE and di-HOME were reduced, whereas most
other clusters were increased, including AA and
DHA containing ethanolamide species (20:4EA and
22:6EA, respectively). Opposite trends for clustered
oxylipins and EA were observed for mTBI and
PTSD compared to controls. The effect of diagnosis
on ethanolamide and oxylipin profiles was modulated
by E4 carrier status (Fig. 5B), with the E4+ mTBI +
PTSD group showing strong clustering effects on
HETE, DiHET, and EET species. The influence of
non-E4 status on differential clustering of oxylipins
and ethanolamides was noted for controls compa-
red to PTSD groups, whereas E4 influence on mTBI
compared to controls was further apart from each
other (Fig. 5B). See Supplementary Data Table S3 for
concentrations.

FIG. 4. Plasma levels of oxylipins produced by LOX and CYP pathways (left) and ethanolamides (right).
Heatmap shows the average z-score of all persons within each diagnosis group regarding of their e4 status.
Statistics: one-way ANOVA and LSD post hoc comparison followed by BH correction (*BH-corrected p < 0.1).
Black asterisks represent significant differences between diagnosis groups and their respective controls
within the same genotype group. Red asterisks represent significant differences between non-e4 carriers
(e4–) and e4 carriers (e4+) within the same diagnosis group. AA, arachidonic acid; ANOVA, analysis of
variance; CYP, cytochrome P450; BH, Benjamini-Hochberg; EA, ethanolamides; LA, linoleic acid; LOX,
lipoxygenase; LSD, least significant difference; mTBI, mild traumatic brain injury; PTSD, post-traumatic stress
disorder.
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Discussion
Blood biomarkers are needed to help with the differen-
tial diagnoses of mTBI and PTSD in civilian, active-
duty, and veteran populations.14,15 Currently, approved
blood biomarkers are useful for detecting intracranial
lesions in mild-to-moderate TBI adult patients within
hours post-injury. However, diagnosing mTBI at sub-
acute and chronic post-injury time points remains
challenging.63–65 There are also no approved bio-
markers for PTSD.66,67 Hence, there remains a need
for reliable, low-cost, and selective biomarkers for pro-
viding a differential diagnosis of mTBI and PTSD
given their clinical similarities, frequent comorbi-
dity, and the lack of availability of reliable markers
that would allow discrimination between these two
conditions.

Blood lipids may indicate the underlying inflamma-
tory process in the brain52,61,68,69 and many oxidized

PUFAs are implicated in vascular injuries, as in the
case of ischemic injuries, and could reflect ongoing
secondary vascular dysfunction associated with BBB
damage.70 Past profiling of plasma lipids in this cohort
suggests alterations of lipid metabolism and homeosta-
sis in comorbid mTBI and PTSD,52,61 suggesting that
these lipids may help with a differential classification
of these two conditions when they are comorbid with
each other.

Given their known role in inflammation, the current
study examined bioactive lipid metabolites, ethanola-
mides and oxylipins, that are derived from PL. Changes
in these lipid metabolites have been reported in non-
alcoholic fatty liver disease, obesity, type 2 diabetes,
and several cardiovascular diseases for which chronic
inflammation is a major contributor.71 Because oxy-
lipins are generated by the oxidation of different
PUFAs through COX, LOX, and CYP pathways, we

FIG. 5. Plasma oxylipins and ethanolamide are altered with mTBI and PTSD diagnosis, particularly among
APOE E4 carriers. (A) Hierarchical clustering heatmap showing ethanolamide and oxylipin species profiles in
diagnostic groups. (B) Hierarchical clustering heatmap showing ethanolamide and oxylipin species profiles
in diagnostic groups stratified by APOE E4 carrier status. Statistics: normalized and scaled data with Ward’s
method. Analytes significantly altered between groups ( p < 0.05) are indicated in red. mTBI, mild traumatic
brain injury; PTSD, post-traumatic stress disorder.
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analyzed oxylipin profiles stratified by oxylipin’s pre-
cursors and synthesis pathways. Levels of AA-derived
oxylipins synthesized by the CYP pathway are differen-
tially modulated by PTSD and mTBI + PTSD diag-
noses. Many of these species were associated with
PTSD and mTBI symptoms. Vasculature damage in
TBI is often followed by increased vasodilatation con-
tributing to TBI-related swelling of the brain, whereas
vasoconstriction, attributable to psychological stress,
is a characteristic of PTSD.72–74 There is increasing
evidence that inflammation contributes to clinical
and functional outcomes of TBI.74 In PTSD, an
increase in proinflammatory and a reduction in anti-
inflammatory cytokines has also been reported.75

Inhibition of COX and LOX pathways post-injury
reduces inflammation, suggesting that immune res-
ponses to injury are significantly affected by HETEs
and AA-derived prostanoids.76–78 An increase of 10-
fold in 5-HETE and a 17-fold increase in 12-HETE
were noted in CSF from TBI patients compared to
controls.79 Improved recovery from TBI was associated
with greater concentrations of 13-HODE.80

Past studies have suggested that with aging, there is
increased oxidation of PUFAs, particularly among E4
carriers.81,82 Our current studies suggest that among
patients with mTBI + PTSD, oxidized PUFAs are sig-
nificantly elevated compared to all other groups.
Though the molecular mechanism of such an associa-
tion remains to be determined, these findings suggest
that factors other than aging and neurodegeneration
could increase PUFA oxidation in the presence of the
E4 allele. These oxidized PUFAs could serve as differ-
ential markers of comorbidity of mTBI and PTSD.
Future studies are required to better understand the
role of these lipids in the long-term chronic sequelae
of mTBI and PTSD. Limitations of the study include
a small sample size in each of the diagnostic categories,
the predominantly white and male composition of the
cohort, and recall bias associated with self-report of
time and type of injury. Given that most participants
had been deployed before and reported experienc-
ing brain damage in the past year, mTBI will likely
be representative of chronic injury. As such, future
studies are required to better understand the role
of these lipids in the long-term chronic sequelae of
mTBI and PTSD.

Conclusion
This study demonstrates that peripheral oxylipins may
serve as a potential source of biomarkers to differenti-

ate persons suffering from the consequences of mTBI
from those with PTSD. Though some limitations min-
imize the generalization of these findings, there is an
internal consistency of biological responses in the pres-
ence of the E4 allele, which suggests that oxidation
of PUFAs in E4 is a mediator of secondary inflamma-
tion and vascular pathologies associated with mTBI
and PTSD. Given that there are currently no reli-
able biomarkers for detecting comorbid mTBI and
PTSD, as well as differentiating mTBI from PTSD,
analyses of plasma oxylipins could serve to develop
low-cost, easily accessible, and minimally invasive
alternatives in the identification of mTBI and PTSD
biomarkers.
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ANOVA ¼ analysis of variance

APOE ¼ apolipoprotein E
BBB ¼ blood–brain barrier

BH ¼ Benjamini-Hochberg
COX ¼ cyclooxygenase
CSF ¼ cerebrospinal fluid
CYP ¼ cytochrome P450

DHA ¼ docosahexaenoic acid
FA ¼ formic acid

GFAP ¼ glial fibrillary acidic protein
IS ¼ internal standard

LA ¼ linoleic acid
LC ¼ liquid chromatography

LOX ¼ lipoxygenase
max IT ¼ maximum injection time
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MLM ¼ mixed linear modeling
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PL ¼ phospholipid

PSS ¼ Perceived Stress Scale
PTSD ¼ post-traumatic stress disorder
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QC ¼ quality control
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