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It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30– 
50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect mod-
els for studying learning and memory, behavior, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination, and 
eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this 
study, we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and 
pupa at day 15) and sought to determine their gene expression signatures. To identify cell-type populations, we examined the cell-to- 
cell network based on the similarity of the single-cells transcriptomic profiles. Grouping similar cells together we identified 63 different 
cell clusters of which 17 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with 
a particular biological process involved in honey bee development, we used gene coexpression analysis. We combined this analysis 
with literature mining, the honey bee protein atlas, and gene ontology analysis to determine cell cluster identity. Of the cell clusters iden-
tified, 17 were related to the nervous system and sensory organs, 7 to the fat body, 19 to the cuticle, 5 to muscle, 4 to compound eye, 2 to 
midgut, 2 to hemocytes, and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single-cell atlas of 
honey bees at any stage of development and demonstrates the potential for further work to investigate their biology at the cellular level.
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Introduction
The western honey bee, Apis mellifera, is valued for the pollination 
services it provides to many crops and wild flowers (Corbet 1991; 
Klein et al. 2007; Gallai et al. 2009; Breeze et al. 2011; Ollerton 
et al. 2011; Kleijn et al. 2015) as well as for its production of honey 
and wax (Hepburn et al. 1991; Carreck 2018). Globally there are 11 
species of honey bee (Engel 1999; Arias and Sheppard 2005) whose 
distribution is restricted to Asia with the exception of the western 
honey bee found all over the world and indigenous to Africa, the 
Middle East, and Europe (Seeley 1985; Ruttner 1988). Despite the di-
versity of honey bee species in Asia, the world’s beekeeping indus-
try is based almost entirely on one species, A. mellifera. In addition 
to their importance to agriculture and the economy, honey bees re-
present a useful model organism for many areas of research 
(Elekonich and Roberts 2005; Dearden et al. 2009). Although 
Hymenoptera and Diptera diverged over 300 million years ago 
(Misof et al. 2014), honey bees are similar in terms of their physi-
ology and other characteristics to the best-studied model organism 
in the phylum Arthropoda, Drosophila melanogaster.

The genome for the western honey bee was first published in 
2006 by the Honey Bee Genome Sequencing Consortium 

(Honeybee Genome Sequencing Consortium 2006). This was later 
improved upon by Elsik et al. (2014) who found c.5,000 more 
protein-coding genes, 50% more than previously reported. 
Wallberg et al. (2019) reported a further improvement using 
Pac-Bio long reads (Amel_HAv3.1). Parallel to annotating the gen-
ome, efforts have also been made to associate phenotypes with 
genes using omic analyses. Studies have examined changes in 
gene expression associated with different treatments (phero-
mones and pesticide) and how they relate to behavior, phenotype, 
and changes associated with the colony e.g. queen loss (Christen 
et al. 2016; Chaimanee and Pettis 2019; Ma et al. 2019). 
Pheromone and pesticide treatment effects on gene expression 
have also been studied in combination with various conditions, 
e.g. with seasonal changes (Jeon et al. 2020), infections from 
Varroa (Navajas et al. 2008; Zhang et al. 2010; Morfin et al. 2019) 
and Nosema (Li et al. 2016; Badaoui et al. 2017; Azzouz-Olden 
et al. 2018). Mechanisms underlying developmental processes 
such as embryogenesis, ageing, and caste determination have 
also been analyzed from an omics perspective (Evans and 
Wheeler 1999; Tsuchimoto et al. 2004; Azevedo et al. 2011; Yin 
et al. 2018; He et al. 2019). Whilst some of the aforementioned 
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experiments have derived transcriptomic data from whole honey 
bees, others have studied tissue-specific differences e.g. analysis 
of differences in alternate splicing patterns between the brain 
and fat body (Wang et al. 2012; Zayed and Robinson 2012; 
Kannan et al. 2019). However, a comprehensive tissue/cell atlas 
of the developing honey bee is still lacking.

Bulk tissue transcriptomics atlases have been used effectively 
to annotate and assign function to poorly annotated genes in 
pig, sheep, mice, humans, and D. melanogaster (Su et al. 2002; 
Chintapalli et al. 2007; Freeman et al. 2012; Clark et al. 2017; 
Leader et al. 2018). scRNA-Seq enables the classification of cell 
subtypes which is challenging with solely a bulk RNA-Seq strategy. 
Single-cell expression atlases have been derived from several tis-
sues for the Tabula Muris which spans 100,000 cells across 20 mouse 
tissues (Tabula Muris Consortium 2018). Other efforts like the Fly 
Cell Atlas have conducted exhaustive scRNA-Seq studies on individ-
ual tissues providing a comprehensive atlas, e.g. for the brain (Davie 
et al. 2018) and midgut (Hung et al. 2020) of D. melanogaster. Studies 
have also tracked the development of various organisms including 
Drosophila (Karaiskos et al. 2017), zebrafish (Raj et al. 2018), cnidar-
ians (Sebé-Pedrós, Saudemont et al. 2018)) and Caenorhabditis elegans 
(Packer et al. 2019). Such studies have demonstrated the sensitivity 
of scRNA-Seq data in tracking cell types, their cell-specific develop-
mental lineages and providing an estimate of how conserved gene 
expression signatures are across species.

The aim of this study was to generate single-cell transcrip-
tomics data for two stages of worker honey bee development. To 
achieve this aim, we have generated scRNA-Seq data from a pre-
pupal stage (day 11) and a pupal stage (day 15). These two stages 
were selected to capture cellular diversity immediately before and 
after the rearrangement of the larval to adult body plan. In holo-
metabolous insects, the larvae and adults have very different 
body plans enabling them to exploit different resources. 
Although the larvae of social insects and solitary bees have subse-
quently evolved to be relatively immobile, this remarkable evolu-
tionary development, facilitating resource partitioning across 
developmental stages, contributed to holometabolous insects 
comprising over half of global eukaryotic diversity (Belles 2017). 
Despite the importance of metamorphosis in the evolutionary 
success of insects, the mechanisms governing it are not complete-
ly understood. In this study, we develop approaches through from 
single-cell isolation to the analysis of the resultant scRNA-Seq 
data using gene coexpression networks (GCN) to demonstrate 
that generating a gene expression atlas of the whole honey bee 
at the level of single cells is possible at prepupal and pupal stages. 
At each developmental stage, we aim to identify several potential 
cell types and their associated gene expression signatures to bet-
ter understand fundamental biology of the honey bee at a cellular 
level during these key stages of development.

Material and methods
Whole A. mellifera pupae cell dissociation and 
sorting
Honey bees are holometabolous and worker prepupae at day 11 
(S1) and pupae at day 15 (S2) were chosen for this study in order 
to capture the key developmental stages between capping of the 
larval cell (day 9) and the emergence of the imago on day 21 
(Oertel 1930 ) (Fig. 1a). To gather samples, a piece of brood comb 
containing appropriately staged pupae was collected from a single 
honey bee colony at the Easter Bush Campus apiary in August 
2018. Pupae were removed from the comb and placed in micro-
centrifuge tubes on ice. Each pupa was placed in 0.5 ml 

HyQTase (GE Healthcare, Chicago, IL, USA), finely chopped with 
small spring scissors for 1 min, and incubated for 5 min at 25°C. 
Samples of each stage were centrifuged at 400 RCF for 5 min at 
4°C. Cell pellets were resuspended in 1 ml WH2 medium by draw-
ing liquid into and out of pipette tip 15 times (Goblirsch et al. 2013). 
Samples (n = 4 per stage) were pooled (total volume 4 ml), and the 
cells passed into a 5 ml tube through a 70 µm strainer cap (Becton, 
Dickinson and Company, Franklin Lakes, NJ, USA) to remove deb-
ris and aggregated cells. Following centrifugation of the filtered 
cells at 400 RCF for 5 min at 4°C, the supernatant was discarded, 
and the cells resuspended in 2 ml WH2 medium. After further 
centrifugation at 400 RCF for 5 min at 4°C, cells were resuspended 
in 1 ml WH2 medium and stained with 1:2,000 Sytox Red (Thermo 
Fisher, Waltham, MA, USA) for downstream cell viability analysis 
during cell sorting. Gating strategies sorted cells on the basis of 
their size (forwards vs side scatter area to exclude debris), single 
cells (forward scatter area vs height to exclude doublet cells), 
and viability using a 633 nm laser and 660/20 band pass emission 
filter on an Aria IIIu FACS (Becton, Dickinson and Company, NJ, 
USA) (Fig. 1b and c). Before sequencing, the cells were counted 
and tested again for viability using a TC20 automated cell counter 
(Bio-Rad, Hercules, CA, USA).

Single-cell RNA-Seq data generation, processing, 
and quality control
Approximately 7,000 cells at each stage were used for cDNA li-
brary preparation using the Chromium platform v2.0 (10X 
Genomics, Pleasanton, CA, USA), as per the manufacturer’s in-
structions. Library quality was confirmed with a LabChip Gx24 
bioanalyzer (PerkinElmer, Waltham, MA, USA). Sequencing 
(75 bp paired-end) was performed using an Illumina NextSeq550 
platform using a Mid Output 150 cycle flow cell (Clinical 
Research Facility, University of Edinburgh).

Binary base call files were preprocessed using the Cell Ranger 
pipeline (10X Genomics 2023). Reads were assigned to sample in-
dex tags to generate FASTQ files. Of the total 180 million reads 
generated, 69 million were mapped to sample indices of prepupa 
(day 11) and 55 million to pupa (day 15). For read alignment, the 
recent A. mellifera reference genome (Amel_HAv3.1) and annota-
tion (GFF file) were downloaded from NCBI. To keep compatibility 
with Cell Ranger, the GFF file was converted to GTF using the 
Cufflinks software suite (Tuxedo) (Trapnell et al. 2012), and only 
protein-coding regions were considered.

The resultant GTF file and reference genome were used to gen-
erate an expression matrix for each sample. Raw expression ma-
trices were quality controlled and analyzed using the Seurat 
package v2 in R, using the default thresholds (Stuart et al. 2019). 
Data from the two developmental stages were merged then cells 
with a low number of UMI reads ≤700 and ≥10% being mitochon-
drial were filtered out. Furthermore, genes expressed in ≤ 3 cells 
were removed (Stuart et al. 2019). The data were log-normalized, 
and genes with the most variable expression across cells were 
identified, i.e. possessing a standard deviation >0.5 and an aver-
age expression between 0.0125 and 3. Effects from technical fac-
tors, including variable library sizes and percent mitochondrial 
UMIs, were regressed out. The scaled variables were reduced to 
a lower feature space using principal component (PC) analysis. 
The most significant PCs (61 in total, P value < 0.05) based on 
JackStraw permutations (Chung and Storey 2015) were considered 
and the resultant cell vs PC matrix was loaded into the network 
analysis tool, Graphia (Freeman et al. 2022). A correlation 
(Pearson similarity coefficient) matrix was then calculated be-
tween cells comparing the PC profile of each cell. Using this cell 
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similarity matrix, a cell-to-cell network was constructed where 
cells (represented by a node) were connected to the 20 most simi-
lar cells by an edge, while only considering similarities beyond a 
Pearson cut-off threshold r ≥ 0.77. This graph was clustered using 
Markov clustering algorithm (Van Dongen 2008) with an inflation 
value of 1.6. Cells were further filtered to remove those with an 
edge degree lower than three. For statistical purposes, small clus-
ters with less than 10 cells were merged into the closest cluster 
with the highest sum of weighted edges.

Gene coexpression network analysis
Gene expression modules associated with biological process and 
cell types were identified using gene coexpression network 
(GCN) analysis. For conventional transcriptomics, data GCNs are 
widely used to capture coexpressed clusters of genes associated 
with a shared biological function (Nirmal et al. 2018; Patir et al. 
2019; Patir et al. 2020). However, due to the inherent variability 
within scRNA-Seq data attributed to the transcriptional hetero-
geneity of cells and the technical effects of dropouts (false zero ex-
pression values) (Hicks et al. 2018), we were unable to capture 
these coexpressing genes as they are poorly correlated. Hence, 
we have averaged expression values across cells within a cluster 
to improve the stability of signals within clusters whilst also 

highlighting intercell type variation rather than the variation 
within a cell type (Satija and Shalek 2014). Such cell-aggregation 
approaches have been widely used to improve the signal-to-noise 
ratio in scRNA-Seq [e.g. (Baran et al. 2019; Persad et al. 2023)].

Through cluster analysis i.e. grouping of similar data, we aimed 
to identify which cells cluster together based on the similarity of 
their gene expression profiles, thus revealing biologically relevant 
groups of cells or “cell clusters” potentially representing cell types 
or cell states. Translating this to genes, we identify those which 
share a similar expression profile or coexpress across cells or in 
this study, aggregates of similar cells. These groups of genes or 
“cluster of genes” potentially represent a particular biological 
function or pathway. Before averaging reads, filters were applied 
to reduce the effects of technical artifacts and low-level signals, 
these are described as follows. First, for a given cluster of genes, 
cells were assigned a zero expression value if: (1) fewer than three 
cells within the cluster expressed that gene, (2) the maximum ex-
pression across cells was < 0.5 logged transcript per million (TPM), 
and (3) < 5% of cells within the clusters expressed that gene. 
Moreover, to avoid the influence of outliers or spikes in expression 
commonly observed in RNA-Seq data, we capped the maximum 
expression of a gene to the 95% percentile from cells of the cluster. 
The gene expression from the resultant filtered data was then 

Fig. 1. Worker honey bee development and FACS. a) Development of honey bee worker from egg to day 15 pupa. Queen bee was trapped on a broodless 
drawn broodframe in a queen excluder cage for 1 day and removed, samples of eggs, larvae, and pupae were taken at 1 day intervals from frame within 
excluder cage after queen removal. L1, 1st larval instar; L5, 5th larval instar; PP1, prepupal phase 1; PP2, prepupal phase 2; PP3, prepupal phase 3; Pw, 
white-eyed pupa; Pp, pink-eyed pupa. S1 and S2 were stages analyzed for single-cell transcriptomics. Representative gating strategy for live single-cell 
sort of stage 1 b) and stage 2 c) bee pupae. The cells gate was defined on size and granularity, and then single cells were defined using forward scatter area 
verses height. Live cells were then sorted by discriminating SytoxRed positive cells.
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averaged across cells for each cluster. Where a cluster consisted 
of cells derived from both developmental stages, they were aver-
aged separately for each stage. In this way, the 63 cell clusters 
identified from the graph analysis of cells, were expanded to 81 
stage differentiated cell clusters. Consequently, an expression 
matrix of genes vs cell clusters was used to generate a GCN within 
Graphia. Only genes with a maximum expression above 0.2 aver-
age logged TPM were considered. The k-nearest neighbor algo-
rithm was applied where each cell was connected to the four 
most similar cells provided this similarity was r ≥ 0.7. 
Subsequently, the graph was clustered using the Louvain cluster 
algorithm (Blondel et al. 2008) applied with a granularity setting 
of 0.65. Differential gene coexpression analysis was performed 
using the default Wilcox test provided in Seurat to gauge the mag-
nitude and specificity of genes towards cell clusters and develop-
mental stages based on their expression profiles.

Functional gene annotation using D. melanogaster 
homologs
Functional annotation of clusters of genes from the GCN analysis was 
provided based on gene ontology (GO) enrichment analysis and litera-
ture mining. We followed a similar procedure to (Sebé-Pedrós, 
Saudemont, et al. 2018 and Sebé-Pedrós, Chomsky, et al. 2018). First, 
each protein of the bee proteome was mapped to the most similar (E 
score < 10−4) protein in D. melanogaster (Release 6 plus ISO1 MT) based 
on their sequence using BLASTp (Altschul et al. 1990). The resultant 
nomenclature in combination with studied honey bee genes was 
used to functionally annotate clusters of genes. Furthermore, the 
Drosophila homologs were also used for GO enrichment analysis, this 
was conducted for each cluster of genes using the clusterProfiler pack-
age in R (Yu et al. 2012) with the genome-wide annotation for 
Drosophila (org.Dm.eg.db) as the reference GO term database 
(Carlson et al. 2016). For literature mining, previous publications 
and resources were used including the Drosophila FlyAtlas2 (Leader 
et al. 2018) and Honey Bee Protein Atlas (Chan et al. 2013).

Results
The expanding cellular diversity of the developing 
pupa
For this study we developed a cell isolation protocol for the pre- 
pupal and pupal stages (S1, prepupa at day 11; S2, pupa at day 
15) (Fig. 1a) of the honey bee, which provided sufficient cell num-
bers and viability for processing through the 10x Chromium plat-
form v2.0. Four prepupae or pupae samples were combined for 
each stage. These cells were then sorted based on their size, 

granularity, and staining to identify viable single cells (Fig. 1b 
and c). Just before library preparation, the cells went through a se-
cond round of counting and viability testing to assure sufficient 
cells were processed for sequencing.

Raw reads from the scRNA-Seq experiment were mapped to the 
NCBI-based A. mellifera (Amel_HAv3.1) genome using the Cell 
Ranger pipeline from 10X Genomics. Sixty-nine million reads 
mapped to samples from the day 11 S1 sample and 55 million 
reads to the day 15 S2 sample. After filtering and removal of out-
lier samples, 9,119 genes for developmental stage S1 and 9,309 
genes for developmental stage S2 were identified (Table 1). In 
comparison, there are 9,944 protein-coding genes in the honey 
bee genome Amel_HAv3.1.

Cells were filtered on their read content, removing cells with a 
low read count (<700 per cell) and those with a high mitochondrial 
gene content (>10%), leaving 2,148 cells from S1 and 2,178 cells 
from S2 (Table 2).

As the two samples were from a single batch, datasets were 
merged and followed the standard scRNA-Seq preprocessing 
steps of normalization and scaling (for mitochondrial content 
and library size). To cluster cells based on their gene expression 
profile, the 1,361 most variable genes were identified and were re-
duced using PC analysis from which the 61 most significant PCs 
were inspected. These PCs were used to calculate Pearson pair-
wise similarity between cells across the merged dataset thereby 
generating a cell-to-cell similarity matrix. The matrix was used 
to construct a cell-to-cell network (Fig. 2) where each node repre-
sented a cell and those having a Pearson correlation coefficient 
greater than r ≥ 0.77 were connected to one another by an edge. 
Furthermore, for each cell, only the 20 nearest neighbors were 
considered and poorly connected cells, i.e. connected to <3 other 
cells, were removed. These steps further helped in removing po-
tential outlier cells that were dissimilar to the majority of cells. 
The final cell-to-cell graph consisted of 4,149 nodes (cells) (2,045 
cells from S1 and 2,104 cells from S2) and 31,000 edges.

The cell-to-cell graph consisted of one large, interconnected 
component and 11 smaller components. Cells from the two stages 
were distributed differently across the network indicative of stage- 
specific cell types with S2 possessing more heterogenous popula-
tions of cell types (Fig. 2a). On studying the distribution of genes 
and reads across cells, cells from S2 showed a significant (1.28 
times, P value < 10−3) increase in the number of genes expressed 
relative to S1. Clustering of the cell network resulted in 72 clusters 
potentially representing distinct cell types of states. To improve 
the statistical power of downstream analyses, smaller cell clusters 
with less than 10 cells were merged with a neighboring cluster to 

Table 1. Number of genes at each step of the analysis for stages 1 and 2 samples.

Analysis = steps | data type (cells/pseudobulk)

1) Raw data | Cells 2) Quality control | Cells 3) Cell clustering & aggregation | Pseudobulk 4) Gene clustering | Pseudobulk

Stage 1 9,477 9,119 9,119 3,994
Stage 2 9,586 9,309 9,309 3,994

Table 2. Number of cells or pseudobulk samples at each step of the analysis for stages 1 and 2 samples.

Analysis = steps | data type (cells/pseudobulk)

(1) Raw data | Cells (2) Quality control | Cells (3) Cell clustering and aggregation | Pseudobulk

Stage 1 2,444 2,148 30
Stage 2 2,365 2,178 51
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which they were highly connected, i.e. had the highest sum total of 

weighted (based on the Pearson correlation) connections resulting 

in 63 cell clusters (Table 3 and Fig. 2b). Interestingly, even though 

the number of cells from both stages was approximately the 

same, 50 clusters comprised of cells from S2, while S1 cells were 

only present in 30 clusters. The exact distribution of stages across 

cell clusters is shown in Supplementary Fig. 1. All together, these 

results were indicative of the expanding cellular diversity in the de-

veloping honey bee pupa.

Clustering of coexpressing genes and their 
functional annotation
A stage-cluster vs gene expression matrix was used to calculate a 
gene-to-gene correlation matrix, from which we constructed a 
GCN. In the network, genes were connected to the four most similar 
genes by an edge provided they were highly correlated r ≥ 0.7. The 
network graph consisted of 3,994 genes which were clustered into 
32 clusters of genes using the Louvain clustering algorithm with a 
granularity of 0.65 (Fig. 3and Supplementary Table 1). The expression 

Fig. 2. Honey bee cell populations as defined by scRNA-Seq analysis. a) Cell-to-cell network generated by comparing the 61 most significant PCs for each 
cell. See insert in a) showing plot of PCA profiles (y axis, each PC signified by color) for all cells (x axis) in the graph. Each of the node represents an 
individual cell and the edges the 10 most significant correlations between them r threshold > 0.77. The graph is composed of 4,149 cells connected by 
31,000 edges. In a), nodes are colored by the pupal stage from which they were derived. Note the clustering of some cells based on stage, suggesting 
stage-specific cell populations. In b), nodes are colored according to their cluster ID, 63 clusters being defined. The clusters disconnected from the central 
network are positioned on the right. Numbers indicate cluster ID.

Table 3. Annotation of the 63 cell clusters represented in fig. 2b.

Tissue/cell type S1 S2 S1 and S2 Number of Unique Cell 
Clusters

Neuron C11, C54 C7, C30, C37 C9, C14, C18, 
C19, C49

10

Sense organ — C29, C53 C27 3
Eye — C17, C26, C44 C33 4
Glia — C61 C16, C35 3
Fat body C1, C3, C4, C10, 

C13, C25
C2 — 7

Hemocyte — — C20, C43 2
Midgut C8 C50 — 2
Malpighian tubule or 

pericardial nephrocyte
— C63 — 1

Muscle — C28 C5, C12, C24, 
C32

5

Cuticle C36, C39, C51 C15, C21, C31, C41, C42, C45, C46, C52, C55, 
C56, C58, C59, C62, C22, C47

C38 19

Unknown C23 C34, C40, C48, C57, C60 C6 7
Total number of cell clusters 63
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profile of each of the 32 clusters of genes is shown in Supplementary 
Fig. 2. Tissues, cell types, and biological processes corresponding to 
the clusters of genes in the GCN were identified from GO enrichment 
(Supplementary Table 1), public resources, and literature mining 
(Supplementary Table 2), the final annotation of which is summar-
ized in Figs. 3 and 4 and Table 4.

The enrichment analysis was performed on each cluster of 
genes based on the D. melanogaster GO reference database. For 
this analysis, honey bee genes based on their corresponding 

proteins were first mapped to the Drosophila melanogaster proteome 
using blastp (Altschul et al. 1997) where the most similar mapping 
was considered for a gene. Twenty-six clusters were found to be en-
riched in various GO terms (adj. P value < 0.05) (Supplementary 
Table 1).

These analyses revealed clusters of genes associated with stage- 
specific differences in expression profiles, as well as tissue/cell- 
specific biology, e.g. neuronal, muscle, cuticle, fat body, alimentary 
canal, and hemolymph:

Fig. 3. Gene correlation network analysis of expression profile of genes across cell clusters. a) GCN composed of 3,994 nodes (genes) connected by 11,400 
edges where r threshold > 0.7. Nodes are colored according to Louvain cluster (granularity 0.65). b) Average expression profile of clusters of genes based on 
each gene’s average expression across a cluster of cells. To the left of the dotted line are cell clusters from the day 11 prepupa and on the right of the line 
are cell clusters from the day 15 pupa. Clusters of cells have been grouped based on similarity.
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Stage-specific clusters
The largest cluster of genes, cluster 1 comprised of 708 genes 
(Fig. 3) with a higher expression in cells from S2 relative to S1. 
GO terms enriched in these genes included those related to devel-
opment, the top three GO terms being “postembryonic animal 
morphogenesis” (adj. P value = 2.29 × 10−13), “instar larval or pupal 
morphogenesis” (adj. P value = 3.35 × 10−13) and “regulation of 
intracellular signal transduction” (adj. P value = 5.39 × 10−13). 
Some of the other clusters of genes that showed stage-associated 
expression were clusters 4, 6, 11, 12, 15, 16, 18, 19, 21, 22, 23, 25, 26, 
29, and 30, in total comprising 1,884 genes.

Neuronal-related cell clusters
Three clusters (2, 3, and 5) contained genes associated with various 
neuronal biology and were highly expressed in 17 cell clusters iden-
tified as being related to neurons and sense organs. All of the cell 
clusters identified as neuronal or sense organ-related expressed 
both synapsin (for some of the related cell stage-cluster groups 
Log2 fold change > 0.26, adj. P value < 1.28 × 10−3) and the nicotinic 
acetylcholine receptor alpha 1 subunit (nAChRa2, Log2 fold change  
> 0.57, adj. P value < 8.9 × 10−4), while those annotated as only 
neuronal expressed the NR1 subunit of the NMDA receptor. 
Some genes were expressed differentially across developmental 
stages, including genes from the family of G protein-coupled recep-
tors that bind octopamine and/or tyramine. Octopamine is widely 
distributed in the nervous system of invertebrates where it acts as 
a neurotransmitter (Verlinden et al. 2010) and is thought to be the 
functional homolog of vertebrate adrenergic transmitters. On 
examining the different classes of these G protein-coupled recep-
tors (Sinakevitch et al. 2017) in invertebrates, OA1 receptor showed 
a high expression in cell clusters 37 and 60 containing S2 cells (Oa1, 
Log2 fold change > 0.25, adj. P value < 2.7 × 10−2), AmTAR1 was 
highly expressed in cell cluster 33 having cells from both pupal 
stages, whilst AmTARII showed a high expression in cell clusters 
9 and 11 from S1.

Glial-related cell clusters
Glial cells have an essential role in the development of neurons 
and are involved in regulation of synaptic plasticity, provide 
trophic support to neurons, and contribute to the blood–brain bar-
rier (Shah et al. 2018). In the honey bee, these cells can be labeled 
using a serum raised against the Drosophila glial transcription fac-
tor repo (Shah et al. 2018), repo was highly expressed (Log2 fold 
change > 1.12, adj. P value < 4.2 × 10−11) in several non-neuronal 

cell clusters (6, 16, 34, 35, 48 and 61) identifying them as potential-
ly representing glia or glial-related cells. Cluster 13 was found to 
be associated with these cell clusters. Further subclassification 
of these cells was revealed through genes linked with astrocytes 
in Drosophila, including Eaat2 and GABA transporters (Gat-a and 
Gat-1b), which were differentially expressed (Log2 fold change 
> 1.7, adj. P value < 2.4 × 10−2 in cell cluster 35 (Freeman 2015).

Sensory organ and compound eye-related cell clusters
A higher average expression of genes from cluster 8 was observed in 
sensory organs relative to neuron-related cell clusters. GO terms en-
riched in genes from this cluster were associated with ciliary biol-
ogy, the most significant terms being “cilium organization” (adj. P 
value = 6.48 × 10−24), “cilium assembly” (adj. P value = 8.53 × 10−24), 
and “plasma membrane bounded cell projection assembly” (adj. P 
value = 4.36 × 10−21). The modified primary cilium is a structure 
common to all peripheral sensory neurons in arthropods with the 
exception of photoreceptors (Keil 2012), suggesting that cell clusters 
27, 29, and 53 were related to sense organs other than the com-
pound eye and ocelli. Four cell clusters (clusters 26, 33, 44, and 49) 
identified as neural were associated with the compound eye. 
Genes from cluster 16 (80 genes) were specifically expressed in these 
eye-related cell clusters with genes associated with this tissue e.g. 
AmPNR-like (LOC413558, Log2 FC > 0.47, adj. P value < 6.5 × 10−4) 
shown by in situ hybridization to be expressed in the develop-
ing eyes of pupae in either the photoreceptor cells or support 
cells (Velarde et al. 2006). LOC408804 (1-phoshatidylinositol 
4,5 bisphosphate phosphodiesterase epsilon-1) was expressed 
(Log2 FC > 3.04, adj. P value < 3.3 × 10−21) in these cell clusters 
and in Drosophila it’s homolog (Plc21c) has a role in pigment 
dispersing factor neurons in the circadian photoresponse 
(Ni et al. 2017). Phosrestin 2 (LOC551043) was specifically ex-
pressed (Log2 FC > 0.27, adj. P value < 9 × 10−3) in cell clusters 
17, 26, and 44, and has been associated with the visual system 
in honey bees where it has a role in circadian rhythms 
(Rodriguez-Zas et al. 2012).

Cuticle-related cell clusters
Gene clusters 4, 9, 11, 22, and 30 included genes expressed in 19 
cell clusters associated with the cuticle. Only four of these cell 
clusters were associated with the S1 prepupal cuticle (cell clusters 
36, 38, 39, and 51). This could indicate that cell populations from 
the S1 stage cuticle are less diverse than those from S2 which 
might consist of heterogenous populations of cells differentiating 

Fig. 4. Final assignment of cell identity. The cell-to-cell network is similar to that from Fig. 3 where each dot represents a cell with similar cells connected 
to one another. However, it is overlayed with broad level annotation (color) for the various cell clusters that have been defined based on GCN analysis, Fly 
Atlas2, Honey Bee Protein Atlas, and literature mining. Clusters where we could not find sufficient supporting evidence are classed as “Unknown” in gray.
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in different regions of the developing honey bee exoskeleton. The 
cuticle-associated clusters of genes included key enzymes in the 
chitin biosynthetic pathway linked to cuticle development and 
the moulting process e.g. LOC412215 (homolog of Drosophila 
gene kkv, a chitin synthase that catalyzes the conversion of 
UDP-N-acetylglucosamine to chitin), LOC552276 (homolog of 
Drosophila gene cda5), a chitin deacetylase that catalyzes the con-
version of chitin to chitosan (a polymer of β-1,4-linked d-glucosa-
mine residues) (Sobala and Adler 2016) and LOC551964 (homolog 
of Drosophila gene mmy, an enzyme required for glycan and chitin 
synthesis) (Araújo et al. 2005). Chitin (the polymer of N-acetyl glu-
cosamine) is a key component of the honey bee inner procuticle, 
which together with the outer epicuticle forms the exoskeleton 
(Locke and Krishnan 1971) and the difference in cuticle structure 
in arthropods is due to the different expression of cuticular pro-
teins (Magkrioti et al. 2004). In addition to chitin, the cuticle con-
sists of various structural proteins some of which were present 
in the cuticle-related clusters of genes including LOC726451 
(homolog of Drosophila gene Cpr57A, Log2 FC > 0.87, adj. P value  
< 4.33 × 10−27) and Apd-3 (Log2 FC > 0.32, adj. P value <2.45 ×  
10−43) (Falcon et al. 2019).

Fat body-related cell clusters
In insects, the fat body, has a similar role to the liver and adipose 
tissue of mammals as it functions as a store for excess nutri-
ents, synthesizes most of the hemolymph proteins, and is re-
sponsible for detoxification processes (Arrese and Soulages 
2010). Various genes associated with the fat body were found 
in cluster 6 (199 genes) which had a high expression in seven 
cell clusters. The majority of these clusters comprised cells 
from the S1 stage (six clusters). The gene ilp-2 (Log2 FC > 0.25, 
adj. P value <1.02 × 10−3) is expressed in both oenocytes and 
trophocytes (cell types found in the fat body) in the adult honey 
bee (Nilsen et al. 2011) and was expressed in all seven fat body- 
related cell clusters. A similar expression profile was observed 
for mmp2 (Log2 FC > 0.55, adj. P value <3.32 × 10−11) which is in-
volved in fat body remodeling during early metamorphosis in 
Drosophila (Bond et al. 2011) and Vitellogenin receptor which 
has been shown to be expressed in the fat body, ovary, and 
head of adult worker bees (Guidugli-Lazzarini et al. 2008).

Hemolymph-related cell clusters
In insects, hemocytes are derived from anterior mesoderm, form 
part of the immune system and comprise lamellocytes, crystal 
cells, plasmatocytes, and granulocytes (Richardson et al 2018). 
Granulocytes are the major phagocytic cells and are likely to 
play a role in clearing cellular debris and apoptotic cells during 
the breakdown of tissues during metamorphosis (Richardson 
et al 2018). Genes within clusters 28 and 32 included known hemo-
cyte markers (hml and lz), and the average expression of these 
genes was higher in cell clusters 20 and 43. Interestingly, genes 
from cluster 28 showed a higher expression in stage 2 hemocytes 
while cluster 32 showed the opposite which a higher expression in 
stage 1 hemocytes. The marker hml (hemolectin/hemocytin) (Log2 

FC > 1.4, adj. P value <7.03 × 10−8) is specifically expressed in he-
mocytes in Drosophila in embryos and larvae, while lz is required 
for the differentiation of crystal cells (Lebestky et al. 2003) and 
the absence of its expression results in the differentiation of a 
plasmatocyte. Whilst both gene were expressed highly in the he-
mocyte cell clusters, lz showed higher levels of expression in cell 
cluster 43 (Log2 FC > 1.05, adj. P value <8.77 × 10−11), suggesting 
that it represented crystal cells.

Muscle-related cell clusters
In Drosophila, somatic muscle, visceral muscle, and cardiac mus-
cle develop from the mesoderm (Gunage et al. 2017). The largest 
somatic muscles in the honey bee are two pairs of indirect flight 
muscles (dorsumventral and anterior–posterior) in the thorax 
that are responsible for moving the wings up and down 
(Snodgrass 1910). Cell clusters 5, 12, 24, 28, and 32 were annotated 
as differentiating muscle cells based on expression of twist 
(Gunage et al. 2017), mef2 (Crittenden et al. 2018), nautilus 
(Abmayr and Keller 1998), TpnT (Domingo et al. 1998), TpNI 
(Herranz et al. 2005), TpnCIIb (Herranz et al. 2005), myosin heavy 
chain (LOC409843), and myosin light chain (LOC409881) 
(11390828). The gene nautilus (Log2 FC > 0.25, adj. P value <  
3.40 × 10−3) may have an equivalent function to the vertebrate 
myogenic regulatory factors (myoD and Myf5) that act as master 
control genes in mesoderm to initiate the first steps of somatic 
muscle development (Abmayr and Keller 1998; Zammit 2017). 
Expression of nautilus specifically in cell clusters 12, 24, and 32 in-
dicated that these cell clusters comprised of cells differentiating 
into somatic muscle. Expression of twist (Log2 FC > 0.78, adj. P va-
lue < 1.39 × 10−3) in Drosophila is required earlier in development in 
mesoderm definition for specification of all muscle types, twist 
was expressed specifically in cell clusters 5, 12, 24, 28, and 32, 
and was also expressed in cell cluster 60 (unknown identity). 
Cell clusters 5, 12, 24, 28, and 32 were also associated with differ-
entiating muscle cells based on GO analysis of gene cluster 14 
whose gene showed high expression in these cells relative to other 
cell clusters. The top GO terms for the gene cluster 14 included 
“striated muscle cell differentiation” (adj. P value = 2.02 × 10−20), 
“muscle structure development” (adj. P value = 4.12 × 10−20), and 
“muscle cell differentiation” (adj. P value = 8.61 × 10−20).

Alimentary canal
The tissue comprises four major compartments, the foregut, mid-
gut, malpighian tubules, and hind gut (Snodgrass 1910). Genes 
from cluster 12 were highly expressed in cell clusters 8 and 50, 
with higher levels in stage 2. The associated gene cluster included 
alpha-glucosidase I and II shown to be expressed in honey bee 
ventriculus (Kubota et al. 2004), as well as organic anion trans-
porting polypeptide genes Oatp33Ea (Log2 FC > 0.71, adj. P value  
< 6.33 × 10−48) and Oatp58Dc both of which are specific to the 
Drosophila midgut of larva and adult based on the FlyAtlas 2 tissue 
RNA-Seq database (Leader et al. 2018). Cell cluster 63 had a high 
expression of genes from cluster 18 thought to be related to mal-
pighian tubules or pericardial nephrocytes, including Cubilin (Log2 

FC > 2.99, adj. P value < 1.67 × 10−141) and Amnionless which in 
Drosophila mediate protein reabsorption in both malpighian tu-
bules and pericardial nephrocytes (Zhang et al. 2013).

Differential gene coexpression cluster analysis 
across developmental stages
In addition to GCN analysis, differential gene expression analysis 
was performed using the default Wilcox test provided in Seurat to 
gauge the magnitude and specificity of genes towards cell clusters 
based on their expression (Supplementary Table 3 and 
Supplementary Fig. 3). This coexpression analysis identified sev-
eral gene clusters which had stage-specific expression profiles in-
cluding 1, 4, 6, 11, 12, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, and 30, 
which were associated with neurons, the fat body, malphigian tu-
bules, the midgut, and cuticle (Table 4). More specifically, 5 out of 
9 clusters related to neurons (C9, C14, C18, C19, and C49) were 
found at both stages. Two clusters associated with hemocytes 

8 | A. Patir et al.

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad178#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad178#supplementary-data


(C20 and C43) were also found at both stages that might be asso-
ciated with phagocytic cells involved in ingesting cell debris dur-
ing metamorphosis. Sixteen clusters related to cuticle were 
identified in pupa at day 15 (C15, C21, C22 C31, C38, C41, C42, 
C45, C46, C47, C52, C55, C56, C58, C59, and C62) compared to 
four clusters at prepupa at day 11 (C36, C38, C39, and C51), this 
probably reflects the relative simplicity of the prepupal cuticle 
in contrast to the different types of cuticle required in the adult in-
sect with it’s differences in thickness, architecture, flexibility, and 
incorporation of sensory receptors. Six cell clusters were found in 
prepupa at day 11 (C1, C3, C4, C10, C13, and C25) in comparison to 
a single cluster (C2) in pupa at day15; this may reflect increased 
storage of nutrients in the larva or differences in synthesis of 
hemolymph proteins or detoxification.

Discussion
Two strategies have previously been adopted by other researchers 
studying development using scRNA-Seq. The first involves 
scRNA-Seq of whole organisms and the second of focusing on individ-
ual tissues. Here, we adopt the former approach which has proven 
useful in the exploration of cell types of model organisms of a similar 
scale and biological complexity, such as Cnidaria (Sebé-Pedrós, 
Saudemont, et al. 2018), C. elegans (Packer et al. 2019), and zebrafish 
(Farnsworth et al. 2020), where the cell diversity is largely unknown. 
In this study, we constructed a single-cell atlas spanning two develop-
mental stages of the worker honey bee (prepupa at day 11 and pupa at 
day 15). The cell types and gene expression signatures we have de-
tected reflect the major tissue rearrangements that occur during 
metamorphosis. Honey bees are holometabolous and much of the 
knowledge for pupal development in holometabolous insects is based 
on the model organism D. melanogaster (Thompson 2021). During 
metamorphosis, tissues can degenerate if they are not present in 
the adult (e.g. head gland), be remodeled without complete cell re-
placement (e.g. fat body) or generate a new adult structure (e.g. an-
tenna, eyes, legs, and wings develop from undifferentiated cells in 
imaginal discs) (Tettamanti and Casartelli 2019). Apart from the ner-
vous system and the malpighian tubules, the cells that form most tis-
sues of the larva are not used for the corresponding tissues of the adult 
and the imaginal organs of the adult develop from the imaginal discs. 
By choosing to analyze whole pupal stages with scRNA-Seq, we have 
facilitated the detection of gene expression profiles from the break-
down of larval tissues and the formation of adult tissues.

The cell-to-cell network grouped cells into 63 clusters across 
which cells from the two stages were differently distributed. 
Hence, clustering of cells revealed stage-specific cell types/sub-
types i.e. certain cell types were entirely represented by cells 
from a single stage while other clusters comprised cells from 
both stages. The majority of cell clusters were entirely comprised 
of cells from S2, furthermore these cells had a greater number of 
genes expressed relative to cells from S1. These results suggest an 
expanding heterogeneity for the types of cells and genes, which 
define them and reflect the fact that most of the organs of the 
adult honey bee are present at S2 whilst at S1, a lower number 
of larval tissues are about to be degenerated, remodeled, or re-
placed. To study the genes that were associated with the cell clus-
ters, we developed a novel approach to improve the biological 
signal representing intercell cluster variation. Briefly, this was 
done by averaging the reads across cells from the same cluster 
and applying filters on the expression values to address certain 
technical artifacts within the data including spikes in expression 
and the variation of lowly expressed genes. The approach enabled 
the construction of a GCN from scRNA-Seq data, which captures 
intercell type variation while minimizing intracell type and tech-
nical variations. The GCN comprised 32 clusters of coexpressing 
genes that were associated with a wide range of biology as deter-
mined using a combination of GO enrichment and literature min-
ing to identify cell types and tissue-specific biology. Cell types and 
tissues identified were related to the brain, sensory organs, cu-
ticle, muscle, fat body, blood, and alimentary canal. Gene coex-
pression signatures were identified that were not only unique to 
cell clusters but also those that were shared across clusters e.g. 
developmental stage and lineage-specific signatures. Some cell 
clusters would have proved impossible to identify based on using 
literature for Apis only due to the limitations of the available re-
sources as such it was necessary to compare to Drosophila where 
most organs are evolutionary conserved and where a database 
for GO terms are present.

Table 4. Identity, gene coexpression cluster ID, stage of 
expression, and gene count for the 32 clusters shown in fig. 3.

Gene 
Coexpression 
Cluster ID

Identity Stage of 
Expression and 

Cell Cluster

Gene 
Count

1 Gene with higher 
expression in S2 
cells

S1 and S2 708

2 Neuron S1 and S2 541
3 Neuron S1 and S2 359
4 Cuticle Majority S2 315
5 Neuron S1 and S2 252
6 Fat body Majority S1 199
7 Ribosomal proteins S1 and S2 145
8 Sensory organs S1 and S2 136
9 Cuticle S1 and S2 136
10 Cell cycle S1 and S2 125
11 Cuticle S2 114
12 Midgut S2—cell cluster 

50
95

13 Glia S1 and S2 94
14 Muscle S1 and S2 88
15 Unknown S1 81
16 Compound eye S1 and S2 80
17 Unknown S2—Cell cluster 

57
76

18 Malpighian tubule 
or pericardial 
nephrocyte

S2—Cell cluster 
63

60

19 Neurons and 
sensory organs, 
eye

S2 54

20 Sensory organs S1 and S2 53
21 Unknown S2—cell cluster 

47
37

22 Cuticle S2 32
23 Higher expression 

in non-neural 
tissues at S2

S1 and S2 31

24 Proteosome S1 and S2 29
25 Unknown S1—cell cluster 

23 
S2—cell 
cluster 40

27

26 Cuticle S2—cell clusters 
41 and 42

26

27 Sensory organs S1 and S2 25
28 Hemocyte S1 and S2 25
29 Unknown S2—cell cluster 

60
17

30 Unknown S2—cell cluster 
22

12

31 Electron transport 
chain

S1 and S2 11

32 Hemocyte S1 and S2 11
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For this study, we developed a protocol that can be used to prepare 
single cells of honey bee worker pupae for scRNA-Seq. It was neces-
sary to develop a new method because protocols used by previous 
studies were not successful in producing viable cells from honey 
bee pupae in our hands. For example, Davie et al. (2018) and Hung 
et al. (2020) used Dulbecco’s phosphate-buffered saline for their 
single-cell suspensions while we found that using WH2 medium 
(Goblirsch et al. 2013), a medium for primary culture of honey bee 
cells, resulted in isolation of a viable single-cell population. It is likely 
that this method could be used to generate viable single cells from a 
variety of larvae e.g. Dipterans and other Hymenopterans and for 
other pupae that are not encased in a hard cocoon. The method 
will not be suitable for insects with a fully formed chitin exoskeleton 
e.g. adult honey bees and the use might be further limited by the suit-
ability of WH2 medium for the cells of larvae and pupae of other spe-
cies. In addition, many honey bee tissues were either not detected or 
not identified in our analysis e.g. endocrine system, salivary glands, 
hypopharyngeal glands, esophagus, honey sac, small intestine, 
heart, rectum, sting, and ovary. This might be because there is insuf-
ficient scientific literature relevant to these pupal stages for identifi-
cation (7 of the 63 clusters remain unidentified) or it might be that the 
protocol was not successful in obtaining particular cell types. It is 
surprising that there are noticeably few cells from the ventriculus 
(midgut) despite the relatively large size of this organ in the adult 
bee, and it therefore seems likely that a more vigorous homogeniza-
tion or longer digestion might yield more cells from the midgut. 
Unfortunately, there are currently no comparable protocols and da-
tasets for the honey bee with which to compare our results. As such, 
we can only judge the success of the protocol based on our own ob-
servations and analysis of the data. Further research could address a 
wider developmental series and ascertain the efficacy of the protocol 
as the cuticle toughens in the later pupal stages.

With the lack of a gene expression atlas for the honey bee, this study 
provides an initial step in determining the cellular heterogeneity, 
which can only be improved upon by sequencing more samples/cells, 
cross-species comparisons and analysis of gene expression experi-
ments. This study will be of benefit to the construction of more com-
prehensive gene expression atlases by demonstrating that pupae 
can be analyzed at the single-cell level, which can be potentially ex-
tended to larvae and dissected adult organs e.g. brain. Furthermore, 
the dataset could be used in conducting cross-species comparisons 
for development, as has been done for Cnidaria (Sebé-Pedrós, 
Saudemont, et al. 2018), to study the evolution of certain cell types.

Conclusions
In summary, we have demonstrated that a gene expression atlas 
of the whole honey bee at the level of single cells is possible at pre-
pupal and pupal stages. We have developed approaches from 
single-cell isolation to the analysis of the resultant scRNA-Seq 
data using GCN. Through this process, we have identified several 
potential cell types and their associated gene signatures which are 
supported by enrichment analysis, and previous experimental 
evidence from the literature or databases. The gene lists asso-
ciated with the cell clusters will be of benefit to future analyses, 
particularly for transcriptomic studies in whole pupae and for 
functional annotation of the honey bee genome.
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