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Abstract
Multi-channel electroencephalography (EEG) is used to capture features associated with motor imagery (MI) based brain-

computer interface (BCI) with a wide spatial coverage across the scalp. However, redundant EEG channels are not

conducive to improving BCI performance. Therefore, removing irrelevant channels can help improve the classification

performance of BCI systems. We present a new method for identifying relevant EEG channels. Our method is based on the

assumption that useful channels share related information and that this can be measured by inter-channel connectivity.

Specifically, we treat all candidate EEG channels as a graph and define channel selection as the problem of node

classification on a graph. Then we design a graph convolutional neural network (GCN) model for channels classification.

Channels are selected based on the outputs of our GCN model. We evaluate our proposed GCN-based channel selection

(GCN-CS) method on three MI datasets. On three datasets, GCN-CS achieves performance improvements by reducing the

number of channels. Specifically, we achieve classification accuracies of 79.76% on Dataset 1, 89.14% on Dataset 2 and

87.96% on Dataset 3, which outperform competing methods significantly.

Keywords Brain-computer interface(BCI) � Motor imagery(MI) � Graph convolutional neural network (GCN) �
Channel selection

Introduction

Brain-computer interfaces (BCIs) are a communication

technology in which the brain interacts directly with the

outside environment without the need for any muscle

movement (Huang et al. 2016). A BCI system contains

four basic steps: brain signals acquisition, signal process-

ing, external device control, and feedback. BCIs have been

used to control a wide range of external devices including

examples such as assistive devices for rehabilitation,

vehicle control, and games (Zuo et al. 2019). There are a

variety of non-invasive and invasive methods available to

record bioelectrical signals from brain activity. Of these

methods, the electroencephalography (EEG) is the most

widely-research due to its advantages of being non-inva-

sive, low cost, and highly portable (Huang et al. 2017;

Zhang et al. 2021).

Motor imagery-based BCI systems can work without the

need for a stimulus and play an important role in many

applications, including movement assistance for individu-

als with Parkinson’s disease, amyotrophic lateral sclerosis
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(ALS) and post-stroke rehabilitation (Mirelman et al. 2013;

Shahid et al. 2010; Miao et al. 2019). Indeed, motor ima-

gery-based BCIs have an important application within the

field of medical rehabilitation (Carrasco and Cantalapiedra

2016; Khan et al. 2020; Frolov et al. 2017). When humans

perform motor imagery tasks, such as imaging limb

movement, event-related desynchronization (ERD) and

event-related synchronization (ERS) can be observed in the

EEG (Pfurtscheller and Neuper 1997). These signals are

expressed as localized reductions and intensification of

EEG band power within specific frequency bands

throughout the task period (Pfurtscheller 2000; Pfurt-

scheller and Lopes da Silva 1999).

The brain regions which contain the most discriminative

information about MI vary from person to person (Xiao

et al. 2021). Therefore, multi-channel EEG recording is

widely used in MI-based BCI systems in order to provide

coverage of a sufficiently large area of the scalp to ensure

good measurement of the ERD/S. Indeed, multi-channel

EEG data is widely considered to be necessary for effective

BCI performance because more channels theoretically

provide more information about underlying brain activity.

However, multi-channel EEG also results in a large degree

of data redundancy. Consequently, task-irrelevant data and

noise make EEG classification more challenging (Baig

et al. 2020). As a result, channel selection strategies are

widely used to increase the performance of MI-based BCI.

EEG channel selection is often based on empirical

knowledge of underlying brain activity and manual selec-

tion of channels (McFarland et al. 2000). However, manual

selection methods bring great challenges to the reliability

of the BCI system. Consequently, for MI-based BCI, a

variety of automatic EEG channel selection algorithms

have been developed. These automatic methods can be

divided into wrapper and filter based methods. In general,

wrapper based channel selection is combined with a

specific classifier, and the selection policy contains vali-

dation strategies. For example, Wang et al. (2020)

designed a weight update strategy for EEG channel selec-

tion based on the canonical correlation analysis (CCA),

which updated weight based on cross-validation from the

Support Vector Machine (SVM) classifier and selected

channels according to the weight after each iteration. An

evolutionary computation approach is commonly used with

wrapper based channel selection methods, such as genetic

algorithms (GAs) (Sun et al. 2020; He et al. 2013) and

artificial bee colony algorithms (Miao et al. 2018). For

example, Qiu et al. (2016) designed a wrapper channel

selection method by modifying the sequential floating

forward selection algorithm.

Compared with wrapper methods, filter based channel

selection approaches cost less computing time because

filter methods do not require verification with a classifier. A

number of channel selection methods have been developed

based on the filter strategy. For instance, mutual informa-

tion was used to determine the weight of an EEG channel

that was chosen based on its weight value (Lan et al. 2007).

In filter techniques, a method called CSP-rank, which uti-

lizes the projection matrix calculated by the common

spatial pattern (CSP) algorithm to sort and select EEG

channels, had been verified in chronic stroke patients (Tam

et al. 2011). Jin et al. (2020) proposed a channel selection

scheme that was based on the bispectrum feature coupled

with the F score. However, most previous studies focused

on the univariant features in a single channel to develop

channel selection strategies. These methods ignore the

relationships between brain regions, a lacuna which we

investigate.

Functional connectivity is an effective tool for feature

extraction in neuroscience (Luo et al. 2021). Studies show

that the functional connectivity of brain regions has been

explored for its utility in representing brain activities

(Nentwich et al. 2020) and aiding BCI control (Daly et al.

2012). Neural units can be regarded as single neurons,

neuronal populations, or brain areas (Friston 1994; Stam

et al. 2007). The neural interconnection between different

EEG channels is embedded to characterize the activity of

the brain (Sargolzaei et al. 2015; Chang et al. 2021).

We suggest that brain connectivity between pairs of

channels can be used to assist the estimation of the

importance of EEG channels in motor imagery tasks. Thus,

in this study, we regard channel selection in BCI as a node

classification problem. Combining neurophysiologic

knowledge and graph data, we propose a GCN model for

utilizing the characteristics of connectivity between EEG

channels and estimating the importance of each channel.

In summary, this work makes the following main

contributions:

1. Unlike traditional channel selection methods, where

the main purpose is to mine the criterion in univariate

sequence, we utilize the connections between EEG

channels to develop a filter based EEG channel

selection method.

2. A node classification problem for EEG channel selec-

tion has been developed. We also designed a GCN

architecture for classifying effective channels and

redundant channels.

The rest part of the paper is organized as follows. Section 2

introduces preliminary knowledge and our method. Sec-

tions 3 and 4 show the result and discussion. Section 5

presents the conclusion of this study.
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Methods

Preliminaries

A graph with n nodes can be defined as G(V, E) with V ¼
fv1; v2; . . .; vng denoting the set of nodes and m edges

denoted by ei 2 E. A graph that contains n nodes can be

represented by an adjacency matrix A 2 Rn�n, where Ai;j

represents the weight from the node vi to node vj in a

weighted graph. Additionally, in a non-weighted graph, the

adjacency matrix A contains only two elements f0; 1g,
where Ai;j ¼ 1 if there is a connection from the node vi to

node vj, otherwise Ai;j ¼ 0, as shown in Fig. 1a.

In the graph, the Laplacian matrix is used in a wide

range of applications (Spielman 2007). The graph Lapla-

cian matrix L is defined as L ¼ D� A, where Di;i ¼
P

j Aij

is the degree matrix of the graph G and the symmetric

normalized version of graph Laplacian is (Shuman et al.

2013):

Lnormal ¼ I � D�1=2AD�1=2 ð1Þ

Spectral graph theory has been proposed based on the

graph structural data (Erb 2021). With the Laplacian

matrix, the graph filter and graph convolution have been

developed (Xu et al. 2021). The signals on the graph’s

nodes can be represented as f ¼ ½f1; f2; . . .; fn�>, and f 2 Rn,

where fi is the value at the ith node. The graph Fourier

transform is defined as (Shuman et al. 2013): f̂ ¼ U>f ,

where f̂ is the Fourier domain of the graph signal. U is the

eigenvector matrix and is defined as a Fourier basis such

that Lnormal ¼ UKU>, where K denotes the eigenvalues

present in the diagonal matrix. Therefore, the inverse graph

Fourier transform is f ¼ Uf̂ .

Graph convolutional neural networks model

As the graph Fourier transform is defined above, the con-

volution operator ð�Þ between signal g and f on graph data

can be defined in the Fourier domain with the Hadamard

product � in the graph’s spectral domain (Wu et al. 2021).

Additionally, the spectral graph convolutions can be seen

as the graph’s filter gh whose parameters are free :

g � f ¼ UððU>gÞ � ðU>f ÞÞ ð2Þ

According to the theory of the graph filter (Xu et al. 2021), it

is defined as: ffiltered ¼ UghðKÞU>f , where ghðKÞ ¼ diagðhÞ.
The parameter h 2 Rn denotes the set of Fourier coefficients,

and it can be trained in a neural network. The advancement of

(a)

(b)

Fig. 1 Illustration of the

aggregation function of a GCN

layer
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graph convolutional neural networks (GCN) has marked a

significant milestone in the development of methods to

estimate node importance (Kipf and Welling 2016). In the

study of Kipf and Welling (2016), the authors used the

truncated Chebyshev polynomials to approximate the

graph’s filter and the GCN layer is designed as :

Z ¼ ~D�1
2 ~A ~D�1

2XH ð3Þ

where X 2 Rn�k is the input of the layer, H 2 Rk�l are the

free parameters of the GCN layer, Z 2 Rn�l is the output of

the layer, ~A ¼ Aþ I, A 2 Rn�n, ~Dii ¼
P

j
~Aij. When at the

first GCN layer, n is the number of nodes and k is the

dimension of the feature. The Eq. (3) can be abbreviated as

Z ¼ ÂXH,where Â ¼ ~D�1
2 ~A ~D�1

2 which is described as an

information propagation model on a graph. We use this

model for embedding the graph data of the EEG.

GCN-based channel selection method

We propose a channel selection technique based on an

integration of graph convolutional neural networks (GCN)

and neuroscientific expertise. The proposed framework is

shown in Fig. 2.

Construction of graph data

In our study, each EEG channel is regarded as a node, and

the set of all channels is regarded as a graph.

To construct the graph model of the data, in this study,

the Pearson correlation coefficient (PCC) is used to

quantify the connectivity between all pairs of EEG chan-

nels during the period of motor imagery epoch. The PCC is

defined as:

qðxi; xjÞ ¼
ðxi � �xiÞ>ðxj � �xjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � �xiÞ>ðxi � �xiÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � �xjÞ>ðxj � �xjÞ

q ð4Þ

where xi 2 RT and xj 2 RT are the two observed EEG time

series from a pair of EEG channels, �x is the mean of the

time series x. In our problem, the whole time series from

each channel during the motor imagery period can be

regarded as variables. Therefore, linear dependence

between two EEG channels can be calculated. Since the

PCC between two variables is symmetric as

qðxi; xjÞ ¼ qðxj; xiÞ, the representation of the entire EEG

channel is defined as:

Wi;j ¼
0 if i ¼ j

qðxi; xjÞ otherwise

�

ð5Þ

whereW 2 RNC�NC, NC is the number of channels. Then, a

weighted adjacency matrix W is constructed. In practice,

there is a very small chance of qðxi; xjÞ ¼ 0 because there

are coupling relationships between all brain regions

(Gonuguntla et al. 2016). Various strategies have been

proposed to set a threshold to construct a brain network

(Garrison et al. 2015). The application of such thresholds

can help to maximize the separation of signals and noise

between assumed real and false links between pairs of

channels within the network.

Therefore, we set the threshold by calculating the

median value as the threshold in each channel.

Fig. 2 Illustration of the GCN-

CS framework
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Consequently, the adjacency matrix A is defined as a binary

matrix:

Ai;j ¼
1 if Wi;j [medianðWÞ
0 otherwise

�

; i; j 2 f1; 2; . . .;NCg

ð6Þ

where the operator medianð�Þ denotes calculating the

median of all elements in W, Ai;j denotes the element in the

ith row and jth column of A.

The matrix A is symmetric and Ai;j 2 f0; 1g, which

means the graph is undirected and has unweighted edges.

When the PCC value that is greater than the threshold this

indicates a strong coupling exists between time series from

the corresponding pair of channels, as shown in Fig. 1.

Setting the median PCC as the threshold allow us to gen-

erate a sparse adjacency matrix A in which we retain half of

the edges. Therefore, the strongest 50% coupling connec-

tions will be retained which indicates the information flow

way that exists between channels.

Framework of the GCN-CS model

In terms of the GCN layer, we use the modified adjacency

matrix in the study of Kipf and Welling (2016). Then the

GCN layer with activation function can be defined as :

Hðiþ1Þ ¼ rðÂHðiÞHðiÞÞ;Hð0Þ ¼ X; i 2 f0; 1; 2; . . .g ð7Þ

where Â is the modified adjacency matrix, Hðiþ1Þ 2 Rm�h is

the output of the ith layer, HðiÞ 2 Rm�n is the input data of

the layer, HðiÞ 2 Rn�h are the free parameters of the net-

work, rð�Þ is the activation function and the ReLU acti-

vation function is used in this study. X 2 RNC�NC denotes

the node features in this study. As the input of the GCN,

commonly the identity matrix I is used to present the

nodes’ location. In this study, each column of the identity

matrix is different from the other, which indicates that the

location of each channel is unique and different.

The product of Â and HðiÞ aggregates the node features

through linear combination. In the example illustrated in

Fig. 1, a graph with 6 channels and 7 edges is shown. In the

adjacency matrix, yellow squares indicate that a commu-

nication exists between the ith and the jth channel. On the

contrary, grey squares indicate that there is no meaningful

communication way between the ith and the jth channel.

The corresponding column of yellow squares in the first

row of the adjacency matrix indicates the neighbors of

channel ‘a’. As shown in Fig. 1b, the matrix product of the

adjacency matrix and channel feature matrix, which is

ÂHðiÞ, indicates the aggregation of channel features as

Fig. 1b shows the aggregation of channel ‘a’.

As shown in Fig. 2, we use two GCN layers for EEG

channel embedding, one fully connected layer for the

fusion of the GCN’s output, and a softmax layer for clas-

sification. The detailed parameters of the proposed GCN

model can be seen in Table 1, and rðHð2ÞÞ in the fig-

ure indicates the output of the second GCN layer.

Tagging and training tasks for channel classification

After building the adjacency matrix for EEG channels, we

tag some channels as effective channels or redundant

channels. In terms of brain activity, various researchers

have suggested that specific areas of the brain show the

differences between different motor imagery tasks. Based

on widely reported neuroscience knowledge, the EEG

channels C3 and C4 in the 10-20 system for EEG place-

ment are most often selected because these channels allow

good discrimination between different motor imagery tasks

(Pfurtscheller and Lopes da Silva 1999; Gaur et al. 2015;

Yang et al. 2017).

To make the model effective, the tagging task is done

according to neurophysiologic knowledge. We label

channels C3, C4,and Cz as the effective channels at the left

hand, right hand, and foot imagery classification for the

reason that these three channels are seen as the motor

cortex related channels. Additionally, we label three

channels on the frontal lobe as redundant channels.

With the help of the free parameters and spectral graph

theory, the loss function of graph neural networks can be

designed as L ¼ 1
jYj
P

i2Y lossðyi; ziÞ, Y is a set of nodes

that have labels, yi is the matrix of labels, loss(*) denotes

the cross entropy loss function, and zi is the output of the

graph convolutional networks at ith node. When using the

GCN for channel classification, the goal is to learn the

parameter matrix in networks by minimizing the loss

function. The trained GCN network has the ability to

output the probability of labels for the unlabeled EEG

channels. Therefore, we use the output of the GCN model

to select EEG channels.

Feature extraction

Various feature extraction methods for BCI systems have

been developed. In the field of MI-based BCI systems, the

common spatial pattern (CSP) algorithm has been exten-

sively used. CSP aims to find projections that maximize the

Table 1 Parameters of the GCN

model (C is the number of EEG

channels)

Module Parameters

GCN layer C � C

GCN layer C � 4

Full connected 4

Softmax 2 classes
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separation of two classes (Ramoser et al. 2000). Specifi-

cally, CSP builds a filter by maximizing the variance of

projected data from one class while minimizing the vari-

ance of the other class. Suppose that XðyÞ 2 RNC�T , where

NC is the number of channels and T is the length of the

time series. Then the covariance matrix C of class y is

calculated as follows:

Cy ¼
XðyÞXðyÞ>

traceðXðyÞXðyÞ>Þ
ð8Þ

where the operator traceð�Þ denotes the trace of the input

matrix. Consequently, the objective function can be for-

mulated as the Rayleigh quotient:

wopt ¼ argmax
w

w>C1w

w>C2w
ð9Þ

The solution to this problem is the Lagrange multiplier

method. And the Rayleigh quotient is amounted to solve

the generalized eigenvalue problem such that w>C2w ¼ 1

and Cy is a symmetric positive definite matrix. Then we

have the following solution:

C�1
2 C1w ¼ kw ð10Þ

Hence, 2m eigenvectors corresponding to the m smallest

and the m largest eigenvalues of C�1
2 C1, are obtained as the

spatial filters Wop, resulting in Z ¼ W>
opX. To make the

features similar to Gaussian distribution, the feature vector

of kth filter is transformed by logarithmic transformation:

fk ¼ log
varðzkÞ

P2m
i¼1 varðziÞ

 !

ð11Þ

where zi is the ith row of the matrix Z.

Classification

In this article, we use the Linear Discriminant Analysis

(LDA) for the classification of the motor imagery task,

taking the features that are constructed above. Suppose the

dataset that contains n samples: S ¼
fðf1; y1Þ; ðf2; y2Þ; . . .ðfn; ynÞg where f is the feature vector,

y is the label of f. Consider a two classes classification task,

the class label of LDA is defined as y 2 f0; 1g. The mean

l0; l1 and the covariance R0;R1 of the features are cal-

culated in feature space. LDA tries to project the feature

data to maximize the variance Sbetween of the two classes

while minimizing the variance Swithin of features in the

same category (Fisher 1936).

JðwÞ ¼ Sbetween
Swithin

¼ ðw>ðl0 � l1ÞÞ2

w>R0wþ w>R1w
ð12Þ

where Sbetween and Swithin are the metrics of the intra-class

variance and inter-class variance. The solution of the LDA

classifier is efficient and there are no adjustable parameters.

Results

Dataset description

In this study, three datasets were used to verify the effec-

tiveness of the proposed channel selection method. All

datasets came from the public BCI competition dataset

series.

Dataset 1 came from the part I of the BCI Competition

IV (Zhang et al. 2012). All the EEG data was recorded at

1000 Hz. We downsampled the data to 100 Hz. The dataset

contained EEG from 7 participants and was recorded via 59

channels. Since the EEG data of participants ‘c’, ‘d’ and ‘e’

was artificially generated, we only used the EEG from

participants ‘a’, ‘b’, ‘f’, and ‘g’. Each participant was asked

to complete 200 trials of two classes of motor imagery

tasks. In the experiment, arrows pointing left, right, and

down were displayed, participants performed the motor

imagery tasks corresponding to these cues (left hand, right

hand, and foot motor imagery). The execution time of

motor imagination was 4 s. More details of this dataset can

be found on the following website: http://www.bbci.de/

competition/iv/.

Dataset 2 came from the BCI competition III, IVa part

(Blankertz et al. 2006). This dataset recorded EEG from

118 channels, which were set at positions in the 10–20

EEG systems. Three motor imagery tasks were used: left

hand, right hand, and right foot imagery. However, only the

EEG data for right hand and right foot motor imagery were

provided. This data set consisted of data from 5 healthy

participants (labeled: aa, al, av, aw, ay), 280 trials were

recorded per participant. The visual cues were shown for

3.5 s in each trial, during which the participants performed

the motor imagery. Then the period for participants to relax

was randomly drawn from between 1.75 to 2.25 s. In this

study, we downsampled the data to 100 Hz. More details of

this dataset can be found on the following website: http://

www.bbci.de/competition/iii/.

Dataset 3 came from the IIIa part of the BCI Competi-

tion III (Blankertz et al. 2006). All the EEG data were

recorded from 3 subjects with 250 Hz sampling rate. A set

of 60 EEG channels were used to record the EEG during

the experiment. The participants were labeled as k3, k6,

and l1. In the experiment, the beginning of the trial was a

black screen for the first 2 s. Then the cross symbol ‘‘?’’

was displayed from 2 s, this remained on screen for one

second. An arrow to up, right, down, or left was then

1288 Cognitive Neurodynamics (2023) 17:1283–1296

123

http://www.bbci.de/competition/iv/
http://www.bbci.de/competition/iv/
http://www.bbci.de/competition/iii/
http://www.bbci.de/competition/iii/


displayed from 3 to 7 s, to indicate the motor imagery tasks

tongue, right hand, foot, or left hand. The participants were

asked to perform the corresponding imagery task until the

arrow disappeared. In this study, we used the trials during

which participants attempted left and right hand motor

imagery to verify the proposed method. More details of this

dataset can be found on the following website: http://www.

bbci.de/competition/iii/.

Data preprocessing

EEG signals are first preprocessed via the Butterworth filter

and band-pass filtered from 8 to 30 Hz. The setup of the

Butterworth filter is aimed at cancelling the high-frequency

noise such as the power line noise and retaining the

information of the brain activity related to motor imagery.

Experiment results

The proposed GCN-based channel selection method (GCN-

CS) is applied to the above-mentioned datasets. To illus-

trate the effectiveness of the proposed channel selection

method, we compared the average accuracies of the full

channels and the selected channels in the MI-based BCI.

Table 2 shows the result between all EEG channels and

the selected EEG channels via the proposed channel

selection method. A tenfold cross-validation method is

used to train the method and calculate the accuracy. The

mean accuracy of the chosen channel combination is higher

than that achieved when all EEG channels are used.

Additionally, the proposed channel selection method

improved the BCI performance for each participant in the

dataset.

A Wilcoxon Signed Rank Test (Rey and Neuhäuser

2011) is also used to assess the results. This reveals that the

GCN-CS method significantly outperformed the use of all

channels (AC) (p\0:05).

With the cancelling of redundant channels, the number

of channels is reduced while the average classification

accuracy is increased. For participants ‘av’ and ‘aw’, the

reduction of EEG channels can increase the classification

accuracy by over 8 percent. As an example, the accuracy of

participant ’a’ increased to 85.00% from 70.50%, while the

accuracy of participant ’b’ improved by about 10 percent,

increasing from 54.00 to 64.00%.

Comparisons

The classification accuracy achieved by using the GCN-

based channels selection method is compared with the

other channel selection methods.

For motor imagery tasks, the traditional method used

EEG data from only three channels (3C-CSP), called C3,

Cz, and C4. This strategy was founded on neurophysiologic

findings indicating the left primary motor cortex (C3), right

primary motor cortex (C4), and center primary motor

cortex (Cz) were the best locations for MI task classifica-

tion (Hu et al. 2014). Additionally, the CSP feature

extraction method was attempted to aid classification.

The CSP-rank (Tam et al. 2011) method was based on

sorting the absolute values of the CSP filter coefficients in

the filters which were produced by the CSP algorithm.

CSP-rank used the eigenvectors that corresponded to the

largest and smallest eigenvalues respectively to construct

spatial filters which generate features with two dimensions

from the EEG data. The filter’s coefficient of a particular

EEG channel corresponded to the importance of the

channel.

The Sparse common spatial pattern (SCSP) (Arvaneh

et al. 2011) method added the ratio of L1-norm and L2-

norm as a constraint on the CSP objective function. Then

the spatial filters obtained by the new objective function

were used for ranking the channels.

Table 3 shows that GCN-CS achieves the highest

average accuracy compared with other methods on three

datasets. The boldface denotes the highest accuracy of the

subject. Moreover, GCN-CS uses fewer channels and

achieves over 6 percent higher accuracy than SCSP. Except

for participants ’ay’ and ’g’, GCN-CS has the best per-

formance over participants. For three datasets, our method

achieves the highest average accuracies.

We rank the channels by scores of importance and select

a specific number of important channels for classification.

Figure 3 shows the relationship between the number of

channels selected and the average accuracies achieved. The

red line marks the best classification accuracy and the

corresponding number of channels. As the number of

channels increases, the accuracy of the classification first

rises and then decreases with the increase in the number of

channels. The accuracies peak at about 15 channels on

Dataset 1 and about 30 channels on Dataset 2. The

Table 2 Ten-fold cross-validation classification results (%) of the GCN-CS method on the three datasets

aa al av aw ay a b f g k3 k6 l1 p

AC 76.07 97.14 63.93 83.57 90.36 70.50 54.00 64.50 93.00 90.56 57.50 90.00 -

GCN-CS 83.21 98.93 74.64 95.00 93.93 85.00 64.00 75.55 94.50 93.89 75.00 95.00 \ 0.05
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effectiveness of the proposed method in removing redun-

dant information can be seen in Fig. 3. Mostly, around two-

thirds of redundant channels can be found, which deterio-

rates the feature separability. With GCN-CS method,

higher classification accuracies are achieved with less EEG

channels.

For participant ‘aw’, Fig. 3(d) shows that classification

accuracy peaks at over 90% within 30 channels but obtains

an accuracy of less than 85% when all channels are used. A

sharp decline in accuracy at around 50 channels can be

seen, which indicates that the addition of redundant chan-

nels brings a reduction in classification accuracy. For all

participants, Fig. 3 shows that a decline can be seen, which

indicates that the GCN-CS method ranks the importance of

each EEG channel effectively.

Our results suggest that some EEG channels are not

conducive to the performance of BCI. If redundant EEG

channels are fed into the classifier, classification perfor-

mance may decline. Our proposed method can be used to

remove the redundant channels and improve the perfor-

mance of MI-based BCI systems.

Map of selected channels

The outputs of the proposed GCN model can be seen as the

evaluation scores of the contributions of channels to clas-

sification. We use MATLAB with the EEGLAB toolbox

(Delorme and Makeig 2004) to plot the topography for

each participant. In our study, the evaluation score of each

channel is calculated by the rank of the outputs from the

GCN model. For 10-fold cross-validation, we get ten scores

for a participant and illustrate the topography with the

average values for each participant.

The maps of the selected channels for Dataset 1 and

Dataset 2 are shown in Fig. 5. Based on the ranking of

channels, we calculate the percentile ranking of each par-

ticipant to help visualize the evaluation scores. Since we

used ten folds cross-validation, we calculated average of

the scores and the distribution of the channels’ average

scores is shown in Fig. 5. The color red denotes high

evaluation scores, whereas the color blue denotes low

evaluation scores. As can be seen, all of the participants

have certain commonalities. High-scoring areas are seen on

the left primary motor cortex and center primary motor

cortex, which is located around the C3, C4 and Cz chan-

nels. In addition, low-scoring areas are seen in the area of

the frontal lobe. The similarities of the maps of channels

suggest that the proposed GCN-CS method is a promising

tool for distinguishing the essential regions in multi-chan-

nel EEG data.

Additionally, we use the T-SNE method (Van der

Maaten and Hinton 2008) for illustrating the feature dis-

tribution. As Fig. 4 shows, we embed the CSP features of

all channels and selected channels on Dataset 2. The sep-

arability of selected channels is more apparent than that

achieved when all channels are used. For participant ’av’,

Table 3 Comparison of the

highest classification accuracies

among the proposed method and

other reported channel selection

methods from data from three

datasets

Participants Methods

3C-CSP CSP-rank SCSP GCN-CS

Acc (%) Num Acc (%) Num Acc (%) Num Acc (%) Num

k3 80.00 3 93.33 16 93.33 33 93.89 33

k6 57.50 3 65.00 30 71.66 11 75.00 11

l1 81.67 3 92.50 12 91.66 58 95.00 16

Mean 73.06 83.61 85.55 87.96

a 74.00 3 83.00 16 82.50 12 85.00 19

b 60.00 3 57.00 38 57.00 30 64.00 12

f 62.50 3 66.50 6 74.50 17 75.55 8

g 89.00 3 95.00 51 95.50 52 94.50 48

Mean 71.38 75.38 77.38 79.76

aa 61.43 3 81.43 46 80.36 45 83.21 20

al 87.50 3 98.57 57 97.86 54 98.93 37

av 58.21 3 54.29 30 65.71 52 74.64 6

aw 74.29 3 90.00 32 88.21 74 95.00 51

ay 85.00 3 94.30 55 93.21 101 93.93 20

Mean 73.29 83.72 85.07 89.14

p-value \ 0.05 \ 0.05 \ 0.05 –
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after applying GCN-CS, Table 2 shows an over 8%

improvement is obtained, and a more significant degree of

separability can be seen in Fig. 4h. Similarities can also be

seen in other participants. The results show that removing

the redundant EEG channels can enhance the separability

of the features and help improve classification

performance.
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Fig. 3 The performance of our proposed channel selection method in terms of number of channels selected compared to classification accuracy
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Fig. 4 Comparison of feature distributions (AC: all channels scheme. GCN-CS: proposed channel selection scheme)
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Discussion

Rationality of GCN in channel selection

Most MI-BCI researches focus on the univariant informa-

tion available in single-channels to develop channel

selection methods. For instance, Tam et al. (2011) use the

CSP algorithm to set a criterion, which is calculated with

the discriminative information in individual channels, to

evaluate the importance of each channel. However, this

kind of criteria for channel selection is restricted to uni-

variant information and ignores connectivity between brain

regions.

Graph data has great advantages in representing the

interaction of brain regions. All the EEG channels form a

network and each channel is regarded as a node in the

network. Then, the statistical relationships between chan-

nels can be easily quantified, and the connectivity is

regarded as an edge in the network.

Effectiveness of GCN-CS model

It is uncertain whether the connectivity of the networks can

be used to select channels in BCI systems. This study

regards channel selection as the node classification prob-

lem in the EEG network. We quantify the statistical rela-

tionship between EEG channels with the Pearson

correlation coefficient. We then use binarization for

retaining half of the edges. Then, we build the graph and

use our proposed GCN model to learn and predict the

channels with a few labels.

The performance improvement brought by removing

redundant channels is verified in our method, which is

shown in Table 2 and Fig. 3. Our method can estimate the

importance of the EEG channels in MI tasks and remove

the redundant EEG channels to improve the classification

performance.

Our comparison results, in which we compare our

method with traditional methods, are given in Table 3.
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Fig. 5 Topography of average scores of EEG channels on Dataset 1 and Dataset 2. Higher scores indicate that the channel is more important in

this study
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With the introduction of the GCN model, our method

achieves high performance in MI-based BCI systems.

Moreover, our proposed method is a promising tool to

reveal the brain regions which are highly relevant to the

motor imagery task.

The channel selection GCN model proposed in this

paper is different from the model used for classification.

Additionally, the scale of the graph in this study is less than

200. Therefore, the model designed in this paper does not

need a lot of iterative training, and the training time can be

completed in a few seconds which is superior to most

wrapper-based methods.

Challenges and future work

There still exist some limitations in our method. Firstly, the

tagging task is only based on neurophysiologic knowledge.

Only channels C3, C4, and Cz can be labeled as effective

channels. Additionally, the number of labeled channels in

the MI task is small and limited. Second, the method for

quantifying the connectivity between channels is the

Pearson correlation coefficient. Thus, only linear relation-

ships between EEG channels are considered, which ignores

the complex nonlinear relationship that also exists between

EEG channels. Thirdly, it is hard to conclude how many

channels are most helpful for improving the BCI perfor-

mance because the difference between the training dataset

and the online dataset can affect the performance, such as

covariate shift. But we can seek the number of selected

channels from Fig. 3, which shows that 15–25 channels can

work effectively.

To address these issues, we will experiment with

information theory and other quantification methods for

connectivity. In the future, we will design a new tagging

method based on information theory, which has the

potential to help identify channels more effectively. We

will also explore the used use of nonlinear quantification

methods for connectivity to improve performance. In

addition, we might add mutual information to optimize the

number of selected channels in future work.

Conclusion

In this study, we proposed a novel EEG channel selection

method based on graph convolutional neural networks.

Channel selection in MI-based BCI is regarded as a node

classification problem. All the scalp electrodes are regarded

as nodes, and the edges between electrode pairs are cal-

culated according to the Pearson correlation coefficient.

We remove half of the edges to generate a graph for EEG

channels, which retains the coupling relationships between

the most important pairs of channels. Then, we design a

GCN model for classifying the resulting features. The

weight values of predicted labels are used to sort the

channels. Experimental results suggest that high classifi-

cation accuracy can be obtained by using the LDA classi-

fier to classify features extracted by CSP from the selected

channels. In sum, the proposed GCN-CS method is a

promising tool for increasing the performance of motor

imagery-based BCI systems.
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