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Neural activity and behavior manifest state and trait dynamics,
as well as variation within and between individuals. However,
the mapping of state-trait neural variation to behavior is not
well understood. To address this gap, we quantify moment-to-
moment changes in brain-wide co-activation patterns derived
from resting-state functional magnetic resonance imaging. In
healthy young adults, we identify reproducible spatio-temporal
features of co-activation patterns at the single subject level. We
demonstrate that a joint analysis of state-trait neural variations
and feature reduction reveal general motifs of individual differ-
ences, encompassing state-specific and general neural features
that exhibit day-to-day variability. The principal neural varia-
tions co-vary with the principal variations of behavioral pheno-
types, highlighting cognitive function, emotion regulation, alco-
hol and substance use. Person-specific probability of occupying
a particular co-activation pattern is reproducible and associated
with neural and behavioral features. This combined analysis of
state-trait variations holds promise for developing reproducible
neuroimaging markers of individual life functional outcome.
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Introduction
The field of functional human neuroimaging (fMRI) has

attempted to characterize the functional organization of the
human brain and how it relates to individual differences (1,
2). These emerging methods can identify low dimensional
representations of neural traits (i.e. subject-specific) (3, 4) or
states (i.e. varying over time within a subject) (5–7) which
may be predictive of behavioral phenotypes. This growing
body of work suggests that fMRI may hold great potential for
characterizing how complex neural signals map onto human
behavioral variation.

Spontaneous fluctuations of brain activity measured at
rest (i.e resting state fMRI (rs-fMRI)) are embedded in time
and space, exhibiting rich spatial-temporal information that
varies within (state) and between (trait) individuals. The
joint properties of state-trait rs-fMRI signal variation remains
poorly understood, constituting a critical knowledge gap. An
individual’s mental state at any given time of rs-fMRI may be
influenced by many intrinsic (e.g. metabolic) (8, 9) or extrin-
sic (e.g. medications) factors that directly affect the circuit

activity underlying complex behavior (10–18). On the other
hand, there might be other dimensions that contribute to vari-
ability in large neuroimaging datasets and undermine their
ability to identify clear brain-behavior relationships. One of
these dimensions may be time-varying signal dynamics. For
instance, personality theories posit that traits are character-
ized as patterns of thoughts, feeling and behavior that gener-
alize across similar situations within individuals and differ
between individuals, whereas behavioral states reflect pat-
terns that vary over time and situations (19, 20). Historically,
rs-fMRI studies have quantified neural traits (e.g. stationary
functional connectivity characterizing a subject) to study how
they vary across people in relation to a given behavioral trait
(e.g. fluid intelligence or a set of clinical symptoms) (21–23).
Yet, there is a knowledge gap regarding how combined state
and trait variation of spontaneous brain dynamics map onto
individual variation in complex behavioral phenotypes.

A recent meta-analysis of three large consortia datasets
(N=38,863 in total) has shown that brain-behavior associa-
tions in the general population have small effect sizes (e.g.
|r| < 0.2) using data from thousands of individuals, when
correlating neural measures from structural MRI, rs-fMRI
and task fMRI activation to behavioral measures includ-
ing cognitive ability or psychopathology (24). While large
sample sizes are key for discovering and replicating small
brain-behavior relationships on average (24), these recent
advances leave the open question that there may be strong
brain-behavioral effects that can be seen with quantitative
approaches that consider time-varying signal dynamics (25–
27). Still, the application of state-related quantitative ap-
proaches in fMRI remain underutilized for characterizing
reproducible inter-individual differences in brain-behavioral
relationships (28, 29). Furthermore, combining state-related
and trait-related information from rs-fMRI signals may pro-
vide convergent information about individual brain-behavior
associations. To this end, we tested the hypothesis that re-
producible neural-behavioral mapping may be achieved by
quantifying combined state and trait information from time-
varying rs-fMRI signals across the brain.

One approach that captures both trait and state neu-
ral characteristics is the analysis of co-activation patterns
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(CAPs) for rs-fMRI (30). This analysis focuses on moment-
to-moment changes in the whole brain blood oxygenation
level dependent (BOLD) signals at each time point, provid-
ing a method to quantify the spatial patterns of co-activation
across people and individual variation in patterns of neural
temporal organization (30). Several studies have reported
similar average CAP patterns in healthy human adults (30),
which also show some notable sex differences (31) and are
impacted by proceeding task conditions (32). Alterations of
spatial and temporal organizations of CAPs (e.g. the number
of time-frames occupied by a CAP state) were found across
different levels of consciousness (33), schizophrenia (34),
pre-psychosis (35), depression (36, 37), and bipolar disorders
(38, 39). All of these studies characterized group-level effects
between patients and healthy controls with a fixed number of
CAPs across groups, often capturing a parsimonious snap-
shot of brain dynamics by selecting a small number of time
points associated with high-amplitude signals in pre-selected
(i.e. seed) regions. While these studies have provided in-
sights that CAPs contain rich information, they are system-
atically omitting full range of BOLD fluctuations. Put dif-
ferently, few studies have leveraged the entire BOLD signal
range to define CAPs (7). Moreover, no study to our knowl-
edge has investigated the properties of within and between-
subject variability across a reproducible set of CAPs that har-
ness the entire BOLD signal fluctuation range (40, 41). Fi-
nally, no study has in turn quantified how individual differ-
ences in CAP properties map onto complex behavior.

Here, we test the hypothesis that there is a reproducible
CAP feature set that reflects both state and trait brain dy-
namics and that this feature set relates to individual pheno-
types across multiple behavioral domains. To address this,
we studied rs-fMRI and behavioral data obtained from 337
unrelated healthy young adults in the individual Human Con-
nectome Project (HCP) S1200 data (42). To optimize neural
features accounting for CAP variation within and between
subjects, we develop a three-axes model of state-trait brain
dynamics using moment-to-moment changes in brain CAPs.
We identify three reproducible CAPs that can be quantified
at the single subject level, exhibiting recurrent snapshots of
resting-state network spatial profiles and individual-specific
temporal profiles. By analyzing spatio-temporal state-trait
dynamics of CAP patterns, the data revealed groups of in-
dividuals that consistently exhibit behaviorally-relevant CAP
characteristics. These results suggest that a critical step to-
ward the development of reproducible brain-behavioral mod-
els may involve initial mapping of neural features that can
robustly and reproducibly capture combined trait (between-
subject variability) and state (within-subject variability) vari-
ance in neural features.

Results
Three brain co-activation patterns are reproducibily
found in healthy subjects at rest. The analysis of
moment-to-moment changes in CAPs assumes a single neu-
ral state (i.e. CAP state) per each fMRI time-frame, and iden-
tifies a set of CAPs recurring over time and across subjects

by spatial clustering of fMRI time-frames (7, 30). We iden-
tify a reproducible set of CAPs from 4 runs of rs-fMRI data
(15-min/run) obtained over two days from 337 healthy young
adults (ages 22-37 years, 180 females) using a shuffled split-
half resampling strategy across 1,000 permutations. Here we
used the entire BOLD signal fluctuation range for CAP es-
timations, without sparse time-point sampling. In each per-
mutation, we randomly split the sample (N=337) into two,
each involving the equal number of non-overlapping subjects
(n=168 respectively, randomly excluding a subject) (Fig. 1A,
Supplementary Fig. S1). To analyze CAPs at a low di-
mension space and to reduce the computational burden of
CAP analysis that treats every 3-dimensional time-frame in
the clustering process (e.g. 4,000 time-frames/subject), we
used the Cole-Anticevic Brain Network Parcellation (CAP-
NP) that involves 718 cortical surface and subcortical volu-
metric parcels (43). We averaged the preprocessed BOLD
signals in the voxels belonging to each parcel (44). There-
fore, within each split, a 4,000 × 718 array of individual rs-
fMRI data are temporally concatenated across subjects. The
time-frames are clustered based on spatial similarity using
K-means clustering, where the number of clusters (k) is esti-
mated for each split using the elbow method varying k from
2 to 15. Finally, a CAP was obtained by averaging the time-
frames within each cluster with respect to each parcel.

We first found that there are individual differences in the
number of reproducible brain states. Specifically, in both
splits, the estimated number of CAPs was either 4 or 5, each
exhibiting an ≈ 50% occurrence rate across permutations
(Fig. 1C, D). However, interestingly, the co-occurrence of
the same number of CAPs in both splits was rare (< 6%). In
other words, a half of the sample produced 5 CAPs, while the
other half produced 4 CAPs (Fig. 1E, Supplementary Fig.
S2). Because each of two non-overlapping halves contain a
distinct subset of samples, we hypothesized that individual
difference in the number of reproducible brain states plays a
role in the observed between-split differences. To test this
hypothesis, we quantified the individual’s preference toward
a specific number of CAPs by comparing the probability of
estimating 4 CAPs or 5 CAPs. The probability of estimating
k CAPs was quantified using the occurrence of k solution
estimations in a split across permutations (see Methods). In-
deed, there was a highly reproducible tendency for individual
subjects to occupy either 4 or 5 CAPs (Fig. 1F). Together,
these results suggest the presence of a CAP state that is re-
producibly found in a subset of subjects but not in others.

To identify reproducible spatial topography of CAPs
for further analyses, we generated two sets of basis CAPs
independently: the 4-CAP and the 5-CAP basis sets
(Supplementary Fig. S2). The 4-CAP basis set was ob-
tained by applying agglomerative hierarchical clustering to
the CAPs collected from only the permutations that resulted
in the estimation of 4 CAPs (Fig. 1G). Then, a basis CAP was
generated by averaging the CAPs belonging to each cluster,
and the value in each parcel of the basis CAP was normalized
to z-scores using the mean and standard deviation across 718
parcels (Supplementary Fig. S2). The 5-CAP basis set was
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Fig. 1. A reproducible set of co-activation patterns (CAPs) in the whole-brain rs-fMRI involve recurring mixed representations of canonical resting state networks.
(A) Analysis overview. In each permutation, 337 subjects are randomly split into two equal-sized groups. Within each split, a parcel-by-time array of rs-fMRI data are
temporally concatenated across subjects. Time-frames are clustered based on spatial similarity using K-means clustering. The number of clusters (k) is estimated for each
split. Each CAP is obtained as the centroid of each cluster (Supplementary Fig. S1). (B) The number of time-frames used for analysis are not different between two splits
(two-sided paired t-test). (C) The estimated number of CAPs (k) in each split across 1,000 permutations. (D) Occurrence rate (%) of k = 4 or k = 5 solutions in each split.
(E) Co-occurrence rate (%) of k = 4 or k = 5 solutions in both splits. (F) Individual’s statistical preference toward a specific number of CAPs (k) is reproducible. In each split,
individual’s preference toward a specific number was quantified using the number of permutations that resulted in a specific solution (eg. 4 CAPs or 5 CAPs) across 1,000
permutations. Specifically, we compute the difference (occurrence of k = 5) − (occurrence of k = 4) for each subject (Methods). (G) Spatial correlation of the 5-CAP basis
set (left) and between the 4-CAP basis set and the 5-CAP basis set (right). r values were rounded to the nearest 2 decimal digits. (H) Spatial topography of 5 basis CAPs.
(I) Spatial similarity of the 5 basis CAPs to canonical resting state networks, pre-defined using the CAB-NP parcellation (see (J) (43)).

also obtained using the CAPs collected from the permuta-
tions resulting in 5-CAP solutions. We found that the 4-CAP
basis set consisted of two pairs of anti-correlated CAPs (I+
and I-, II+ and II-), and the 5-CAP basis set consisted of the
same two pairs of anti-correlated CAPs and one additional
CAP (III) (Fig. 1G). The patterns of these basis CAPs were
consistent between two splits (Supplementary Fig. S3). The
number (I, II, and III) and sign (+ and -) of CAPs were labeled
arbitrarily. Overall, we found three CAPs recurring over time
and across healthy subjects in rs-fMRI.

Patterns of whole-brain co-activation are recurrent
snapshots of mixed resting state networks. As ex-
pected, the spatial patterns of three CAPs were associ-
ated with well-known rs-fMRI networks (Fig. 1H, I).
CAP I involved a strong bi-polarity between the default
mode and frontoparietal networks versus the dorsal atten-
tion, cingulo-opercular, somatomotor and secondary visual
networks. Here, bi-polarity stands for positive versus nega-
tive cosign similarity of each CAP with distinct resting state

networks (CAP+ versus CAP-). CAP II exhibited a weaker
bi-polarity between the primary visual, orbito-affective, de-
fault mode, and frontoparietal networks versus the dorsal at-
tention, somatomotor, and secondary visual networks. CAP
III showed a strong bi-polarity between the default mode, so-
matomotor, and secondary visual networks versus the fron-
toparietal, dorsal attention, and cingulo-opercular networks.
Considering that resting state networks are identified based
on the co-fluctuations of signals in distributed brain regions,
our results show that these CAPs represent recurring snap-
shots of the diverse signal co-fluctuations among regions in-
volved in different functional networks at each time-frame.

CAP III is reproducibly found in some individuals but
not in others. Our result in Fig. 1E, F suggests that there
are individual differences in the number of reproducible brain
states. Because CAPs are estimated using data from a group
of subjects, the contribution of a single subject to this esti-
mation is relatively small. In addition, it remains unknown
whether the spatial topography of estimated CAPs are repro-
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ducible across permutations. To address these, we investi-
gated three questions: (i) whenever 4 CAPs are estimated
from a split data, are their spatial patterns reproducible across
the permutations, (ii) whenever 5 CAPs are estimated from a
split data, are their spatial patterns reproducible across the
permutations, and (iii) is there a specific CAP state that is
reproducibly missing in 4-CAP solutions when compared to
the 5-CAP solutions.

First, we calculated the marginal distribution of spatial
correlation values (r(ECi,BCj)) between the CAPs esti-
mated from each split data (Estimated CAP; ECi, i = 1, ..,4
or 5) and a given basis CAP (Basis CAP; BC)(Fig. 2A).
Note that these pre-defined basis CAPs are the group-average
and permutation-average CAPs obtained using the agglomer-
ative hierarchical clustering of all CAPs across permutations
(Fig. 1H). In each permutation, each ECi was labeled ac-
cording to the maximum rank correlation with the given basis
CAP. As a result, the marginal distribution of r values showed
that the spatial patterns of 4-CAP solutions and 5-CAP solu-
tions were strongly reproducible (Supplementary Fig. S4).
The CAPs estimated from each split were highly correlated
with at least one of the basis CAPs, demonstrating a 1-on-1
matching for all CAPs. In addition, CAP III was reproducibly
found in one split but not in another split across permutations
(Fig. 2, Supplementary Fig. S5). Together, this analysis
demonstrates that the presence or absence of CAP III is not
a random artefact but actually associated with reproducible
neural dynamics of individuals.

Reproducible state-trait neural features at the sin-
gle subject level. We identified three CAPs that reflect
brain-wide motifs of time-varying neural activity. Here
we demonstrate a reproducible estimation of spatial CAP
features at the single-subject level. The CAP analysis in-
volves the assignment of individual time-frames to one of the
estimated CAPs using the K-means clustering process (Fig.
3A). The CAPs estimated in each split were labeled using
the maximum ranked correlation with the pre-identified
5-CAP basis set (Supplementary Fig. S4). In turn, this
frame-wise identification of CAP states allows the estimation
of temporal profiles of CAP states for individual subjects.
We demonstrate that reproducible state and trait features
of neural dynamics can be quantified using several key
parameters of CAP temporal characteristics (see Fig. 3A).

Definitions.

1. Fractional occupancy (FO(s, i)): the total number of
time-frames (or MRI time of repetition; TR) that a sub-
ject s spends in CAP state i per day, normalized by the
total number of time-frames spent in any CAP state by
subject s per day. FO is a relative measure (%TR),
such that the sum of FO of all CAP states is 1 within a
subject per day. FO reflects between-subject variance
(trait variance) of CAP dynamics.

2. Time-consecutive segment (c): the period between two
time-frames when a subject enters a CAP state and
when transitioning to another CAP state.

Fig. 2. The spatial patterns of the CAPs estimated across split-half permu-
tations are reproducible, demonstrating the consistent absence of a specific
spatial pattern (CAP III) in one split but not in another split across permu-
tations. (A) Proof of concept. First, we collect all CAPs estimated from the 502
permutations out of 1,000, where the proposed method estimated 4 CAPs from
each data (Fig. 1C). Spatial similarity (r, correlation coefficient) is computed be-
tween each of the estimated CAPs (EC; denoted as a, b, c, d, and e) and a given
basis CAP (BC). In this example, we select BC 1 from the 5-CAP basis set. r val-
ues were rounded to the nearest 2 decimal digits for visualization. Finally, we obtain
the marginal distribution of r values between BC 1 and the estimated CAPs across
502 permutations. (B) The CAP III is reproducibly found in the 5-CAP solutions and
not in the 4-CAP solutions across permutations. We repeated the spatial similarity
analysis for the 4 CAPs estimated from each split-half data, when compared to the
5-CAP basis set. In each permutation, each estimated CAP was labeled according
to the maximum rank correlation with the basis CAPs. Data-points (r-values) es-
timated from the CAPs with a same label were coded using the same color. The
marginal distributions of r between all estimated CAPs and each BC from the 5-
CAP basis set are illustrated using kernel density estimation. Results obtained from
the split 1 data are shown in (B) and replicated in the split 2 data (see Supplemen-
tary Fig. S5).

3. Dwell time (DT(s, i,c)): the number of time-frames
(#TR) of a time-consecutive segment c occupying the
same CAP state i within a subject s per day.

4. Within-subject mean of DT (Mean DT(s, i)): the
mean of estimated values of DT for all time-
consecutive segments during which CAP i is occupied
by subject s per day.

5. Within-subject variance of DT (Var DT(s, i)): the
standard deviation of estimated values of DT from all
time-consecutive segments occupying a CAP i within
a subject s per day. DT measures involve both trait
(between-subject) and state (within-subject) compo-
nents of neural dynamics.

The quantification of these CAP measures was performed
for each split data per permutation. To evaluate day-to-day
variability of CAP dynamics, we computed these measures
for each day separately. In summary, we estimated FO, mean
DT and var DT for each CAP per subject. This allowed us to
average the estimated neural measures across permutations,
providing a summary statistic of neural measures for each
CAP for each subject per day. These statistics are statistically
reproducible at the single-subject level, as shown in Figure
3B (45–47). Care is needed when interpreting the results, be-
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Fig. 3. Resting state brain CAPs have distinct between and within-subject variance of temporal characteristics and test-retest reliability, as revealed by the 3-axes
representation of neural trait variance space. (A) Analysis overview. In each split-half data from each permutation per day, fractional occupancy (FO), within-subject
mean of dwell time (Mean DT) and within-subject standard deviation of dwell time (Var DT) are estimated for each CAP state. (B) Stability of individual mean DT of CAP I+
across permutations and across two days. Individual subjects were rank-ordered from top to bottom using the split 1 data from Day 1. We also found that individual Var DT
and individual FO for these CAPs are reproducible across permutations and two days (Supplementary Fig. S6). (C) Days 1 and 2 reliability of FO (top), Mean DT (middle)
and Var DT (bottom) in each CAP state were quantified by the intraclass correlation coefficient using two-way random effect models (ICC(2,1)). When computing ICC for
CAP III, permutations resulting in the absence of CAP III was not considered, because the values of temporal metrics are zero for both days. (D) Test-retest reliability of
neural measures between two days of scan. (top) Scatter plots of individual FO, within-subject mean and variance of DT between days 1 and 2 for CAP I+ state. r-value is
estimated from the linear fitting lines (red) for each scatter plot. (bottom) The same analysis was performed for all CAPs (Supplementary Fig. S7) and summarized here
using r-values. (E) CAPs on the neural trait variance space. Relative variance (coefficient of variance) of each CAP measure was computed across subjects: individual FO
(x-axis), Mean DT (y-axis) and Var DT (z-axis). The three-axes representation allows for unifying and optimizing the variations of temporal CAP characteristics and distinct
patterns of temporal organizations of brain activity.

cause stable individual-specific properties of state dynamics
such as mean DT in this study can also be considered as traits.

Here, we demonstrate that state-trait CAP dynamics are
reproducible at the single subject level across permutations,
whereas within-subject between-day reliability was lower
than between-permutation reliability on a same day (Fig. 3B,
C, Supplementary Fig. S7). First, we measured the test-
retest reliability of the neural measures using a linear regres-
sion (Fig. 3D). The correlation of individual neural measures
between day 1 and day 2 was 0.41±0.07 for FO (mean ± SD
over five CAPs), 0.41 ± 0.06 for mean DT, and 0.38 ± 0.07
for var DT. CAP I+ showed the highest between-day reli-
ability and CAP III was the lowest. Secondly, we com-
puted the intraclass correlation coefficients using two-way
random effect models (ICC(2,1)) for each split in each per-
mutation. Therefore, for each CAP, we measure 2,000 ICC
values across 1,000 permutations. The average ICC across all
CAPs are 0.39 ± 0.06 (Mean ± Standard Deviation) for FO,
0.39±0.05 for Mean DT, and 0.34±0.06 for Var DT. These
state-trait neural measures show fair test-retest (day-to-day)
reliability, when compared to the meta-analytic estimate of
average ICC (0.29 ± 0.03, Mean ± Standard Error) across

other studies reported using edge-level functional connectiv-
ity (48).

Joint analysis of state and trait neural variations. We
propose an analytic framework of joint state and trait neu-
ral variations, taking the test-retest (or day-to-day) reliabil-
ity of neural features into account. Importantly, this frame-
work allows us to visualize how CAP properties that vary
within a person (state) also vary between people (trait). In
Fig. 3E, we illustrate a three-axes representation of state
and trait variance components of spatio-temporal CAP dy-
namics. For each CAP, we estimate the normalized inter-
subject variance (coefficient of variance) of three neural fea-
tures. Then, the five CAP states (CAPs I+/-, II+/- and III)
are projected on this space. Interestingly, we found that CAP
II exhibits the highest relative between-subject variation (i.e.
trait) across all three measures, the FO, mean DT and var DT.
Conversely, CAP III exhibits lower between-subject variance
but higher within-subject variance than CAP II (as seen in
the distance between the measures on two different days; see
Fig. 3E). Indeed, the proposed joint analysis of state-trait
neural variations provides a rich landscape of within-person
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and between-person variance of neural co-activations.

Neural feature reduction captures general motifs of in-
dividual variation. An important and interesting question
would be whether neural features with distinct patterns of
state-trait variation can provide vital information about indi-
vidual differences. Put differently, we are interested in study-
ing if there is a set of neural features that can be commonly
found across a number of healthy subjects that have a re-
producible set of neural co-activation properties, which can
in turn be related to behavioral phenotypes. To address this
question, we first collected thirty neural features estimated
for each individual: three neural measures (FO, mean DT,
and var DT) × five CAPs (I+, I-, II+, II-, and III) × 2 days.
We performed the agglomerative hierarchical clustering of a
subject-by-feature (337 × 30) matrix (Fig. 4A). We deter-
mined the number of clusters using a distance cut-off value
of 70% of the final merge in the dendrogram (Fig. 4B). As a
result, we found three subgroups (A, B, and C), each consist-
ing of 163, 127 and 47 individuals (Fig. 4C).

To further study if there is a low-dimensional geome-
try of neural state-trait variation capturing individual differ-
ences, we applied principal component analysis (PCA) to
the subject-by-feature matrix. Clearly, the three subgroups
identified using hierarchical clustering were distributed in
the low-dimensional space represented by the first three neu-
ral PCs, which explain 33.5%, 23.9% and 16% of variance,
respectively (Fig. 4D). Notably, subgroup A shows higher
scores on neural PC 1 than the other groups, and subgroup
C shows higher scores on neural PC 2 than subgroup B (Fig.
4C). Our further analysis of feature loadings on these PCs
revealed a unique and reduced feature set of neural varia-
tion, each representing CAP-specific (PC 1) and general (PC
2) neural state-trait variations, which also exhibit day-to-day
variability (PC 3). In addition, we found that each pair of
positive and negative CAP patterns (states I+ and I-, states
II+ and II-) exhibit similar temporal CAP profiles (Fig. 4E,
Supplementary Fig. S8).

Specifically, the neural PC 1 is characterized by distinct
temporal profiles on CAPs I/III versus CAP II. It includes
higher loadings of FO, mean DT and var DT at CAPs I/III
and lower loadings of DT measures at CAP II (Fig. 4F). Note
that the FO is a relative measure (%TR) such that the sum of
FO at all CAP states is 1, whereas the DT measures are abso-
lute (#TR). This indicates that individuals exhibiting high
scores on neural PC 1 occupy CAPs I and III for a relatively
longer time, whereas individuals with low PC 1 scores oc-
cupy CAP II state for a longer time. Regarding CAP II, the
FO exhibits a more pronounced negative loading on neural
PC 1 compared to the dwell time measures (mean DT and
var DT). On the other hand, the neural PC 2 highlights a gen-
eral pattern of state persistence (high within-subject mean DT
and high within-subject variance of DT), while also exhibit-
ing a weak CAP-specific effect on FO (lower loadings of the
FO at CAPs I/III and higher loadings of FO at CAP II) (Fig.
4F). In addition, in neural PC 2, the DT measures of CAP II
showed higher loadings than FO. A lengthy dwell time indi-
cates that an individual occupies a state for an extended du-

ration before transitioning to another CAP, suggesting strong
state persistence. In contrast to the neural PCs 1 and 2 that
showed strong between-day reliability, neural PC 3 showed
a strong negative correlation between days (|r| > 0.9; Fig.
4G). In particular, neural PC 3 captures a specific component
of day-to-day variability: the CAP-specific patterns observed
in neural PC 1 can undergo systematic changes between days
(e.g., sign-flipped feature loadings in Fig. 4F).

Together, our results demonstrate that both state and trait
variance of spatio-temporal CAP dynamics involve pivotal
information for identifying individual differences. The as-
sessment of individual distributions of each neural measure
supported these findings (Fig. 5). Indeed, our analyses com-
bining the hierarchical clustering and PCA of individual neu-
ral feature sets revealed three subgroups exhibiting distinct
patterns of neural variations.

Principal variations of neural state-trait features co–
vary with principal variations of behavioral pheno-
types. The subgroups identified using the neural state-trait
features exhibit distinct functional life outcomes (Fig. 6).
To estimate the geometry of principal variations in behav-
ioral phenotypes, we performed PCA on 262 variables across
15 behavioral domains from the HCP S1200 unrestricted
and restricted behavioral data: alertness (1-2), cognition
(3-39), emotion (40-63), personality (64-68), emotion task
performances (69-74), gambling task performances (75-86),
language task performances (87-94), relational task perfor-
mances (95-100), social task performances (101-113), work-
ing memory task performances (114-167), psychiatric dimen-
sions (168-189), alcohol use (190-222), tobacco use (223-
252), illicit drug use (253-258), and marijuana use (259-262)
(Fig. 6A). Find the list of behavioral variables in Supple-
mentary Fig. S10. Before performing PCA, several vari-
ables reflecting the reaction time (RT) in tasks were converted
to 1/RT for a better interpretation of PC geometry.

After performing PCA, the significance of derived PCs
was evaluated using permutation testing. Specifically, PCA
was performed for each permutation where the order of sub-
jects was randomly shuffled, which in turn provided a null
model (23). As a result, we found 27 PCs that accounted
for a proportion of variance that exceeded chance (p < 0.05
across 10,000 permutations). Subsequently, we considered
the first 15 PCs, which collectively explained approximately
50% of the total variance, for further analyses. Reproducibil-
ity of these 15 PCs was evaluated using a split-half permuta-
tion approach, where we randomly splitted 337 subjects into
two equal sized groups (n = 168) and applied PCA for each
split. Then, the similarity (Pearson’s correlation) of PC ge-
ometry between the n-th PCs estimated from two split-halves
was computed for each permutation, where n is the ranked
order of each PC based on explained variance.

As a result, we found that the first behavioral PC (PC 1)
explaining 11.2% of variance (Fig. 6B) was highly repro-
ducible, exhibiting the similarity (r = 0.9 ± 0.03, mean ±
SD across 1,000 permutations) of PC geometry between the
first PCs estimated from two split-halves (Fig. 6C). The be-
havioral PC 1 highlighted individual life function outcomes
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Fig. 4. Identification of subgroups in healthy subjects exhibiting distinct neural state-trait variances. Three subgroups of healthy subjects in the HCP data (A, B, and
C) are identified using the agglomerative hierarchical clustering of thirty individual neural state-trait features, which are estimated from temporal CAP characteristics (fractional
occupancy, FO; within-subject mean of dwell time, mean DT; within-subject variance of dwell time, var DT). (A) For each subject, thirty neural features estimated from five
CAPs and two days are collected. For each CAP, each neural feature was obtained by averaging the values estimated across permutations. Each data-point in the 3-axis
scatter plots indicate a subject. Individual neural features were obtained by averaging the feature values across permutations within subject for each day. (B) Agglomerative
hierarchical clustering is performed on the feature matrix. In the dendrogram, three clusters are found using a distance cut-off value of 70% of the final merge. In addition,
to estimate the principal geometry of this state-trait feature space identifying subgroups, we applied principal component analysis (PCA) to the feature matrix. (C) Clustered
subjects are embedded onto a 2-dimensional space using principal component analysis. (D) Variance explained (%) by each neural PC. (E) Similarity of individual neural
features between positive and negative CAPs. An example of CAPs I+ and I- are shown. See Supplementary Fig. S9 for all results (0.9 ± 0.04, mean ± SD). (F) Loadings
of each neural feature on the first three neural PCs. In each radar plot, three lines indicating FO (colored in slateblue), Mean DT (steelblue), and Var DT (turquoise) are shown
for five CAPs. Feature loadings from days 1 (top) and 2 (bottom) are shown separately for an easier interpretation, while the neural PCs were obtained using neural features
from both days as shown in (A). (G) The loadings of neural features on each PC are reliable between days. For each neural PC, Pearson’s correlation coefficient (r) was
computed between two vectors of feature loadings collected from days 1 and 2. Neural PC 3 reflects the contribution of within-subject (between-day) variance in temporal
CAP profiles.

associated with cognitive function, emotion regulation, and
alcohol and substance use (Fig. 6D). The variables of work-
ing memory task performances have the highest loadings on
the behavioral PC 1, followed by the emotion, relational,
languages, gambling task performances, fluid intelligence,
self-regulation/impulsivity, and episodic memory. In con-
trast, variables associated with alcohol and substance use
(e.g. short-term tobacco use) and psychiatric dimensions
(e.g. self-report measures of positive and negative affect,
stress, anxiety, depression and social support) exhibited the
lowest, negative loadings on the behavioral PC 1.

To assess the association between the principal variation
of behavioral variables and the principal variations of neu-
ral features, we first compared the distribution of individual
scores on 15 behavioral PCs between the subgroups, iden-
tified using the neural features (Fig. 4). Individuals classi-
fied as subgroup A (n = 163) exhibited significantly higher
scores on behavioral PC 1 compared to subgroup B (n = 127)
(pBON < 0.05, t = 3.05, two-sample two-sided t-tests) (Fig.

6F). When comparing the individual scores of behavioral PC
1 between sex, we found no relationship. We did not ob-
serve any behavioral relevance of neural state-trait dynam-
ics in identifying subgroup C (n = 47). In addition, the
second behavioral PC (PC 2) involves the variables in the
domains of emotion, psychiatric dimensions, and personal-
ity (no neural relevance, no age relevance using two-sample
two-sided t-tests) (Supplementary Fig. S11A). The third
behavioral PC (PC 3) involves the variables of alcohol, to-
bacco and other substance uses, exhibiting a strong sex effect
(pBON < 0.005) (Supplementary Fig. S11B).

Next, we studied if individual scores on the behavioral
PC 1 are associated with individual scores on the three neural
PCs using the multiple linear regression model (behavioral
PC 1 ∼ neural PC 1 + neural PC 2 + neural PC 3 + age
+ sex). The neural PC 1 was associated with the behavioral
PC 1 (partial R2 = 0.023, β1 = 0.26, SE = 0.09, t = 2.8,
p = 0.005), where the multiple R2 = 0.041, adjusted R2 =
0.026, F (5,331) = 2.814 and p-value = 0.017 for the full

Lee et al. | CAP bioRχiv | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2023. ; https://doi.org/10.1101/2023.09.18.557763doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.18.557763
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFTFig. 5. Distribution of individual neural measures of spatio-temporal CAP dynamics differ between subgroups. The distributions of individual FO, mean DT, and var
DT of each CAP state are color-coded by the three subgroups (Fig. 4). Results from days 1 and 2 data are shown separately and compared between groups (Supplementary
Fig. S8). Each data-point indicates a subject. Blue lines: p-values with Bonferroni-correction across five CAPs are estimated using two-sided two-sample t-tests between
groups, pBON < .001 (bold) and pBON < .05 (dotted).

model for predicting the behavioral PC 1. The neural PCs 2
and 3 and age did not show any association. Sex exhibited
a weak association with the behavioral PC 1 (partial R2 =
0.016, β1 = −1.44, SE = 0.61, t = −2.34, p = 0.02).

Impact of CAP III on the principal neuro-behavioral
relationships. It remains unclear whether and how the
presence of CAP III impacts the temporal CAP profiles of
other CAPs and how it relates to individual differences in
behavior. To address these, we studied the relationship of
CAP III to the three neural PCs (Fig. 4) and the first behav-
ioral PC (Fig. 6). Specifically, to quantify the probability of
CAP III occurrence, we compared the probability to have 5
CAPs involving CAP III and the probability to have 4 CAPs
without involving CAP III. We found that subgroup C had a
high probability of CAP III occurrence, when compared to
other subgroups (Fig. 7A). Individuals that have a high prob-
ability of CAP III occurrence present low scores of neural
PC 1 (r = −0.26,p < 0.001) and high scores of neural PC 2
(r = 0.24,p < 0.001; Fig. 7B, C). There was no relationship
to individual scores of neural PC 3 (Supplementary Fig.
S12). There was a weak negative correlation between the
probability of CAP III occurrence and individual scores of
behavioral PC 1 (r = −0.18,p < .005; Fig. 7D). These
results together indicate that the spatio-temporal properties
of CAP III contribute to the positive correlation between the
neural PC 1 and the behavioral PC 1 (Fig. 6G). Moreover,
subgroup C shows a clear tendency when mapped on
the neural PC 2 (Fig. 7C), which relates to global CAP
persistence (Fig. 4F, Fig. 5).

In summary, we tested the hypothesis that there is a re-
producible CAP feature set that reflects both state and trait
brain dynamics and that this combined feature set relates to
individual phenotypes across multiple behavioral domains.
Our analyses demonstrate that individuals with a longer FO
at CAP I than at CAP II (neural PC 1; subgroup A versus
B) exhibit higher cognitive function, emotion regulation and
less alcohol and substance use (behavioral PC 1). Subgroup
A also showed a good general state persistence compared to
subgroup B, exhibiting a longer dwell time (within-subject
average) and higher within-subject variance of dwell time
(Fig. 5). However, subgroup C that have a high probability
to occupy CAP III than other subgroups, exhibited a unique
pattern of neural state-trait features: longer FO at CAP II than
at CAP I (neural PC 1), longer general state persistence and
higher within-subject variability of state persistence (neural
PC 2).

Discussion

This study provides evidence to highlight the importance
of quantifying both within-subject and between-subject vari-
ance components of brain dynamics and their link to indi-
vidual differences in functional behavioral outcomes. Here,
we show that the dynamics of rs-fMRI can be quantified via
CAP analyses and reveal reproducible neural features that
can maximize effects of state variance, trait variance, and
test-retest reliability.

We identified three CAPs representing recurrent snap-
shots of mixed resting state networks in healthy young adults,
which exhibit distinct spatio-temporal profiles that are repro-
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Fig. 6. Principal variations of neural state-trait features co-vary with the principal variations of behavioral phenotypes, highlighting individual life function
outcomes associated with emotion regulation, cognitive function and alcohol and substance use. (A) Correlation structure between 262 behavioral variables, which
were obtained from the HCP S1200 unrestricted and restricted data. Colorbars along each axis of the correlation matrix indicate color-codes for the category of each variable.
Categories were defined from the HCP data dictionary available online (HCP_S1200_DataDictionary_April_20_2018.csv). Variables measuring response time
(RT) from tasks were transformed into 1/RT to account for the fact that a shorter response time indicates better task performance. See Supplementary Fig. S10 for the list of
all behavioral variables. (B) The first PC explained 11.2% of variance. The first 15 PCs explaining ∼ 50% of variance were considered in further analysis. (C) Across 1,000
permutations for split-half resampling, we compared if the geometry of estimated PCs in two splits are consistent. Pearson’s correlation coefficient (r) was computed for each
pair of behavioral PCs. (D) Rank-ordered loadings of each behavioral variable on the first principal component (PCA). Each data-point indicates a behavioral variables. PCA
was performed for all 262 variables in (A). 39 subcategories shown on the y-axis were also defined using the HCP data dictionary. Several subcategories belonging to the
same category are coded using the same color as in (A). (E) The geometry of behavioral PC 1 (black, left circle) reflects the difference in group-average behavioral variables
(standardized behavioral data, right circle) between subgroups A (yellow) and B (green). Subgroup C is not shown because no significant group differences are found in (F).
(F) Comparison of individual PC 1 scores between subgroups identified using neural state-trait measures (Fig. 4). Two-sample two-sided t-tests were performed between
subgroups for each behavioral PC. pBON : Bonferroni corrected p-values. (G) Multiple linear regression model of three neural PC 1 with two covariates (age and sex) showed
that the neural PC 1 was associated with the behavioral PC 1 (Partial R2 = 0.023, β1 = 0.26, SE = 0.09, t = 2.8, p = 0.006), where multiple R2 = 0.041, adjusted
R2 = 0.026, F (5,331) = 2.814, p-value = 0.017 for the full model.

ducible at the single subject level. In turn, three subgroups
of individuals were identified using hierarchical clustering
of temporal CAP profiles, which mapped onto distinct as-
pects of CAP dynamics capturing both state (i.e. within per-
son) and trait (i.e. between person) variance components.
We found that the principal variations of neural state and
trait CAP features co-vary with the principal variations of
behavioral phenotypes, which were linked to functional life
outcomes. Specifically, individuals that showed longer time
spent in CAP I, longer persistent periods within a CAP, as

well as higher variation of transitioning between all CAPs,
also showed higher cognitive function, emotion regulation
and less alcohol and substance use. Put differently, we iden-
tified specific properties of rs-fMRI dynamics that mapped
onto a person’s life outcome profile. Critically, person-
specific probability of occupying a given CAP was highly re-
producible and associated with the neural and behavioral fea-
tures. Collectively, these results show that a reproducible pat-
tern of neural dynamics can capture both within-person and
between-person variance that quantitatively map onto distinct
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Fig. 7. The probability of CAP III occurrence is associated with the neural and behavioral PCs. (A) The probability of CAP III occurrence (x-axis) for each individual,
which can be interpreted as individual’s preference to have CAP III, was evaluated by the difference in the occurrence of 4 CAPs versus 5 CAPs, as described in Fig. 1F.
For each subject, we computed the number of permutations (occurrence out of 1,000 permutations) when 4 CAPs were estimated and the number of permutations for the
same subject to be involved when 5 CAPs were estimated. Then, for each subject, we compared the difference in the occurrence (∆ Occurrence = Occurrence(k = 5)
- Occurrence(k = 4)) from each split. Then, for each individual, the ∆ Occurrence was averaged over two splits. Finally, the within-subject average ∆ Occurrence was
normalized across subjects to z-scores. Individuals were color-coded by subgroups defined using the hierarchical clustering of 30 neural features (Fig. 4). (B)-(D) Scatter
plots of individual’s preference to have CAP III with respect to the individual scores on the neural PC 1 (B), neural PC 2 (C), and behavioral PC 1 (D).

functional outcomes across individuals.

Identifying reproducible neural dynamics profiles in hu-
mans. In this study (n=337, Fig. 1H), we identified three
reproducible CAPs. These CAPs captured spatial patterns
similar to the analysis results of zero-lag standing waves and
time-lag traveling waves of rs-fMRI BOLD fluctuations pre-
viously identified by Bolt et al., using complex PCA and a
variety of latent dimension-reduction methods for the HCP
dataset (n = 50) (49). The spatial correspondence between
the three patterns identified by Bolt et al. and the CAPs
discovered in our study aids in the interpretation of our re-
sults. Specifically, the spatial topography of CAPs I+/I- may
be linked to task-positive/task-negative dynamics of BOLD
signals, while CAPs II+/II- may be associated with global
signal fluctuations (49). However, similar to most early stud-
ies on CAPs in rs-fMRI (30), Bolt et al. employed a sparse
time point sampling strategy (15%) based on high-amplitude
signals of time-courses in pre-defined regions, along with
an arbitrary choice of two-cluster solution (49). The sparse
time point sampling is based on a hypothesis that patterns
of functional connectivity arise from discrete neural events
(6), often driven by high-amplitude co-fluctuations in cor-
tical activity (50). These studies demonstrated the spatial
correspondence between estimated CAPs and widely-studied
resting-state functional connectivity patterns, such as the de-
fault mode network (6, 30, 51).

Nevertheless, no study to our knowledge has investigated
the joint properties of within and between-subject variation
of CAPs patterns across the entire BOLD signal range. Ad-
ditionally, no study has examined the impact of consider-
ing the full BOLD signal range on the relationship between
CAP properties and behavior (33–39). Here, we present
an analytic approach that optimizes within-subject variance,
between-subject variance, and test-retest reliability of iden-
tified CAPs using the entire BOLD signal range. Critically,
we demonstrate reproducible spatio-temporal CAP features
for each subject (Fig. 2, Fig. 3, Supplementary Fig. S6,
Supplementary Fig. S7). In turn, we show an association
between the principal variations of CAP neuro-phenotypes

and the principal variation of behavioral phenotypes (Fig. 6).
Collectively, these results highlight that state-trait CAP

dynamics are reproducible at the single subject level across
permutations and between days (Fig. 3, Supplementary
Fig. S7). For context, the statistics reported here (Fig. 3C)
demonstrate higher reproducibility than the meta-analytic es-
timate for group-level reproducibility of area-to-area func-
tional connectivity matrices (48). Reducing the number of
neural features into a reproducible set of CAPs may enable
a more robust and reproducible mapping between neural fea-
tures and behavior. In other words, we hypothesize that fur-
ther optimization of reproducible data-reduced neural fea-
tures presents a critical step toward mapping rs-fMRI signals
to healthy and clinically-relevant behavioral variation and ob-
taining robust neuro-behavioral models.

Quantifying joint state and trait variance components of
neural dynamics. The three-axes representation of spatio-
temporal CAP dynamics, illustrated in Fig. 3E, highlights
an approach to consider temporal CAP characteristics that
can inform feature selection. Put differently, we show that
by projecting CAP measures derived within each subject into
a trait variance space, it is possible to visualize how CAP
properties that vary within a person (state) also vary between
people (trait).

For instance, we found that CAP II exhibits the highest
relative between-subject variation (i.e. trait) across all mea-
sures presented here. Conversely, CAP III exhibits lower
between-subject variance but higher within-subject variance
than CAP II. This suggests that, although there is less individ-
ual variation in CAP III overall, any given person may exhibit
marked variation in this pattern between days. These obser-
vations were highly reproducible and were generally agreed
with the variance explained by the three patterns reported in
(49). This raises the question of whether the joint consid-
eration of both state and trait metrics can reveal key proper-
ties of neural features that, in turn, can inform their mapping
to behavior. For instance, one would expect that a neural
feature that varies markedly between individuals but shows
little within-subject variance may serve as a reliable neu-
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ral marker for tracking longitudinal behavioral changes (e.g.,
neurodevelopmental changes or rapid mood swings observed
in certain psychiatric populations, which may not occur in
healthy populations). In contrast, neural features that maxi-
mize within-subject variation, while still exhibiting notable
trait variance, may be better at detecting neuro-behavioral
relationships expected to undergo substantial changes over
time.

Indeed, using both state and trait variance components
of identified CAPs revealed three subgroups of healthy sub-
jects. This finding aligns with the notion that using neural
features with distinct patterns of state variances can provide
vital information about individual differences (Fig. 4). The
objective of this clustering was not to categorize individual
subjects. Rather, we aimed to test whether there exists a set
of neural features commonly observed across a number of
healthy subjects, exhibiting reproducible neural co-activation
properties that can be related to behavioral phenotypes. We
first found that the three subgroups (n = 163, 127 and 47
for each group) could be projected into a data-reduced PCA
model. Neural PC 1 is characterized by distinct patterns
of FO and DT measures between CAPs I/III versus CAP II
(CAP-specific), neural PC 2 represents the general persis-
tence of all CAP states (general), and neural PC 3 represents
day-to-day variations within individuals (Fig. 4D-F). This
additional level of neural feature reduction captured a general
motif of how individuals vary in terms of complex temporal
patterns of neural co-activation.

Linking neural patterns of co-activation to behavioral and
life functioning. One of the key goals in human neuroimag-
ing is to identify features that relate to human function. More
specifically, do signals derived from fMRI carry informa-
tion that can be related to positive or negative life functional
outcomes in adults? Prior work tested this hypothesis us-
ing multi-variation canonical correlation approaches (CCA)
(22). While these initial findings were compelling, it is not
widely appreciated that CCA models that use many neu-
roimaging features are prone to overfitting. To address this
issue, we investigated whether the reduced and reproducible
neural feature set, identified by the joint state and trait vari-
ance components of neural dynamics, can explain variation
in functional behavioral outcomes in a sample of adults rep-
resentative of the general population. Here we computed a
PCA model on 262 behavioral features from the HCP sam-
ple, which revealed a solution with n = 27 PCs that passed
permutation testing. However, we found that the first behav-
ioral PC captured > 11% of all behavioral variance and it was
highly reproducible (between-split correlation of behavioral
PC 1 loadings was r > 0.9; Fig. 6C). Therefore, we exam-
ined the relationship between the first CAP-derived neural
PC (Fig. 4) and the first behavioral PC, which revealed that
individuals with higher neural PC 1 scores (subgroup A, Fig.
4F) also have higher behavioral PC 1 scores (Fig. 6F, G).
The behavioral PC 1 highlights individual life function out-
comes associated with cognition, emotion regulation, alcohol
use and substance use (Fig. 6D).

These results suggest that individuals who preferentially

occupy CAP I and exhibit strong state persistence also
demonstrate higher cognitive and affective functional out-
comes (4, Fig. 6D). In contrast, individuals who predomi-
nantly occupy CAP II for extended periods tend to exhibit
relatively lower cognitive scores, along with higher levels of
alcohol and substance use. This aligns with the notion that
general brain-wide patterns of co-activation in fMRI signal
are associated with an individual’s level of functioning. Of
note, CAP II exhibited the highest relative between-subject
variation across all measures (Fig. 6D). Furthermore, CAP II
showed a spatial motif that appeared to be ‘global’. This is
consistent with prior findings showing that a global rs-fMRI
signal topography, which contained a major contribution of
the fronto-parietal control network, was associated with pos-
itive and negative life outcomes and psychological function
(52). Interestingly, we found that observing CAP III might
be related to the composition of the studied sample. In other
words, there is a group of people with high occurrence of
CAP III (subgroup C), which if sampled in the reported per-
mutation testing will yield a 3-CAP solution (I, II and III).
A higher probability of CAP III presence across individuals
was associated with lower behavioral PC 1 scores, indicating
poor functional life outcome (Fig. 1, Fig. 2, Fig. 7, Supple-
mentary Fig. S5). More specifically, individuals with high
probability of CAP III neural signal pattern exhibit relatively
lower cognitive function, higher alcohol use, and higher sub-
stance use.

This strongly supports the idea that reproducible func-
tional co-activation patterns in the human brain can map onto
behavioral outcomes that have implications for mental health.
Here we found this pattern by considering only the first PCs
of the neural and behavioral feature spaces. It remains un-
known whether further feature optimization of CAP dynam-
ics would reveal stronger effects in relation to more severe
mental health symptoms, which can be detected in clinical
samples. In fact, spatial and temporal organization of CAPs
has been linked to psychiatric symptoms in previous work
(34–39). However, it is unknown if the neural features de-
rived from CAPs that are reproducible in the healthy gen-
eral adult population are also predictive of severe psychiatric
symptoms. In other words, it is possible that there are CAPs
(and associated state-trait variance components we quanti-
fied) that are only detectable in individuals who experience a
certain level of symptom severity. In this context, it is vital to
consider the likelihood and the timescale on which state neu-
ral measures are defined - namely how likely is a state to be
present in a person and how long does it last to be relevant for
behavior. Relatedly, it is key to consider how much between-
person variation there has to be in a given CAP state pattern
to reveal individual symptom variation across a clinical sam-
ple - thus making it a trait-like neural marker of psychiatric
symptoms. The results of this study highlight how critical it
might be to parse transient (state) or persisting (trait) CAP
properties when it comes to clinical applications.

In other words, mental health symptoms can be consid-
ered to vary between people (i.e. as a trait) or vary within a
person (i.e. as a state), which can be quantified separately.
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Trait anxiety, for example, is the tendency of a person to
experience anxious affect across a broad range of contexts
and for extended periods of time. In contrast, state anxiety
is clinically defined anxiety occurring in the present moment
(53, 54). The current findings suggest that the probability of
exhibiting high anxiety in general and the likelihood of be-
ing anxious at any given moment may be linked to the same
underlying neural co-activation pattern occurrence. We posit
that this may be a general phenomenon that can be extended
to other mental health outcomes. Therefore, it would be valu-
able in future work to study the combined contributions of
state and trait neural features in predicting the severity and
likelihood of occurrence for a mental health outcome (55).

Finally, an important consideration here is that we did not
evaluate the impact of sample size on the estimation of CAPs
and their properties. It is possible that with a smaller sample
size or different composition of the sample, there might be a
reduced chance of observing a specific CAP (e.g. CAP III)
or even detect new CAPs. This could occur because a partic-
ular CAP may be rare, especially when it relates to a neural
pattern that is uncommon in the general population, which
may be the case for neuropsychiatric or neurological symp-
toms. Another important aspect to consider is the extension
of this work to pediatric and adolescent samples, given that
there may be a substantially different configuration of CAPs
as the human brain develops.

Conclusions
Understanding how the brain generates co-activated pat-

terns of neural activity over time is critcal to derive repro-
ducible brain-wide patterns of neural dynamics that occur
in humans. Here we advance this goal by quantifying state
(within-subject) and trait (between-subject) variance com-
ponents of neural co-activations. We do so by leverag-
ing rich spatial-temporal information embedded in the en-
tire range of rs-fMRI BOLD signals, which reveals three co-
activation patterns (CAPs) that reflect brain-wide motifs of
time-varying neural activity. Critically, we demonstrate a
reproducible estimation of spatio-temporal CAP features at
the single-subject level. We found that distinct parameters of
CAP temporal characteristics, such as occupancy and persis-
tence, can be studied together and represented as either state
or trait features. In turn, we show that a low-dimensional
neural feature space captures both state and trait variation in
CAP parameters, which in turn exhibit behaviorally-relevant
characteristics. Specifically, people who showed longer time
spent in a given CAP, longer persistent periods within a CAP,
as well as higher variation in transitioning between all CAPs,
also showed higher cognitive function, improved emotion
regulation, and lower alcohol and substance use. Critically,
person-specific probability of occupying a particular CAP
was highly reproducible and associated with both neural and
behavioral features. This highlights the importance of study-
ing CAP-derived measures as a neural marker that may be
altered as a function of mental health symptoms and may
change developmentally. Collectively, these results show that
a reproducible pattern of neural co-activation dynamics in hu-

man, which capture both within- and between-subject vari-
ance that in turn maps onto functional life outcomes across
people.

Methods
Human Connectome Project (HCP) dataset. Participants
were recruited from Washington University (St. Louis, MO)
and the surrounding area. We selected participants from the
S1200 release of the HCP who had no family relations, re-
sulting in a total of 337 participants included in our analyses.
The dataset contains resting-state fMRI data from 180 fe-
males and 157 males, with age range 22-37 (mean age=28.6,
SD=3.7), 90% right-handed. Informed consent was obtained
from each participant as directed by the institutional review
board at Washington University at St. Louis. Each partici-
pant underwent a total of four resting-state BOLD sessions.
Additional details about the dataset and preprocessing meth-
ods can be found in the Supplementary Materials and in the
work by Ji et al. (2023) (44). All analyses were approved by
the Yale IRB.

Functional brain-wide parcellation. We applied a re-
cently developed Cole-Anticevic Brain Network Parcella-
tion (CAB-NP) parcellation (43), which defines 12 func-
tional networks and 718 regions across cortex and sub-
cortex that leveraged the Human Connectome Project’s
Multi-Modal Parcellation (MMP1.0) (43, 56). The fi-
nal published CAB-NP 1.0 parcellation solution can
be visualized via the Brain Analysis Library of Spa-
tial maps and Atlases (BALSA) resource (https://
balsa.wustl.edu/rrg5v) and downloaded from the
public repository (https://github.com/ColeLab/
ColeAnticevicNetPartition). The CAP-NP parcel-
lation is comprised of (i) 180 bilateral cortical parcels (a to-
tal of 360 across both left and right hemispheres), consistent
with the Human Connectome Project’s Multi-Modal Parcel-
lation (MMP1.0) (56), and (ii) 358 subcortical parcels de-
fined using resting-state functional BOLD covariation with
the cortical network solution (43).

CAP analysis. We identified moment-to-moment changes in
the whole brain rs-fMRI BOLD signals at each time point and
quantified the spatial patterns of co-activation (CAPs) across
individuals, as well as individual variations in CAP tempo-
ral organization (30). The analytic framework proposed in
this study is described in Supplementary Fig. S1 and imple-
mented using Python 3.6.15 using the Yale High Performance
Computing resources. In each permutation, N = 337 subjects
are randomly split into two equal-sized groups (n = 168, non-
overlapping subjects). Within each split, a 4,000 × 718 ar-
ray of rs-fMRI data are temporally concatenated across sub-
jects. The time-frames are clustered based on spatial similar-
ity using the K-means clustering algorithm, with the number
of clusters (k) estimated by varying k from 2 to 15. The
K-means clustering was initialized by selecting randomly-
generated centroids using sampling based on an empirical
probability distribution of the points’ contribution to the over-
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all inertia. The maximum iteration for a single run was set to
1,000. Once an optimal number k is determined, a CAP was
obtained by averaging the time-frames within each cluster in
each parcel.

Occurrence rate (%) of the k = a solution was calculated
by the number of permutations resulting in a clusters divided
by the total number of permutations (1,000). Co-occurrence
rate (%) of the k = a solution in both splits was determined
by the number of permutations resulting in the same num-
ber of clusters divided by the total number of permutations.
Lastly, an k-CAP basis set was obtained by using the agglom-
erative hierarchical clustering of the CAPs estimated from all
permutations (Supplementary Fig. S2).

The probability of CAP occurrence, which can be in-
terpreted as an individual’s preference for a specific CAP,
was quantified examining the number of permutations that
resulted in a specific solution k out of 1,000 permutations.
Specifically, we compared the probability to have k CAPs in-
volving the CAP of interest and the probability to have k −1
CAPs without involving the CAP of interest, similar to the
approaches comparing full and reduced models. First of all,
for example, across 1,000 split-half permutations, a subject
may be involved in split 1 data (and not in split 2) for 500
permutations. Then, when only considering split 1 data from
these 500 permutations, we can compute the number of per-
mutations that resulted in k and the number of permutations
that resulted in k − 1, assuming the reproducible estimation
of spatial topography of k CAPs across permutations. In each
split, we compute the difference (occurrence of k CAPs) mi-
nus (occurrence of k − 1 CAPs) to quantify an individual’s
preference for a specific CAP.

To identify the principal geometry of the state-trait neural
feature space, thirty neural features are estimated for each in-
dividual: three neural measures (FO, mean DT, and var DT)
× five CAPs (I+, I-, II+, II-, and III) × 2 days. These neural
features were collected across subjects to create a subject-by-
feature matrix. Two analyses are performed on this subject-
by-feature matrix. First, agglomerative hierarchical cluster-
ing was applied to the feature matrix. The number of clusters
was determined using a distance cut-off value of 70% of the
final merge in the dendrogram. Second, PCA was applied to
this subject-by-feature matrix to estimate the principal geom-
etry of this state-trait feature space identifying subgroups.

Behavioral data analysis. The analysis of behavioral data
was implemented using the method described in (23). We
performed PCA on 262 variables across 15 behavioral do-
mains from the HCP S1200 unrestricted and restricted be-
havioral data (Supplementary Fig. S10). Behavioral vari-
able names and the corresponding domains used in this anal-
ysis were identical to the variable names provided by the
HCP data dictionary for the S1200 data release. When both
age-adjusted and un-adjusted data are available, we use age-
adjusted data only. To study the association between indi-
vidual scores on the first behavioral PC and individual scores
on the first three neural PCs, we use the multiple linear re-
gression model (behavioral PC 1 ∼ neural PC 1 + neural PC
2 + neural PC 3 + age + sex). The association between a

neural PC and the behavioral PC 1 was assessed by calcu-
lating the partial R2, regression coefficient β, standard error
(SE). The significance of regression coefficients was deter-
mined by computing the corresponding t-scores. Partial R2

was defined as the coefficient of partial determination which
is measured by the proportional reduction in sums of squares
after a variable of interest is introduced into a model. Visual-
ization and statistical analyses were conducted using Python
3.6.15 and R Studio v.2022.12.0.

Data Availability. All primary results derive from data that
is publicly available from sources described above.

Code Availability. Codes used in this paper are available
from https://github.com/Kangjoo/pycap.
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51. Fikret Işik Karahanoğlu and Dimitri Van De Ville. Transient brain activity disentangles fmri
resting-state dynamics in terms of spatially and temporally overlapping networks. Nature
communications, 6(1):7751, 2015.

52. Jingwei Li, Taylor Bolt, Danilo Bzdok, Jason S Nomi, BT Thomas Yeo, R Nathan Spreng,
and Lucina Q Uddin. Topography and behavioral relevance of the global signal in the human
brain. Scientific reports, 9(1):14286, 2019.

53. Pollyana Caldeira Leal, Tiago Costa Goes, Luiz Carlos Ferreira da Silva, and Flavia Teixeira-
Silva. Trait vs. state anxiety in different threatening situations. Trends in psychiatry and
psychotherapy, 39:147–157, 2017.

54. Francesca Saviola, Edoardo Pappaianni, Alessia Monti, Alessandro Grecucci, Jorge Jovi-
cich, and Nicola De Pisapia. Trait and state anxiety are mapped differently in the human
brain. Scientific Reports, 10(1):1–11, 2020.

55. Flora Moujaes, Katrin H Preller, Jie Lisa Ji, John D Murray, Lucie Berkovitch, Franz X
Vollenweider, and Alan Anticevic. Towards mapping neuro-behavioral heterogeneity of
psychedelic neurobiology in humans. Biological psychiatry, 2022.

56. Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell,
Essa Yacoub, Kamil Ugurbil, Jesper Andersson, Christian F Beckmann, Mark Jenkinson,
et al. A multi-modal parcellation of human cerebral cortex. Nature, 536(7615):171, 2016.

Lee et al. | CAP bioRχiv | 15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2023. ; https://doi.org/10.1101/2023.09.18.557763doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.18.557763
http://creativecommons.org/licenses/by-nc-nd/4.0/

