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Neural activity and behavior vary within an individual (states)
and between individuals (traits). However, the mapping of
state-trait neural variation to behavior is not well understood.
To address this gap, we quantify moment-to-moment changes
in brain-wide co-activation patterns derived from resting-state
functional magnetic resonance imaging. In healthy young
adults, we identify reproducible spatio-temporal features of co-
activation patterns at the single subject level. We demonstrate
that a joint analysis of state-trait neural variations and feature
reduction reveal general motifs of individual differences, en-
compassing state-specific and general neural features that ex-
hibit day-to-day variability. The principal neural variations
co-vary with the principal variations of behavioral phenotypes,
highlighting cognitive function, emotion regulation, alcohol and
substance use. Person-specific probability of occupying a par-
ticular co-activation pattern is reproducible and associated with
neural and behavioral features. This combined analysis of state-
trait variations holds promise for developing reproducible neu-
roimaging markers of individual life functional outcome.
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Introduction
The field of functional human neuroimaging (fMRI) has

attempted to characterize the functional organization of the
human brain and how it relates to individual differences (1,
2). These emerging methods can identify low dimensional
representations of neural traits (i.e. subject-specific) (3, 4) or
states (i.e. varying over time within a subject) (5–7) which
may be predictive of behavioral phenotypes. This growing
body of work suggests that fMRI may hold great potential for
characterizing how complex neural signals map onto human
behavioral variation.

Spontaneous fluctuations of brain activity measured at
rest (i.e resting state fMRI (rs-fMRI)) are embedded in time
and space, exhibiting rich spatial-temporal information that
varies within (state) and between (trait) individuals. The
joint properties of state-trait rs-fMRI signal variation remains
poorly understood, constituting a critical knowledge gap. An
individual’s mental state at any given time of rs-fMRI may be
influenced by many intrinsic (e.g. metabolic) (8, 9) or extrin-
sic (e.g. medications) factors that directly affect the circuit

activity underlying complex behavior (10–18). On the other
hand, there might be other dimensions that contribute to vari-
ability in large neuroimaging datasets and undermine their
ability to identify clear brain-behavior relationships. One of
these dimensions may be time-varying signal dynamics. For
instance, personality theories posit that traits are character-
ized as patterns of thoughts, feeling and behavior that gener-
alize across similar situations within individuals and differ
between individuals, whereas behavioral states reflect pat-
terns that vary over time and situations (19, 20).

Historically, rs-fMRI studies have quantified neural traits
(e.g. stationary functional connectivity characterizing a sub-
ject) to study how they vary across people in relation to a
given behavioral trait (e.g. fluid intelligence or a set of clin-
ical symptoms) (21–23). The analyses of neural state dy-
namics or time-varying rs-fMRI connectivity can be used to
understand individual differences (24). Evaluating moment-
to-moment changes in neural activity can provide informa-
tion about latent brain states associated with task-switching
and decision-making in working memory (25). Using dimen-
sion reduction of task fMRI data across multiple cognitive
tasks, Shine et al. suggested that execution of diverse cogni-
tive tasks and individual differences in fluid intelligence can
be described using a dynamic flow along a low-dimensional
manifold of global brain activity (26). There is a knowl-
edge gap regarding how combined state and trait variation
of spontaneous brain dynamics map onto individual variation
in complex behavioral phenotypes.

A recent meta-analysis of three large consortia datasets
(N=38,863 in total) has shown that brain-behavior associa-
tions in the general population have small effect sizes (e.g.
|r| < 0.2) using data from thousands of individuals, when
correlating neural measures from structural MRI, rs-fMRI
and task fMRI activation to behavioral measures includ-
ing cognitive ability or psychopathology (27). While large
sample sizes are key for discovering and replicating small
brain-behavior relationships on average (27), these recent
advances leave the open question that there may be strong
brain-behavioral effects that can be seen with quantitative
approaches that consider time-varying signal dynamics (28–
30). Still, the application of state-related quantitative ap-
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proaches in fMRI remain underutilized for characterizing
reproducible inter-individual differences in brain-behavioral
relationships (31, 32). Furthermore, combining state-related
and trait-related information from rs-fMRI signals may pro-
vide convergent information about individual brain-behavior
associations. To this end, we tested the hypothesis that re-
producible neural-behavioral mapping may be achieved by
quantifying combined state and trait information from time-
varying rs-fMRI signals across the brain.

One approach that captures both trait and state neu-
ral characteristics is the analysis of co-activation patterns
(CAPs) for rs-fMRI (33). This analysis focuses on moment-
to-moment changes in the whole brain blood oxygenation
level dependent (BOLD) signals at each time point, provid-
ing a method to quantify the spatial patterns of co-activation
across people and individual variation in patterns of neural
temporal organization (33). Several studies have reported
similar average CAP patterns in healthy human adults (33),
which also show some notable sex differences (34) and are
impacted by proceeding task conditions (35). Alterations of
spatial and temporal organizations of CAPs (e.g. the number
of time-frames occupied by a CAP state) were found across
different levels of consciousness (36), schizophrenia (37),
pre-psychosis (38), depression (39, 40), and bipolar disorders
(41, 42). All of these studies characterized group-level effects
between patients and healthy controls with a fixed number of
CAPs across groups, often capturing a parsimonious snap-
shot of brain dynamics by selecting a small number of time
points associated with high-amplitude signals in pre-selected
(i.e. seed) regions. While these studies have provided in-
sights that CAPs contain rich information, they are system-
atically omitting full range of BOLD fluctuations. Put dif-
ferently, few studies have leveraged the entire BOLD signal
range to define CAPs (7). Moreover, no study to our knowl-
edge has investigated the properties of within and between-
subject variability across a reproducible set of CAPs that har-
ness the entire BOLD signal fluctuation range (43, 44). Fi-
nally, no study has in turn quantified how individual differ-
ences in CAP properties map onto complex behavior.

Here, we test the hypothesis that there is a reproducible
CAP feature set that reflects both state and trait brain dy-
namics and that this feature set relates to individual phe-
notypes across multiple behavioral domains. To address
this, we studied rs-fMRI and behavioral data obtained from
337 healthy young adults with no family relation in the
individual Human Connectome Project (HCP) S1200 data
(45). To optimize neural features accounting for CAP vari-
ation within and between subjects, we develop a three-
axes model of state-trait brain dynamics using moment-to-
moment changes in brain CAPs. We identify three repro-
ducible CAPs that can be quantified at the single subject
level, exhibiting recurrent snapshots of resting-state network
spatial profiles and individual-specific temporal profiles. By
analyzing spatio-temporal state-trait dynamics of CAP pat-
terns, the data revealed groups of individuals that consistently
exhibit behaviorally-relevant CAP characteristics. These re-
sults suggest that a critical step toward the development of re-

producible brain-behavioral models may involve initial map-
ping of neural features that can robustly and reproducibly
capture combined trait (between-subject variability) and state
(within-subject variability) variance in neural features.

Results
Three brain co-activation patterns are reproducibily
found in healthy subjects at rest. The analysis of
moment-to-moment changes in CAPs assumes a single neu-
ral state (i.e. CAP state) per each fMRI time-frame, and iden-
tifies a set of CAPs recurring over time and across subjects
by spatial clustering of fMRI time-frames (7, 33). We iden-
tify a reproducible set of CAPs from 4 runs of rs-fMRI data
(15-min/run) obtained over two days from 337 healthy young
adults (ages 22-37 years, 180 females) using a shuffled split-
half resampling strategy across 1,000 permutations. Here we
used the entire BOLD signal fluctuation range for CAP es-
timations, without sparse time-point sampling. In each per-
mutation, we randomly split the sample (N=337) into two,
each involving the equal number of non-overlapping subjects
(n=168 respectively, randomly excluding a subject) (Fig. 1A,
Supplementary Fig. S1). To analyze CAPs at a low di-
mension space and to reduce the computational burden of
CAP analysis that treats every 3-dimensional time-frame in
the clustering process (e.g. 4,000 time-frames/subject), we
used the Cole-Anticevic Brain Network Parcellation (CAP-
NP) that involves 718 cortical surface and subcortical volu-
metric parcels (46). We averaged the preprocessed BOLD
signals in the voxels belonging to each parcel (47). There-
fore, within each split, a 4,000 × 718 array of individual rs-
fMRI data are temporally concatenated across subjects. The
time-frames are clustered based on spatial similarity using
K-means clustering, where the number of clusters (k) is esti-
mated for each split using the elbow method varying k from 2
to 15 (see the estimated Silhouette scores from the K-means
clustering solutions in Supplementary Fig. S2). Finally, a
CAP was obtained by averaging the time-frames within each
cluster with respect to each parcel.

We first found that there are individual differences in the
number of reproducible brain states. Specifically, in both
splits, the estimated number of CAPs was either 4 or 5, each
exhibiting an ≈ 50% occurrence rate across permutations
(Supplementary Fig. S3A, B). However, interestingly, the
co-occurrence of the same number of CAPs in both splits was
rare (< 6%) (Supplementary Fig. S3C). In other words, a
half of the sample produced 5 CAPs, while the other half pro-
duced 4 CAPs. Because each of two non-overlapping halves
contain a distinct subset of samples, we hypothesized that in-
dividual difference in the number of reproducible brain states
plays a role in the observed between-split differences. To
test this hypothesis, we quantified the individual’s preference
toward a specific number of CAPs by comparing the proba-
bility of estimating 4 CAPs or 5 CAPs. The probability of
estimating k CAPs was quantified using the occurrence of k
solution estimations in a split across permutations (see Meth-
ods). Indeed, there was a highly reproducible tendency for
individual subjects to occupy either 4 or 5 CAPs (Fig. 1B).
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Fig. 1. A reproducible set of co-activation patterns (CAPs) in the whole-brain rs-fMRI involve recurring mixed representations of canonical resting state networks.
(A) Analysis overview. In each permutation, 337 subjects are randomly split into two equal-sized groups. Within each split, a parcel-by-time array of rs-fMRI data is temporally
concatenated across subjects. Time-frames are clustered based on spatial similarity using K-means clustering. The number of clusters (k) is estimated for each split. Each
CAP is obtained as the centroid of each cluster (Supplementary Fig. S1). (B) Individual’s statistical preference toward a specific number of CAPs (k) is reproducible. In
each split, an individual’s preference toward a specific number was quantified using the number of permutations that resulted in a specific solution (eg. 4 CAPs or 5 CAPs)
across 1,000 permutations. Specifically, we compute the difference (occurrence of k = 5) − (occurrence of k = 4) for each subject (Methods). (C) Spatial correlation of
the 5-CAP basis set (left) and between the 4-CAP basis set and the 5-CAP basis set (right). r values were rounded to the nearest 2 decimal digits. (D) Cole-Anticevic Brain
Network Parcellation (CAP-NP) (46). (E) Spatial topography of 5 basis CAPs. (F) Spatial similarity of the 5 basis CAPs to canonical resting state networks, pre-defined using
the CAB-NP parcellation in (D).

Together, these results suggest the presence of a CAP state
that is reproducibly found in a subset of subjects but not in
others.

To identify reproducible spatial topography of CAPs
for further analyses, we generated two sets of basis CAPs
independently: the 4-CAP and the 5-CAP basis sets
(Supplementary Fig. S4). The 4-CAP basis set was ob-
tained by applying agglomerative hierarchical clustering to
the CAPs collected from only the permutations that resulted
in the estimation of 4 CAPs. Then, a basis CAP was gen-
erated by averaging the CAPs belonging to each cluster, and
the value in each parcel of the basis CAP was normalized to
z-scores using the mean and standard deviation across 718
parcels (Supplementary Fig. S4). The 5-CAP basis set was
also obtained using the CAPs collected from the permuta-
tions resulting in 5-CAP solutions. We found that the 4-CAP
basis set consisted of two pairs of anti-correlated CAPs (I+
and I-, II+ and II-), and the 5-CAP basis set consisted of the
same two pairs of anti-correlated CAPs and one additional
CAP (III) (Fig. 1C). The patterns of these basis CAPs were
consistent between two splits (Supplementary Fig. S5). The
number (I, II, and III) and sign (+ and -) of CAPs were labeled

arbitrarily. Overall, we found three CAPs recurring over time
and across healthy subjects in rs-fMRI.

Patterns of whole-brain co-activation are recurrent
snapshots of mixed resting state networks. As ex-
pected, the spatial patterns of three CAPs were associ-
ated with well-known rs-fMRI networks (Fig. 1E, F).
CAP I involved a strong bi-polarity between the default
mode and frontoparietal networks versus the dorsal atten-
tion, cingulo-opercular, somatomotor and secondary visual
networks. Here, bi-polarity stands for positive versus nega-
tive cosine similarity of each CAP with distinct resting state
networks (CAP+ versus CAP-). CAP II exhibited a weaker
bi-polarity between the primary visual, orbito-affective, de-
fault mode, and frontoparietal networks versus the dorsal at-
tention, somatomotor, and secondary visual networks. CAP
III showed a strong bi-polarity between the default mode, so-
matomotor, and secondary visual networks versus the fron-
toparietal, dorsal attention, and cingulo-opercular networks.
Considering that resting state networks are identified based
on the co-fluctuations of signals in distributed brain regions,
our results show that these CAPs represent recurring snap-
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shots of the diverse signal co-fluctuations among regions in-
volved in different functional networks at each time-frame.

CAP III is reproducibly found in some individuals but
not in others. Our result in Fig. 1B suggests that there are
individual differences in the number of reproducible brain
states. Because CAPs are estimated using data from a group
of subjects, the contribution of a single subject to this esti-
mation is relatively small. In addition, it remains unknown
whether the spatial topography of estimated CAPs are repro-
ducible across permutations. To address these, we investi-
gated three questions: (i) whenever 4 CAPs are estimated
from a split data, are their spatial patterns reproducible across
the permutations, (ii) whenever 5 CAPs are estimated from a
split data, are their spatial patterns reproducible across the
permutations, and (iii) is there a specific CAP state that is
reproducibly missing in 4-CAP solutions when compared to
the 5-CAP solutions. All 718 cortical and subcortical parcels
were included in this and following analyses throughout this
article.

First, we calculated the marginal distribution of spatial
correlation values (r(ECi,BCj)) between the CAPs esti-
mated from each split data (Estimated CAP; ECi, i = 1, ..,4
or 5) and a given basis CAP (Basis CAP; BC)(Fig. 2A).
Note that these pre-defined basis CAPs are the group-average
and permutation-average CAPs obtained using the agglomer-
ative hierarchical clustering of all CAPs across permutations
(Fig. 1E). In each permutation, each ECi was labeled ac-
cording to the maximum rank correlation with the given basis
CAP. As a result, the marginal distribution of r values showed
that the spatial patterns of 4-CAP solutions and 5-CAP solu-
tions were strongly reproducible (Supplementary Fig. S6.
The CAPs estimated from each split were highly correlated
with at least one of the basis CAPs, demonstrating a 1-on-1
matching for all CAPs. In addition, CAP III was reproducibly
found in one split but not in another split across permutations
(Fig. 2, Supplementary Fig. S7). Together, this analysis
demonstrates that the presence or absence of CAP III is not
a random artefact but actually associated with reproducible
neural dynamics of individuals.

Spatial alignment of individual time-frames to basis
CAPs. To find an optimal number of clusters or CAPs that
are commonly found across individuals, we used an approach
that considers a trade-off between the number of clusters and
within-cluster similarity by combining the silhouette criteria
and elbow method (Supplementary Fig. S2). To evaluate
the extent of the contribution of individual co-activation pat-
terns to the observed CAP variability, we analyzed all fMRI
time-frames obtained from 337 subjects after scrubbing. For
each split, we computed the spatial alignment of individual 3-
dimensional fMRI time-frames to the five basis CAPs (cluster
centroids estimated by K-means clustering) using Pearson’s
correlation, identifying a basis CAP yielding the highest cor-
relation with each time-frame. As a result, the mean and stan-
dard deviation of the maximum correlation were 0.22 ± 0.11
(Supplementary Fig. S8), indicating the substantial vari-
ability in resting state human brain dynamics. Notably, the

Fig. 2. The spatial patterns of the CAPs estimated across split-half permu-
tations are reproducible, demonstrating the consistent absence of a specific
spatial pattern (CAP III) in one split but not in another split across permuta-
tions. (A) Proof of concept. In this figure, we demonstrate “whenever 4 CAPs are
estimated from a split data, are their spatial patterns reproducible across the permu-
tations”, and “if there is a specific CAP state that is reproducibly missing in 4-CAP
solutions when compared to the 5-CAP solutions”. To address these, first, Among
1,000 permutations, we only take permutations that resulted in 4-CAP solutions us-
ing the elbow method, which was 502 permutations in this data. The remaining 498
permutations mostly resulted in 5-CAP solutions, and rarely 6- or 7-CAP solutions
as shown in (Supplementary Fig. S3). Spatial similarity (r, correlation coefficient)
is computed between each of the estimated CAPs (EC; denoted as a, b, c, and
d) and a given basis CAP (BC). In this example, we select BC 1 from the 5-CAP
basis set. r values were rounded to the nearest 2 decimal digits for visualization.
Finally, we obtain the marginal distribution of r values between BC 1 and the esti-
mated CAPs across 502 permutations. (B) The CAP III is reproducibly found in the
5-CAP solutions and not in the 4-CAP solutions across permutations. We repeated
the spatial similarity analysis for the 4 CAPs estimated from each split-half data,
when compared to the 5-CAP basis set. In each permutation, each estimated CAP
was labeled according to the maximum rank correlation with the basis CAPs. Data-
points (r-values) estimated from the CAPs with a same label were coded using the
same color. The marginal distributions of r between all estimated CAPs and each
BC from the 5-CAP basis set are illustrated using kernel density estimation. Results
obtained from the split 1 data are shown in (B) and replicated in the split 2 data (see
Supplementary Fig. S7). Note that all 718 cortical and subcortical parcels were
included in this analysis. For simplicity, subcortical regions of CAPs are not visual-
ized.

group-level spatial topography of CAPs, estimated by aver-
aging the time-frames within each cluster, remained consis-
tent across permutations (Fig. 2), enabling us to investigate
individual differences in their temporal dynamics.

Reproducible state-trait neural features at the sin-
gle subject level. We identified three CAPs that reflect
brain-wide motifs of time-varying neural activity. Here
we demonstrate a reproducible estimation of spatial CAP
features at the single-subject level. The CAP analysis in-
volves the assignment of individual time-frames to one of the
estimated CAPs using the K-means clustering process (Fig.
3A). The CAPs estimated in each split were labeled using
the maximum ranked correlation with the pre-identified
5-CAP basis set (Supplementary Fig. S6). In turn, this
frame-wise identification of CAP states allows the estimation
of temporal profiles of CAP states for individual subjects.
We demonstrate that reproducible state and trait features
of neural dynamics can be quantified using several key
parameters of CAP temporal characteristics (see Fig. 3A).
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DRAFTFig. 3. Resting state brain CAPs have distinct between and within-subject variance of temporal characteristics and test-retest reliability, as revealed by the 3-axes
representation of neural trait variance space. (A) Analysis overview. In each split-half data from each permutation per day, fractional occupancy (FO), within-subject mean
of dwell time (Mean DT) and within-subject standard deviation of dwell time (Var DT) are estimated for each CAP state. (B) Stability of individual mean DT of CAP I+ across
permutations and across two days. Individual subjects were rank-ordered from top to bottom using the split 1 data from Day 1. While the estimated mean DT values spanned
from 0 to 6, the dataset exhibited sparse occurrences in the distribution tails. To enhance visual clarity across rows (subjects), a saturated colormap was employed. For an
alternative representation of the same data using an unsaturated colormap, refer to Supplementary Fig. S9. We also found that individual Var DT and individual FO for these
CAPs are reproducible across permutations and two days (Supplementary Fig. S9). (C) Days 1 and 2 reliability of FO (top), Mean DT (middle) and Var DT (bottom) in each
CAP state were quantified by the intraclass correlation coefficient using two-way random effect models (ICC(2,1)). When computing ICC for CAP III, permutations resulting
in the absence of CAP III was not considered, because the values of temporal metrics are zero for both days. (D) Test-retest reliability of neural measures between two days
of scan. (top) For CAP I+ state, we show scatter plots of individual FO, within-subject mean and variance of DT between days 1 and 2. Linear fitting line (red) is shown for
each scatter plot. r-value is measured by Pearson’s correlation coefficient and considered significant when the corresponding two-sided p-value is less than 0.001. (bottom)
For the remaining four CAP states, the same scatter plot analysis was repeated (Supplementary Fig. S10). We summarize the estimated r-values from all CAPs in the bar
plot. (E) CAPs on the neural trait variance space. Relative variance (coefficient of variance) of each CAP measure was computed across subjects: individual FO (x-axis),
Mean DT (y-axis) and Var DT (z-axis). The three-axes representation allows for unifying and optimizing the variations of temporal CAP characteristics and distinct patterns
of temporal organizations of brain activity. Note that all 718 cortical and subcortical parcels were included in this analysis. See subcortical regions of CAPs in Fig. 1E.

Definitions.

1. Fractional occupancy (FO(s, i)): the total number of
time-frames (or MRI time of repetition; TR) that a sub-
ject s spends in CAP state i per day, normalized by the
total number of time-frames spent in any CAP state by
subject s per day. FO is a relative measure (%TR),
such that the sum of FO of all CAP states is 1 within a
subject per day. FO reflects between-subject variance
(trait variance) of CAP dynamics.

2. Dwell time (DT(s, i,c)): the number of time-frames
(#TR) of a time-consecutive segment c occupying the
same CAP state i within a subject s per day.

3. Within-subject mean of DT (Mean DT(s, i)): the
mean of estimated values of DT for all time-
consecutive segments during which CAP i is occupied
by subject s per day.

4. Within-subject variance of DT (Var DT(s, i)): the

standard deviation of estimated values of DT from all
time-consecutive segments occupying a CAP i within
a subject s per day. DT measures involve both trait
(between-subject) and state (within-subject) compo-
nents of neural dynamics.

The quantification of these CAP measures was performed
for each split data per permutation. To evaluate day-to-day
variability of CAP dynamics, we computed these measures
for each day separately. In summary, we estimated FO, mean
DT and var DT for each CAP per subject. This allowed us to
average the estimated neural measures across permutations,
providing a summary statistic of neural measures for each
CAP for each subject per day. These statistics are statistically
reproducible at the single-subject level, as shown in Figure
3B (48–50). Care is needed when interpreting the results, be-
cause stable individual-specific properties of state dynamics
such as mean DT in this study can also be considered as traits.

In this study, we are interested in testing the hypothesis
that there is a reproducible general motif of individual dif-
ferences in neural co-activation dynamics, where individuals
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differently occupy (or project onto). While previous work
in (26) focused on a low-dimensional manifold of spatiotem-
poral neural activity by applying principal component anal-
ysis of rs-fMRI signal volumes, we aim to identify a low-
dimensional feature space that characterizes state and trait
properties of the temporal organizations of brain states. To
do this, we first demonstrate that state-trait CAP dynamics
are reproducible at the single subject level across permu-
tations, whereas within-subject between-day reliability was
lower than between-permutation reliability on a same day
(Fig. 3B, C, Supplementary Fig. S10). First, we measured
the test-retest reliability of the neural measures using a linear
regression (Fig. 3D). For each CAP, we found a moderate
low correlation (r ≤ 0.5) of individual neural measures be-
tween day 1 and day 2 (Fig. 3D). CAP I+ showed the highest
between-day reliability and CAP III was the lowest. See Sup-
plementary Fig. S10 for the scatter plots from the other four
CAP states. When calculating the mean and SD of correlation
across all CAPs, the between-day correlation is 0.41 ± 0.07
for FO, 0.41±0.06 for mean DT, and 0.38±0.07 for var DT.

Secondly, we computed the intraclass correlation coeffi-
cients using two-way random effect models (ICC(2,1)) for
each split in each permutation. Therefore, for each CAP,
we measure 2,000 ICC values across 1,000 permutations.
The average ICC across all CAPs are 0.39 ± 0.06 (Mean ±
Standard Deviation) for FO, 0.39 ± 0.05 for Mean DT, and
0.34 ± 0.06 for Var DT. These state-trait neural measures
show fair test-retest (day-to-day) reliability, when compared
to the meta-analytic estimate of average ICC (0.29 ± 0.03,
Mean ± Standard Error) across other studies reported using
edge-level functional connectivity (51). Within-subject vari-
ance of FO across 5 CAPs are shown in Supplementary Fig.
S12 across permutations. Together, these results show day-
to-day variability (state) in CAP dynamics within individu-
als and highly reproducible between-subject (trait) variability
within each day.

Joint analysis of state and trait neural variations. We
propose an analytic framework of joint state and trait neu-
ral variations, taking the test-retest (or day-to-day) reliabil-
ity of neural features into account. Importantly, this frame-
work allows us to visualize how CAP properties that vary
within a person (state) also vary between people (trait). In
Fig. 3E, we illustrate a three-axes representation of state
and trait variance components of spatio-temporal CAP dy-
namics. For each CAP, we estimate the normalized inter-
subject variance (coefficient of variance) of three neural fea-
tures. Then, the five CAP states (CAPs I+/-, II+/- and III)
are projected on this space. Interestingly, we found that CAP
II exhibits the highest relative between-subject variation (i.e.
trait) across all three measures, the FO, mean DT and var DT.
Conversely, CAP III exhibits lower between-subject variance
but higher within-subject variance than CAP II (as seen in
the distance between the measures on two different days; see
Fig. 3E). Indeed, the proposed joint analysis of state-trait
neural variations provides a rich landscape of within-person
and between-person variance of neural co-activations.

Neural feature reduction captures general motifs of in-
dividual variation. An important and interesting question
would be whether neural features with distinct patterns of
state-trait variation can provide vital information about indi-
vidual differences. Put differently, we are interested in study-
ing if there is a set of neural features that can be commonly
found across a number of healthy subjects that have a re-
producible set of neural co-activation properties, which can
in turn be related to behavioral phenotypes. To address this
question, we first collected thirty neural features estimated
for each individual: three neural measures (FO, mean DT,
and var DT) × five CAPs (I+, I-, II+, II-, and III) × 2 days.
We performed the agglomerative hierarchical clustering of a
subject-by-feature (337 × 30) matrix (Fig. 4A). We deter-
mined the number of clusters using a distance cut-off value
of 70% of the final merge in the dendrogram (Fig. 4B). As a
result, we found three subgroups (A, B, and C), each consist-
ing of 163, 127 and 47 individuals (Fig. 4C).

To further study if there is a low-dimensional geome-
try of neural state-trait variation capturing individual differ-
ences, we applied principal component analysis (PCA) to
the subject-by-feature matrix. Clearly, the three subgroups
identified using hierarchical clustering were distributed in
the low-dimensional space represented by the first three neu-
ral PCs, which explain 33.5%, 23.9% and 16% of variance,
respectively (Fig. 4D). Notably, subgroup A shows higher
scores on neural PC 1 than the other groups, and subgroup
C shows higher scores on neural PC 2 than subgroup B (Fig.
4C). Our further analysis of feature loadings on these PCs
revealed a unique and reduced feature set of neural varia-
tion, each representing CAP-specific (PC 1) and general (PC
2) neural state-trait variations, which also exhibit day-to-day
variability (PC 3). In addition, we found that each pair of
positive and negative CAP patterns (states I+ and I-, states
II+ and II-) exhibit similar temporal CAP profiles (Fig. 4E,
Supplementary Fig. S11).

Specifically, the neural PC 1 is characterized by distinct
temporal profiles on CAPs I/III versus CAP II. It includes
higher loadings of FO, mean DT and var DT at CAPs I/III
and lower loadings of DT measures at CAP II (Fig. 4F). Note
that the FO is a relative measure (%TR) such that the sum of
FO at all CAP states is 1, whereas the DT measures are abso-
lute (#TR). This indicates that individuals exhibiting high
scores on neural PC 1 occupy CAPs I and III for a relatively
longer time, whereas individuals with low PC 1 scores oc-
cupy CAP II state for a longer time. Regarding CAP II, the
FO exhibits a more pronounced negative loading on neural
PC 1 compared to the dwell time measures (mean DT and
var DT). On the other hand, the neural PC 2 highlights a gen-
eral pattern of state persistence (high within-subject mean DT
and high within-subject variance of DT), while also exhibit-
ing a weak CAP-specific effect on FO (lower loadings of the
FO at CAPs I/III and higher loadings of FO at CAP II) (Fig.
4F). In addition, in neural PC 2, the DT measures of CAP II
showed higher loadings than FO. A lengthy dwell time indi-
cates that an individual occupies a state for an extended du-
ration before transitioning to another CAP, suggesting strong
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Fig. 4. Identification of subgroups in healthy subjects exhibiting distinct neural state-trait variances. Three subgroups of healthy subjects in the HCP data (A, B, and
C) are identified using the agglomerative hierarchical clustering of thirty individual neural state-trait features, which are estimated from temporal CAP characteristics (fractional
occupancy, FO; within-subject mean of dwell time, mean DT; within-subject variance of dwell time, var DT). (A) For each subject, thirty neural features estimated from five
CAPs and two days are collected. For each CAP, each neural feature was obtained by averaging the values estimated across permutations. Each data-point in the 3-axis
scatter plots indicate a subject. Individual neural features were obtained by averaging the feature values across permutations within subject for each day. (B) Agglomerative
hierarchical clustering is performed on the feature matrix. In the dendrogram, three clusters are found using a distance cut-off value of 70% of the final merge. In addition,
to estimate the principal geometry of this state-trait feature space identifying subgroups, we applied principal component analysis (PCA) to the feature matrix. (C) Clustered
subjects are embedded onto a 2-dimensional space using principal component analysis. (D) Variance explained (%) by each neural PC. (E) Similarity of individual neural
features between positive and negative CAPs. An example of CAPs I+ and I- are shown. See Supplementary Fig. S11 for all results (0.9±0.04, mean ± SD). (F) Loadings
of each neural feature on the first three neural PCs. In each radar plot, three lines indicating FO (colored in slateblue), Mean DT (steelblue), and Var DT (turquoise) are shown
for five CAPs. Feature loadings from days 1 (top) and 2 (bottom) are shown separately for an easier interpretation, while the neural PCs were obtained using neural features
from both days as shown in (A). (G) The loadings of neural features on each PC are reliable between days. For each neural PC, Pearson’s correlation coefficient (r) was
computed between two vectors of feature loadings collected from days 1 and 2. Neural PC 3 reflects the contribution of within-subject (between-day) variance in temporal
CAP profiles.

state persistence. In contrast to the neural PCs 1 and 2 that
showed strong between-day reliability, neural PC 3 showed
a strong negative correlation between days (|r| > 0.9; Fig.
4G). In particular, neural PC 3 captures a specific component
of day-to-day variability: the CAP-specific patterns observed
in neural PC 1 can undergo systematic changes between days
(e.g., sign-flipped feature loadings in Fig. 4F).

Together, our results demonstrate that both state and
trait variance of spatio-temporal CAP dynamics involve
pivotal information for identifying individual differences.
Specifically, we identified three neural PCs that establish
a low dimensional, general motif of state and trait neu-
ral co-activation variation. The third principal component
of individual variation involved information about day-to-
day variability in neural co-activation, suggesting that pat-
terns of within-subject variations can be uniquely individual-

ized. This can be, in turn, considered as trait-like patterns
providing additional information about individual neuro-
phenotypes. While trait variations (neural PC 1 and 2) are
dominantly loaded on the general motif of individual differ-
ences, the observed state variance at the time scale of days
(neural PC 3) also contributes to this low dimensional fea-
ture space, therefore reflecting neuro-phenotypes. The as-
sessment of individual distributions of each neural measure
supported these findings (Supplementary Fig. S13). In ad-
dition, we found that the FO of CAPs I and II have over-
all a higher mean and variability than the FO of CAP III.
We observed the same patterns in the mean DT and var DT
(Supplementary Fig. S13). Indeed, our analyses combining
the hierarchical clustering and PCA of individual neural fea-
ture sets revealed three subgroups exhibiting distinct patterns
of neural variations.
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DRAFTFig. 5. Principal variations of neural state-trait features co-vary with the principal variations of behavioral phenotypes, highlighting individual life function
outcomes associated with emotion regulation, cognitive function and alcohol and substance use. (A) Correlation structure between 262 behavioral variables, which
were obtained from the HCP S1200 unrestricted and restricted data. Colorbars along each axis of the correlation matrix indicate color-codes for the category of each variable.
Categories were defined from the HCP data dictionary available online (HCP_S1200_DataDictionary_April_20_2018.csv). Variables measuring response time
(RT) from tasks were transformed into 1/RT to account for the fact that a shorter response time indicates better task performance. See Supplementary Fig. S14 for the list of
all behavioral variables. (B) The first PC explained 11.2% of variance. The first 15 PCs explaining ∼ 50% of variance were considered in further analysis. (C) Across 1,000
permutations for split-half resampling, we compared if the geometry of estimated PCs in two splits are consistent. Pearson’s correlation coefficient (r) was computed for each
pair of behavioral PCs. (D) Rank-ordered loadings of each behavioral variable on the first principal component (PCA). Each data-point indicates a behavioral variables. PCA
was performed for all 262 variables in (A). 39 subcategories shown on the y-axis were also defined using the HCP data dictionary. Several subcategories belonging to the
same category are coded using the same color as in (A).

Principal variations of neural state-trait features co–
vary with principal variations of behavioral pheno-
types. Next, we were interested in studying to what extent
individual variability quantified on this low-dimensional neu-
ral feature space was linked to variations of individual human
behavior. We employed a similar dimension reduction strat-
egy to estimate the behavioral principal components (PCs)
that provide low-dimensional geometries across multiple be-
havioral domains where people occupy differently. This way,
we can associate how individual subjects are distributed in
two feature spaces respectively and how such patterns relate
to each other.

To estimate the geometry of principal variations in be-
havioral phenotypes, we performed PCA on 262 variables
across 15 behavioral domains from the HCP S1200 unre-
stricted and restricted behavioral data: alertness (1-2), cog-
nition (3-39), emotion (40-63), personality (64-68), emo-
tion task performances (69-74), gambling task performances
(75-86), language task performances (87-94), relational task
performances (95-100), social task performances (101-113),
working memory task performances (114-167), psychiatric
dimensions (168-189), alcohol use (190-222), tobacco use
(223-252), illicit drug use (253-258), and marijuana use (259-
262) (Fig. 5A). Find the list of behavioral variables in Sup-

plementary Fig. S14. Before performing PCA, several vari-
ables reflecting the reaction time (RT) in tasks were converted
to 1/RT for a better interpretation of PC geometry.

After performing PCA, the significance of derived PCs
was evaluated using permutation testing. Specifically, PCA
was performed for each permutation where the order of sub-
jects was randomly shuffled, which in turn provided a null
model (23). As a result, we found 27 PCs that accounted
for a proportion of variance that exceeded chance (p < 0.05
across 10,000 permutations). Subsequently, we considered
the first 15 PCs, which collectively explained approximately
50% of the total variance, for further analyses. Reproducibil-
ity of these 15 PCs was evaluated using a split-half permuta-
tion approach, where we randomly splitted 337 subjects into
two equal sized groups (n = 168) and applied PCA for each
split. Then, the similarity (Pearson’s correlation) of PC ge-
ometry between the n-th PCs estimated from two split-halves
was computed for each permutation, where n is the ranked
order of each PC based on explained variance.

As a result, we found that the first behavioral PC (PC 1)
explaining 11.2% of variance (Fig. 5B) was highly repro-
ducible, exhibiting the similarity (r = 0.9 ± 0.03, mean ±
SD across 1,000 permutations) of PC geometry between the
first PCs estimated from two split-halves (Fig. 5C). The be-
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havioral PC 1 highlighted individual life function outcomes
associated with cognitive function, emotion regulation, and
alcohol and substance use (Fig. 5D, Fig. 6A). The vari-
ables of working memory task performances have the highest
loadings on the behavioral PC 1, followed by the emotion,
relational, languages, gambling task performances, fluid in-
telligence, self-regulation/impulsivity, and episodic memory.
In contrast, variables associated with alcohol and substance
use (e.g. short-term tobacco use) and psychiatric dimensions
(e.g. self-report measures of positive and negative affect,
stress, anxiety, depression and social support) exhibited the
lowest, negative loadings on the behavioral PC 1. Behavioral
PC 2 highlighted items associated with emotion, personal-
ity and psychiatric life functions (Fig. 6B). Behavioral PC
3 highlighted substance use, showing notable high loadings
of alcohol consumption habit related items on this PC (Fig.
6C).

To assess the association between the principal variation
of behavioral variables and the principal variations of neu-
ral features, we first compared the distribution of individual
scores on 15 behavioral PCs between the subgroups, iden-
tified using the neural features (Fig. 4). Individuals classi-
fied as subgroup A (n = 163) exhibited significantly higher
scores on behavioral PC 1 compared to subgroup B (n = 127)
(pBON < 0.05, t = 3.05, two-sample two-sided t-tests) (Fig.
6E). When comparing the individual scores of behavioral PC
1 between sex, we found no relationship. We did not ob-
serve any behavioral relevance of neural state-trait dynamics
in identifying subgroup C (n = 47). In addition, behavioral
PC 3 showed a strong sex effect (pBON < 0.005).

Next, we studied if individual scores on the behavioral
PC 1 are associated with individual scores on the three neural
PCs using the multiple linear regression model (behavioral
PC 1 ∼ neural PC 1 + neural PC 2 + neural PC 3 + age +
sex). The neural PC 1 was associated with the behavioral PC
1 (partial R2 = 0.023, β1 = 0.26, SE = 0.09, t = 2.8, p =
0.005), where the multiple R2 = 0.041, adjusted R2 = 0.026,
F (5,331) = 2.814 and p-value = 0.017 for the full model for
predicting the behavioral PC 1 (Fig. 5G). The neural PCs 2
and 3 and age did not show any association. Sex exhibited
a weak association with the behavioral PC 1 (partial R2 =
0.016, β1 = −1.44, SE = 0.61, t = −2.34, p = 0.02).

Reproducibility and Cross-validation of Low-Dimen-
sional Neuro-Behavioral Association. To further evalu-
ate the reproducibility of the neuro-behavioral association
in our low-dimensional space found in Fig. 6E, we first
performed the same multiple linear regression approach on
a split data (random N = 168) across 1,000 permutations.
Null data were generated by shuffling individual subjects in
each behavioral PC data (Supplementary Fig. S15). For
predicting behavioral PC 1, the resulting partial R2 val-
ues were strongly reproducible across permutations (partial
R2=0.025 ± 0.017 for neural PC1, pBON < e − 10, F -test;
overall R2=0.056 ± 0.024), as shown in Fig. 6F. Simi-
lar to the analysis using the entire data, sex was also a re-
producible predictor of behavioral PC 1 (partial R2=0.02 ±
0.016, pBON < e−10, F -test). Secondly, we used the multi-

ple linear regression model trained from each split 1 data for
predicting individual behavioral scores in the corresponding
split 2 data across permutations (Supplementary Fig. S16).
While the overall prediction performance was relatively low,
it was highly reproducible and significantly different from
null data analysis (R2=0.011 ± 0.013, p < e − 10, F -test).

Next, we repeated the same analyses for predicting behav-
ioral PCs 2 and 3. Neural PCs 1 and 2 showed reproducible
association with behavioral PC 2 that highlights emotion,
personality, and psychiatric life functions, whereas age and
sex showed larger predictive power (Fig. 6G). For predicting
behavioral PC 2, the estimated partial R2 was 0.008 ± 0.01
for neural PC2, 0.018 ± 0.014 for age, and 0.013 ± 0.019
for sex (Fig. 6G). On the other hand, neural PC 2 was pre-
dictive of behavioral PC 3 highlighting a strong association
with alcohol consumption habits and sex differences (Fig.
6H). For predicting behavioral PC 2, the estimated partial R2

was 0.016±0.014 for neural PC2 and 0.059±0.036 for sex,
whereas the overall R2 for the full model was 0.098 ± 0.041
(Fig. 6H).

Impact of CAP III on the principal neuro-behavioral
relationships. It remains unclear whether and how the
presence of CAP III impacts the temporal CAP profiles
of other CAPs and how it relates to individual differences
in behavior. To address these, we studied the relationship
of CAP III to the three neural PCs (Fig. 4) and the first
behavioral PC (Fig. 5). Specifically, to quantify the proba-
bility of CAP III occurrence, we compared the probability
to have 5 CAPs involving CAP III and the probability to
have 4 CAPs without involving CAP III. We found that
subgroup C had a high probability of CAP III occurrence,
when compared to other subgroups (Fig. 7A). Individuals
that have a high probability of CAP III occurrence present
low scores of neural PC 1 (r = −0.26,p < 0.001) and high
scores of neural PC 2 (r = 0.24,p < 0.001; Fig. 7B, C).
There was no relationship to individual scores of neural PC
3 (Fig. 7D). There was a weak negative correlation between
the probability of CAP III occurrence and individual scores
of behavioral PC 1 (r = −0.18,p < .005; Fig. 7E). We
found no correlation between the probability of CAP III
occurrence and behavioral PCs 2 and 3. These results
together indicate the association of spatio-temporal prop-
erties of CAP III with the neural PCs and the behavioral PC 1.

Impact of motion. To evaluate the impact of motion, the
mean Frame Displacement (FD) was computed across time-
frames for each subject. The estimated mean FD was 0.16 ±
0.58 across subjects (N=337). Note that we scrubbed time-
frames with excessive motion (FD>0.5 mm) when estimat-
ing CAPs (Supplementary Fig. S1). The average num-
ber of scrubbed time-frames across subjects was 76 ± 192.6
(counts), which are 1.73 ± 4.38% of the total number of
time-frames (4,400/subject before removing dummy scans)
in each subject. More than 5% of total time-frames were
scrubbed in 28/337 subjects (8.3%). We also measured the
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Fig. 6. Principal variations of neural state-trait features co-vary with the principal variations of behavioral phenotypes, highlighting individual life function
outcomes associated with emotion regulation, cognitive function and alcohol and substance use. (A) The geometry of behavioral PC 1 (black, left circle) reflects the
difference in group-average behavioral variables (standardized behavioral data, right circle) between subgroups A (yellow) and B (green). Subgroup C is not shown because
no significant group differences are found in (D). (B) The geometry of behavioral PC 2. (C) The geometry of behavioral PC 3. (D) Comparison of individual PC 1 scores
between subgroups identified using neural state-trait measures (Fig. 4). Two-sample two-sided t-tests were performed between subgroups for each behavioral PC. pBON :
Bonferroni corrected p-values. (E) Multiple linear regression model of three neural PC 1 with two covariates (age and sex) showed that the neural PC 1 was associated with
the behavioral PC 1 (Partial R2 = 0.023, β1 = 0.26, SE = 0.09, t = 2.8, p = 0.006), where multiple R2 = 0.041, adjusted R2 = 0.026, F (5,331) = 2.814, p-value
= 0.017 for the full model. (F-H) Reproducibility analysis of the prediction of individual behavioral PC scores from neural PCs. In each permutation, PCA was performed for
the neural and behavioral data from subjects in a random half of the entire sample (N = 168). Parameters of multiple linear regression models with three neural PC 1 with
two covariates (age and sex) were estimated to evaluate the predictability of each behavioral PC. pBON : Bonferroni corrected p-values from F -tests.

duration of motion (the number of consecutive time-frames
with excessive motion) to assess whether there were long
time-segments of motion, which might impact the estima-
tion of temporal CAP profiles, especially analyses of CAP
state transitions and dwell time. The length of motion-related
continuous time-frames was 1.34 ± 0.38 on average across
subjects. Repeating the analyses excluding these 28 sub-
jects did not change the results, including the PCA of neural
measures and the low-dimensional neuro-behavioral relation-
ships (Supplementary Fig. S17).

In summary, we tested the hypothesis that there is a re-
producible CAP feature set that reflects both state and trait
brain dynamics and that this combined feature set relates to
individual phenotypes across multiple behavioral domains.
Specifically, behavioral PC 1 highlights individual life func-
tion outcomes associated with cognition, emotion regulation,
alcohol use and substance use. Individuals with high behav-
ioral PC 1 scores are found to (i) spend longer time at CAP
I than at CAP II, (ii) have higher between-subject variance
and lower within-subject variance at CAP I than at CAP II,
(iii) show high global persistence (longer dwell time) in all
CAPs, and (iv) lower chance to have CAP III. Such neuro-
behavioral patterns were (v) associated with sex differences.

Behavioral PC 2 highlights emotion regulation, personality
and psychiatric life functions. Individuals with high behav-
ioral PC 2 scores are found to (i) show longer dwell time in
all CAPs, (ii) spend longer time at CAP I than at CAP II, and
(iii) be associated with Age. Behavioral PC 3 highlights al-
cohol, nicotine and substance use. Individuals with high be-
havioral PC 3 scores are found to (i) have longer dwell time
in all CAPs, (ii) higher chance to have CAP III, and (iii) be
associated with sex differences.

Discussion
This study provides evidence to highlight the importance

of quantifying both within-subject and between-subject vari-
ance components of brain dynamics and their link to indi-
vidual differences in functional behavioral outcomes. Here,
we show that the dynamics of rs-fMRI can be quantified via
CAP analyses and reveal reproducible neural features that
can maximize effects of state variance, trait variance, and
test-retest reliability. We found that the human brain man-
ifests a highly reproducible low-dimensional set of features
that index brain-wide co-activation patterns. The neural fea-
ture reduction captures a general motif of individual varia-
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Fig. 7. The probability of CAP III occurrence is associated with the neural and behavioral PCs. (A) The probability of CAP III occurrence (x-axis) for each individual,
which can be interpreted as an individual’s preference to have CAP III, was evaluated by the difference in the occurrence of 4 CAPs versus 5 CAPs, as described in Fig.
1B. For each subject, we computed the number of permutations (occurrence out of 1,000 permutations) when 4 CAPs were estimated and the number of permutations for
the same subject to be involved when 5 CAPs were estimated. Then, for each subject, we compared the difference in the occurrence (∆ Occurrence = Occurrence(k = 5)
- Occurrence(k = 4)) from each split. Then, for each individual, the ∆ Occurrence was averaged over two splits. Finally, the within-subject average ∆ Occurrence was
normalized across subjects to z-scores. Individuals were color-coded by subgroups defined using the hierarchical clustering of 30 neural features (Fig. 4). (B)-(D) Scatter
plots of individuals’ preference to have CAP III with respect to the individual scores on the neural PC 1 (B), neural PC 2 (C), neural PC 3 (D), and behavioral PC 1 (E).

tion, such that individuals occupy this low-dimensional state-
trait neural space differently, which in turn predicts life and
behavioral outcomes. State variance indexed by day-to-day
variability in co-activation dynamics are loaded on this low-
dimensional motif of individual variation, therefore reflecting
neuro-phenotypes.

We identified three CAPs representing recurrent snap-
shots of mixed resting state networks in healthy young adults,
which exhibit distinct spatio-temporal profiles that are repro-
ducible at the single subject level. In turn, three subgroups
of individuals were identified using hierarchical clustering of
temporal CAP profiles, which mapped onto distinct aspects
of CAP dynamics capturing both state (i.e. within person)
and trait (i.e. between person) variance components. We
found that the principal variations of neural state and trait
CAP features co-vary with the principal variations of behav-
ioral phenotypes. Put differently, we identified specific prop-
erties of rs-fMRI dynamics that mapped onto a person’s life
outcome profile. Critically, person-specific probability of oc-
cupying a given CAP was highly reproducible and associ-
ated with the neural and behavioral features. Collectively,
these results show that a reproducible pattern of neural dy-
namics can capture both within-person and between-person
variance that quantitatively map onto distinct functional out-
comes across individuals.

Identifying reproducible neural dynamics profiles in hu-
mans. In this study (n=337, Fig. 1E), we identified three
reproducible CAPs. These CAPs captured spatial patterns
similar to the analysis results of zero-lag standing waves and
time-lag traveling waves of rs-fMRI BOLD fluctuations pre-
viously identified by Bolt et al., using complex PCA and a
variety of latent dimension-reduction methods for the HCP
dataset (n = 50) (52). The spatial correspondence between
the three patterns identified by Bolt et al. and the CAPs

discovered in our study aids in the interpretation of our re-
sults. Specifically, the spatial topography of CAPs I+/I- may
be linked to task-positive/task-negative dynamics of BOLD
signals, while CAPs II+/II- may be associated with global
signal fluctuations (52). However, similar to most early stud-
ies on CAPs in rs-fMRI (33), Bolt et al. employed a sparse
time point sampling strategy (15%) based on high-amplitude
signals of time-courses in pre-defined regions, along with
an arbitrary choice of two-cluster solution (52). The sparse
time point sampling is based on a hypothesis that patterns
of functional connectivity arise from discrete neural events
(6), often driven by high-amplitude co-fluctuations in cor-
tical activity (53). These studies demonstrated the spatial
correspondence between estimated CAPs and widely-studied
resting-state functional connectivity patterns, such as the de-
fault mode network (6, 33, 54).

Nevertheless, no study to our knowledge has investigated
the joint properties of within and between-subject variation
of CAPs patterns across the entire BOLD signal range. Ad-
ditionally, no study has examined the impact of consider-
ing the full BOLD signal range on the relationship between
CAP properties and behavior (36–42). Here, we present
an analytic approach that optimizes within-subject variance,
between-subject variance, and test-retest reliability of iden-
tified CAPs using the entire BOLD signal range. Critically,
we demonstrate reproducible spatio-temporal CAP features
for each subject (Fig. 2, Fig. 3, Supplementary Fig. S9,
Supplementary Fig. S10). In turn, we show an association
between the principal variations of CAP neuro-phenotypes
and the principal variation of behavioral phenotypes (Fig. 5).

It was beyond the scope of the present study to assess the
impact of temporal sampling of BOLD signals on CAP anal-
ysis. However, previous research have suggested that focus-
ing only on particular time points, such as those during events
with high BOLD signal amplitude or strong signal correlation
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with a seed region, while disregarding the remaining of the
data (e.g. event-absent), may potentially result in mislead-
ing conclusions (44). Iraji et al (44) noted that event-absent
time points could capture a unique and robust relationship be-
tween the default mode functional network connectivity and
schizophrenia symptoms. Therefore, future investigations
addressing this specific question will be helpful for determin-
ing the extent to which transient brain co-activation patterns
can capture diverse characteristics of individual brain dynam-
ics. For instance, CAP derived measures can be quantified
from data with various temporal sampling strategies, such as
varying the proportion of analyzed time points randomly or
based on specific signal criteria. In addition, the impacts of
temporal resolution of fMRI BOLD acquisition (e.g. time or
repetition; TR) should be given further consideration.

A recent work suggests a method to detect individual
CAPs at the subject-level by maximizing individual identifi-
ability (55). Using the densely sampled Midnight Scan Club
dataset (56), they identified four CAPs at both the group-level
and single-subject level, with two CAP pairs exhibiting op-
posing spatial patterns, similar to the findings in this work
(Fig. 1). However, their study did not address how individu-
alized CAPs and their temporal profiles can be assessed in re-
lation to behavior, focusing on an identical number of clusters
at both levels. In contrast, we focused on identifying repro-
ducible spatial patterns of neural co-activation (CAPs) at the
group level and quantifying a reproducible feature set of tem-
poral profiles of the CAPs at the single subject level, therefore
providing a unified framework to evaluate individual differ-
ences using a joint analysis of state and trait variations of
neural co-activation. Similarly, several brain states were es-
timated at the group level using another dynamic functional
connectivity approach in (24), whereas they could identify
the time-points when the state was active, allowing the esti-
mation of FO for each state and for each subject.

Collectively, these results highlight that state-trait CAP
dynamics are reproducible at the single subject level across
permutations and splits (Fig. 3, Supplementary Fig. S9).
For context, the statistics reported here (Fig. 3C) demon-
strate higher reproducibility than the meta-analytic estimate
for group-level reproducibility of area-to-area functional con-
nectivity matrices (51). Still, the observed ICC values are
fairly low, reflecting a notable variance between days. This
indicates that while trait-like features are most dominant fac-
tors loaded on the general motif of individual variance, the
observed state variance (between days) also contributes to
this general motif. In this context, the fairly low range of ICC
reflects the notable amount of within-subject variance at the
time-scale of days, and supports our framework of state-trait
components that together identify neural phenotypes. Sim-
ilarly, Yang et al. found that CAPs identified at individual
level were unstable over time across the ten scans (∼ 30 min-
utes/scan) except a few subjects, and subject-specific CAPs
became more reliable and individual specific when integrat-
ing data with longer duration (55). Therefore, we argue that
such temporal fluctuations within subjects can bring critical
insights into individual-specific brain organizations. Reduc-

ing the number of neural features into a reproducible set of
CAPs may enable a more robust and reproducible mapping
between neural features and behavior. In other words, we
hypothesize that further optimization of reproducible data-
reduced neural features presents a critical step toward map-
ping rs-fMRI signals to healthy and clinically-relevant behav-
ioral variation and obtaining robust neuro-behavioral models.

Quantifying joint state and trait variance components of
neural dynamics. The three-axes representation of spatio-
temporal CAP dynamics, illustrated in Fig. 3E, highlights
an approach to consider temporal CAP characteristics that
can inform feature selection. Put differently, we show that
by projecting CAP measures derived within each subject into
a trait variance space, it is possible to visualize how CAP
properties that vary within a person (state) also vary between
people (trait).

For instance, we found that CAP II exhibits the highest
relative between-subject variation (i.e. trait) across all mea-
sures presented here. Conversely, CAP III exhibits lower
between-subject variance but higher within-subject variance
than CAP II. This suggests that, although there is less individ-
ual variation in CAP III overall, any given person may exhibit
marked variation in this pattern between days. These obser-
vations were highly reproducible and were generally agreed
with the variance explained by the three patterns reported in
(52). This raises the question of whether the joint consid-
eration of both state and trait metrics can reveal key proper-
ties of neural features that, in turn, can inform their mapping
to behavior. For instance, one would expect that a neural
feature that varies markedly between individuals but shows
little within-subject variance may serve as a reliable neu-
ral marker for tracking longitudinal behavioral changes (e.g.,
neurodevelopmental changes or rapid mood swings observed
in certain psychiatric populations, which may not occur in
healthy populations). In contrast, neural features that maxi-
mize within-subject variation, while still exhibiting notable
trait variance, may be better at detecting neuro-behavioral
relationships expected to undergo substantial changes over
time.

Indeed, using both state and trait variance components
of identified CAPs revealed three subgroups of healthy sub-
jects. This finding aligns with the notion that using neural
features with distinct patterns of state variances can provide
vital information about individual differences (Fig. 4). The
objective of this clustering was not to categorize individual
subjects. Rather, we aimed to test whether there exists a set
of neural features commonly observed across a number of
healthy subjects, exhibiting reproducible neural co-activation
properties that can be related to behavioral phenotypes. We
first found that the three subgroups (n = 163, 127 and 47
for each group) could be projected into a data-reduced PCA
model. Neural PC 1 is characterized by distinct patterns
of FO and DT measures between CAPs I/III versus CAP II
(CAP-specific), neural PC 2 represents the general persis-
tence of all CAP states (general), and neural PC 3 represents
day-to-day variations within individuals (Fig. 4D-F). This
additional level of neural feature reduction captured a general
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motif of how individuals vary in terms of complex temporal
patterns of neural co-activation.

While this study suggests the importance of taking state
variations into account when studying neural basis of individ-
ual differences, we did not directly compare the performance
of neuro-behavioral mapping when using only state features,
only trait features and both state and trait features. Further
studies with comprehensive experiments on state manipula-
tions such as pharmacological neuroimaging or transcranial
magnetic stimulation (TMS) can help to understand how state
and trait neural features change in response to such manipu-
lations and whether the state and trait neural features reflect
unique or additive information about individual differences.

Linking neural patterns of co-activation to behavioral and
life functioning. One of the key goals in human neuroimag-
ing is to identify features that relate to human function. More
specifically, do signals derived from fMRI carry information
that can be related to positive or negative life functional out-
comes in adults? Prior work tested this hypothesis using
multi-variation canonical correlation approaches (CCA) (22).
While these initial findings were compelling, it is not widely
appreciated that CCA models that use many neuroimaging
features are prone to overfitting. To address this issue, we in-
vestigated whether the reduced and reproducible neural fea-
ture set, identified by the joint state and trait variance compo-
nents of neural dynamics, can explain variation in functional
behavioral outcomes in a sample of adults representative of
the general population. Here we computed a PCA model
on 262 behavioral features from the HCP sample, which re-
vealed a solution with n = 27 PCs that passed permutation
testing. However, we found that the first behavioral PC cap-
tured > 11% of all behavioral variance and it was highly
reproducible (between-split correlation of behavioral PC 1
loadings was r > 0.9; Fig. 5C). Therefore, we examined the
relationship between the first CAP-derived neural PC (Fig.
4) and the first behavioral PC, which revealed that individu-
als with higher neural PC 1 scores (subgroup A, Fig. 4F) also
have higher behavioral PC 1 scores (Fig. 6D, E).

These results suggest that individuals who preferentially
occupy CAP I and exhibit strong state persistence also
demonstrate higher cognitive and affective functional out-
comes (Fig. 4, Fig. 5D). In contrast, individuals who pre-
dominantly occupy CAP II for extended periods tend to ex-
hibit relatively lower cognitive scores, along with higher lev-
els of alcohol and substance use. This aligns with the no-
tion that general brain-wide patterns of co-activation in fMRI
signal are associated with an individual’s level of function-
ing. Of note, CAP II exhibited the highest relative between-
subject variation across all measures (Fig. 5D). Furthermore,
CAP II showed a spatial motif that appeared to be ‘global’.
This is consistent with prior findings showing that a global
rs-fMRI signal topography, which contained a major contri-
bution of the fronto-parietal control network, was associated
with positive and negative life outcomes and psychological
function (57). Interestingly, we found that observing CAP III
might be related to the composition of the studied sample. In
other words, there is a group of people with high occurrence

of CAP III (subgroup C), which if sampled in the reported
permutation testing will yield a 3-CAP solution (I, II and III).
A higher probability of CAP III presence across individuals
was associated with lower behavioral PC 1 scores, indicating
poor functional life outcome (Fig. 1, Fig. 2, Fig. 6). More
specifically, individuals with high probability of CAP III neu-
ral signal pattern exhibit relatively lower cognitive function,
higher alcohol use, and higher substance use.

Our results converge with several findings using other dy-
namic functional connectivity approaches. Vidaurre et al.
used Hidden Markov Model to identify 12 brain states using
the HCP-YA rs-fMRI datasets and derived two metastates,
each being a set of brain states that are more likely to transit
between each other (24). They found that the FO of brain
states and their associated metastates are subject-specific and
behaviorally relevant, highlighting several well-being, intel-
ligence and personality traits (24). It would be interesting to
evaluate, using the same subjects studied in this work, if brain
activity during cognitive tasks exhibit a similar set of CAP
features and low-dimensional state-trait variances to those es-
timated using rs-fMRI and how they are related to such high-
order metastates (24) and the low-dimensional global brain
activity found across multiple cognitive tasks (26).

This strongly supports the idea that reproducible func-
tional co-activation patterns in the human brain can map onto
behavioral outcomes that have implications for mental health.
Here we found this pattern by considering only the first PCs
of the neural and behavioral feature spaces. It remains un-
known whether further feature optimization of CAP dynam-
ics would reveal stronger effects in relation to more severe
mental health symptoms, which can be detected in clinical
samples. In fact, spatial and temporal organization of CAPs
has been linked to psychiatric symptoms in previous work
(37–42). However, it is unknown if the neural features de-
rived from CAPs that are reproducible in the healthy gen-
eral adult population are also predictive of severe psychiatric
symptoms. In other words, it is possible that there are CAPs
(and associated state-trait variance components we quanti-
fied) that are only detectable in individuals who experience a
certain level of symptom severity. In this context, it is vital to
consider the likelihood and the timescale on which state neu-
ral measures are defined - namely how likely is a state to be
present in a person and how long does it last to be relevant for
behavior. Relatedly, it is key to consider how much between-
person variation there has to be in a given CAP state pattern
to reveal individual symptom variation across a clinical sam-
ple - thus making it a trait-like neural marker of psychiatric
symptoms. The results of this study highlight how critical it
might be to parse transient (state) or persisting (trait) CAP
properties when it comes to clinical applications.

In other words, mental health symptoms can be consid-
ered to vary between people (i.e. as a trait) or vary within a
person (i.e. as a state), which can be quantified separately.
Trait anxiety, for example, is the tendency of a person to
experience anxious affect across a broad range of contexts
and for extended periods of time. In contrast, state anxiety
is clinically defined anxiety occurring in the present moment
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(58, 59). The current findings suggest that the probability of
exhibiting high anxiety in general and the likelihood of be-
ing anxious at any given moment may be linked to the same
underlying neural co-activation pattern occurrence. We posit
that this may be a general phenomenon that can be extended
to other mental health outcomes. Therefore, it would be valu-
able in future work to study the combined contributions of
state and trait neural features in predicting the severity and
likelihood of occurrence for a mental health outcome (60).

Our results in the reproducible neuro-behavioral associ-
ations highlighted the neural relevance of behavioral PCs 1,
2 and 3. Individuals with higher cognition (behavioral PC
1) spent longer time at CAP I than at CAP II. The behav-
ioral PC 2 showed an association with neural PCs 1 and 2,
as well as age and sex. In relation to resting state functional
connectivity, While CAPs I and II show differences in the
regions of language, primary visual, and cingulo-opercular
networks, the overall patterns of these CAP states involved
opposing patterns of brain activity in the default mode and
frontoparietal networks versus the regions belonging to the
secondary visual, somatomotor and dorsal attention networks
(61). This suggests a relation to the cortical hierarchy that
spans from unimodal sensorimotor cortices to transmodal as-
sociation cortices and a potential role in functional connectiv-
ity development during childhood through adolescence (62).

Finally, an important consideration here is that we did not
evaluate the impact of sample size on the estimation of CAPs
and their properties. It is unknown if the low-dimensional
feature set that captures a general motif of individual varia-
tion found in this study is particular for the samples in the
HCP S1200 dataset or generalizable to larger and more di-
verse samples of the general population. In datasets with
dense sampling over days, months or years, we may find an-
other dimension of within-subject (state) variation that con-
tributes to the general motifs of individual differences. It is
possible that with a smaller sample size or different compo-
sition of the sample, there might be a reduced chance of ob-
serving a specific CAP (e.g. CAP III) or even detect new
CAPs. This could occur because a particular CAP may be
rare, especially when it relates to a neural pattern that is un-
common in the general population, which may be the case
for neuropsychiatric or neurological symptoms. Another im-
portant aspect to consider is the extension of this work to
pediatric and adolescent samples, given that there may be a
substantially different configuration of CAPs as the human
brain develops. Besides, in the present study, we focused
on examining the patterns of CAPs in healthy young partic-
ipants with no family relation. Using other dynamic func-
tional connectivity approaches (e.g. Hidden Markov Model),
it has been suggested that the FO of brain states are subject-
specific and highly heritable (24). Exploring the full HCP
S1200 dataset in future work may help to address these ques-
tions and whether these CAPs and related neural measures
are heritable and more similar between monozygotic or dizy-
gotic twins.

Conclusions

Understanding how the brain generates co-activated patterns
of neural activity over time is critical to derive reproducible
brain-wide patterns of neural dynamics that occur in humans.
Here we advance this goal by quantifying state (within-
subject) and trait (between-subject) variance components of
neural co-activations. We do so by leveraging rich spatial-
temporal information embedded in the entire range of rs-
fMRI BOLD signals, which reveals three co-activation pat-
terns (CAPs) that reflect brain-wide motifs of time-varying
neural activity. Critically, we demonstrate a reproducible es-
timation of spatial CAP features at the group level and the
temporal characteristics of CAP states at the single-subject
level. We found that distinct parameters of CAP temporal
characteristics, such as occupancy and persistence, can be
studied together and represented as either state or trait fea-
tures. In turn, we show that a low-dimensional neural feature
space captures both state and trait variation in CAP parame-
ters, which in turn exhibit behaviorally-relevant characteris-
tics. Specifically, people who showed longer time spent in a
given CAP, longer persistent periods within a CAP, as well
as higher variation in transitioning between all CAPs, also
showed higher cognitive function, improved emotion regula-
tion, and lower alcohol and substance use. Critically, person-
specific probability of occupying a particular CAP was highly
reproducible and associated with both neural and behavioral
features. This highlights the importance of studying CAP-
derived measures as a neural marker that may be altered as a
function of mental health symptoms and may change devel-
opmentally. Collectively, these results show a reproducible
pattern of neural co-activation dynamics in humans, which
capture both within- and between-subject variance that in
turn maps onto functional life outcomes across people.

Materials and Methods

Human Connectome Project (HCP) dataset (45). Partic-
ipants were recruited from Washington University (St. Louis,
MO) and the surrounding area. We selected participants from
the S1200 release of the HCP who had no family relations,
resulting in a total of 337 participants included in our
analyses. The dataset contains resting-state fMRI data from
180 females and 157 males, with age range 22-37 (mean
age=28.6, SD=3.7), 90% right-handed. Whole-brain echo-
planar imaging data were collected with a 32 channel head
coil on a modified 3T Siemens Skyra (Connectome Skyra) at
WashU with time to repetition (TR)=720 ms, time to echo
(TE)= 33.1ms, flip angle=52, bandwidth=2,290 Hz/pixel,
in-plane field of view (FOV)= 208 × 180mm, 72 slices,
and 2.0 mm isotropic voxels, with a multi-band acceleration
factor of 8. rs-fMRI blood-oxygen-level-dependent (BOLD)
images were collected over 2 days. On each day, 2 runs (14.5
min/run) of rs-fMRI were collected with opposite phase
encoding directions (L/R and R/L). Subjects were instructed
to keep eyes open with fixation on a cross-hair. Task-based
imaging data were also collected, but not used in the present
study. Structural MRIs were collected using the following
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parameters: T1-weighted (0.7 mm isotropic resolution,
TR=2,400 ms, TE=2.14 ms, flip angle=8, in-plane field
of view= 224 × 224) and T2-weighted (0.7 mm isotropic
resolution, TR=3,200 ms, TE=565 ms, variable flip angle,
in-plane field of view= 224 × 224). Find additional details
about the dataset in (63).

Data preprocessing. We preprocessed rs-fMRI using the
following steps corresponding to the steps advanced by the
HCP consortium: i) the ‘minimal preprocessing’ pipeline
outlined by (64), which involves intensity normalization,
phase-encoding direction unwarping, motion correction, and
spatial normalization to a standard template MSMAll (65),
Angular Deviation Penalty (ADP) version; ii) High-pass fil-
tering (0.009 Hz); iii) ICA-FIX for artifact removal (66).
Next, the ‘minimally preprocessed’ rs-fMRI in each run was
represented in the Connectivity Informatics Technology Ini-
tiative (CIFTI) file format that combines surface-based data
representation for cortex and volume-based data for subcor-
tex gray matter locations (i.e. ‘grayordinates’). Additional
analyses were performed with Workbench v1.2.3 and Matlab
2014b (The Mathworks), using Quantitative Neuroimaging
Environment & Toolbox (QuNex) (23, 47).

Previous studies focusing on CAP analysis showed
consistent CAP properties across the voxel and region levels
(37, 67). To analyze CAPs at a low dimension space and to
reduce the computational burden of CAP analysis that treats
every 3-dimensional time-frame in the clustering process,
we applied the Cole-Anticevic Brain Network Parcellation
(CAB-NP) parcellation (46). The CAP-NP parcellation is
comprised of (i) 180 bilateral cortical parcels (a total of
360 across both left and right hemispheres), consistent with
the Human Connectome Project’s Multi-Modal Parcellation
(MMP1.0) (65), and (ii) 358 subcortical parcels defined
using resting-state functional BOLD covariation with the
cortical network solution (46). To remove any potential
artifact at the onset/offset of each run, the first 100 frames
were removed from every rs-fMRI run for each subject. To
normalize rs-fMRI data in each run, the mean of each run
was removed from each time series. Subsequently, rs-fMRI
BOLD runs were concatenated in order of acquisition
(rs-fMRI runs 2-1-4-3, R/L first, then L/R), resulting in a
4,000 × 718 array of rs-fMRI data for each subject.

CAP analysis. We identified moment-to-moment changes in
the whole brain rs-fMRI BOLD signals at each time point and
quantified the spatial patterns of co-activation (CAPs) across
individuals, as well as individual variations in CAP tempo-
ral organization (33). The analytic framework proposed in
this study is described in Supplementary Fig. S1 and imple-
mented using Python 3.6.15 using the Yale High Performance
Computing resources. In each permutation, N = 337 sub-
jects are randomly split into two equal-sized groups (n = 168,
non-overlapping subjects). We used the shuffled split-half
resampling strategy for several reasons. First, applying K-
means clustering once to the concatenated time-series of the

entire sample results in single values of neural measures per
subject. Using such a simple approach, the individual reli-
ability of CAP measures from the concatenated time-series
across various sample populations could not be quantified.
Our approach allowed for the estimation of statistical repro-
ducibility of neural measures for each subject, when a subject
was included in different sample populations, therefore re-
ducing potential sampling bias. In addition, we could use the
same split-half resampling scheme for the cross-validation of
neuro-behavioral association analysis, by training a neuro-
behavioral model from split 1 data and testing the model on
the remaining split 2 data.

Within each split, a 4,000 × 718 array of preprocessed
rs-fMRI data are temporally concatenated across subjects.
The following steps were performed for each split data using
scikit-learn 1.3.2 with Python. (i) Time-frames with exces-
sive motions (Frame displacement > 0.5mm) are scrubbed
(23, 68, 69). The HCP minimal preprocessing pipeline in-
cluded motion correction (64); therefore, we avoided using a
too conservative threshold for motion scrubbing and retained
as many potentially useful frames as possible in our analysis.
(ii) The remaining time-frames are clustered based on spa-
tial similarity using the K-means clustering algorithm with
Lloyd’s algorithm, varying the number of clusters (k) from
2 to 15. (iii) An optimal number of clusters k̂ is estimated.
(iv) Using the K-means solutions with the optimal number
k̂, CAPs are defined as the cluster centroids, by parcel-wise
averaging of the time-frames within each cluster.

Number of clusters. While the estimation of the number of
clusters k is critical in CAP analysis, the field is lacking a
consensus on the optimal criterion to determine it (70). Ear-
lier works used predefined arbitrary numbers ranging from 6
to 30 and reported that CAPs estimated using a small k are
consistently found in results using a larger k (7, 37, 71). It has
been suggested that a large k may reduce cluster stability, for
example, when a small number of time-frames are allocated
to a cluster due to a short rs-fMRI acquisition duration (72).
Yang et al. calculated the silhouette scores for the clustering
results varying k from 2 to 21 in both group and individual
level analyses and chose k = 4 as a trade-off to ensure the
reliable estimation of spatiotemporal dynamics (55).

To find an optimal number, we used an approach that con-
siders a trade-off between the number of clusters and within-
cluster similarity (e.g. silhouette criteria (73)). We observed
that the silhouette score was monotonically decreasing with
the increase of k (Supplementary Fig. S2), in agreement
with Yang et al. (37). In our study, to determine an opti-
mal number of clusters, we varied the number of clusters (k)
from 2 to 15. For each k, the K-means clustering was initial-
ized using the k-means++ algorithm, by selecting randomly-
generated centroids using sampling based on an empirical
probability distribution of the points’ contribution to the over-
all inertia. Inertia was defined as the sum of squared distances
of samples to their closest cluster center. The maximum it-
eration for a single run was set to 1,000 to avoid that the al-
gorithm stops before fully converging. Silhouette coefficient
is estimated for the K-means solution using each k. Finally,
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an optimal number k̂ is determined by applying the elbow
method for the estimated Silhouette scores. The elbow point
was defined when we observe a significant change in the rate
of decrease of the Silhouette score as k increases, using the
KneeLocator class in Python’s kneed package.

Basis CAP generation. The occurrence rate (%) of the
k̂ = a solution was calculated by the number of permutations
resulting in a clusters divided by the total number of permu-
tations (1,000). Co-occurrence rate (%) of the k̂ = a solution
in both splits was determined by the number of permutations
resulting in the same number of clusters divided by the total
number of permutations. See Part (1) of the procedure dia-
gram in Supplementary Fig. S4).

A set of basis CAPs can be obtained using the ag-
glomerative hierarchical clustering of the CAPs estimated
from the permutations resulting in the same number of clus-
ters (k̂ = a), as follows. For each split, let’s first denote
that hMAX/1,000 permutations resulted in k̂ = a solution.
(1) We collect the k̂ CAPs (P × k̂) and concatenate them
across hMAX permutations to produce a (P × k̂hMAX ) ar-
ray, where P is the number of parcels. (2) Agglomerative
hierarchical clustering is applied to this array to identify k̂
clusters based on spatial similarity. (3) In each cluster, co-
activation values in each parcel are averaged across CAPs
assigned to the same cluster, generating an average (basis)
CAP. (4) The values in each parcel of the basis CAP are nor-
malized to Z-scores, using the mean and standard deviation
across the parcels in the whole brain. Steps (3) and (4) are re-
peated for all k̂ clusters, resulting in k̂ basis CAPs. See Part
(2) of the diagram in Supplementary Fig. S2).

Individual preference for a specific CAP. The probabil-
ity of CAP occurrence, which can be interpreted as an in-
dividual’s probabilistic preference for a specific CAP, was
quantified by examining the number of permutations that re-
sulted in a specific solution k. To do this, we compared
the probability to have k CAPs involving the CAP of inter-
est and the probability to have k − 1 CAPs without involv-
ing the CAP of interest, assuming a reproducible estimation
of spatial topography of k CAPs across permutations, sim-
ilar to the approaches comparing full and reduced models.
Specifically, across 1,000 split-half permutations, a subject
is involved in split 1 data for p1 permutations and in split
2 data for p2 = 1,000 − p1. Then, when only considering
split 1 data from these p1 permutations, we can compute the
number of permutations that resulted in k and the number of
permutations that resulted in k − 1. In each split, for each
subject, we compute the difference (occurrence of k CAPs)
minus (occurrence of k − 1 CAPs) to quantify an individ-
ual’s preference for a specific CAP. To associate these with
behavioral variables (normalized), we normalized the indi-
vidual’s probabilistic preference for a specific CAP using Z-
transformation across subjects.

Neural dimension reduction. To identify the principal ge-
ometry of the state-trait neural feature space, thirty neural

features are estimated for each individual: three neural mea-
sures (FO, mean DT, and var DT) × five CAPs (I+, I-, II+, II-,
and III) × 2 days. These neural features were collected across
subjects to create a subject-by-feature matrix. Two analyses
are performed on this subject-by-feature matrix. First, ag-
glomerative hierarchical clustering was applied to the feature
matrix, using scikit-learn 1.3.2. The ward linkage criterion
with Euclidean metric was used to minimize the variance of
the clusters being merged. The number of clusters was de-
termined using a distance cut-off value of 70% of the final
merge in the dendrogram. Second, PCA was applied to this
subject-by-feature matrix to estimate the principal geometry
of this state-trait feature space identifying subgroups.

Behavioral data analysis. The analysis of behavioral data
was implemented using the method described in (23). We
performed PCA on 262 variables across 15 behavioral do-
mains from the HCP S1200 unrestricted and restricted be-
havioral data (Supplementary Fig. S14). Behavioral vari-
able names and the corresponding domains used in this anal-
ysis were identical to the variable names provided by the
HCP data dictionary for the S1200 data release. When both
age-adjusted and un-adjusted data are available, we use age-
adjusted data only. To study the association between indi-
vidual scores on the first behavioral PC and individual scores
on the first three neural PCs, we use the multiple linear re-
gression model (behavioral PC 1 ∼ neural PC 1 + neural PC
2 + neural PC 3 + age + sex). The association between a
neural PC and the behavioral PC 1 was assessed by calcu-
lating the partial R2, regression coefficient β, standard error
(SE). The significance of regression coefficients was deter-
mined by computing the corresponding t-scores. Partial R2

was defined as the coefficient of partial determination which
is measured by the proportional reduction in sums of squares
after a variable of interest is introduced into a model. Visual-
ization and statistical analyses were conducted using Python
3.6.15 and R Studio v.2022.12.0.

Data Availability. All primary results derive from data that
is publicly available from sources described above.

Code Availability. Codes used in this paper are available
from https://github.com/Kangjoo/pycap.

Ethics Statement. In the collection of HCP Young Adult
S1200 data, each participant provided their review and signa-
ture on the informed consent document at the start of day 1,
as directed by the institutional review board (IRB) at Wash-
ington University at St. Louis, USA (45). K.L, J.L.J. and
A.A. have obtained the acceptance of HCP Open Access
Data Use Terms for access to all HCP data. K.L further
obtained the approval for access to Restricted Data gener-
ated by HCP, WU-Minn-Ox HCP. All analyses conducted
in this work were approved by the IRB at Yale University
(IRB number: 1111009332), Connecticut, USA. This work
is 100% based on human effort, and no artificial intelligence
(AI)-assisted technologies were used in the production of this
article.
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