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Myelination and excitation-inhibition
balance synergistically shape structure-
function coupling across the human cortex

Panagiotis Fotiadis 1,2 , Matthew Cieslak 3, Xiaosong He 4,
Lorenzo Caciagli2, Mathieu Ouellet 2, Theodore D. Satterthwaite 3,
Russell T. Shinohara5,6 & Dani S. Bassett 2,3,7,8,9,10

Recent work has demonstrated that the relationship between structural and
functional connectivity varies regionally across the human brain, with reduced
coupling emerging along the sensory-association cortical hierarchy. The bio-
logical underpinnings driving this expression, however, remain largely
unknown. Here, we postulate that intracortical myelination and excitation-
inhibition (EI) balance mediate the heterogeneous expression of structure-
function coupling (SFC) and its temporal variance across the cortical hier-
archy. We employ atlas- and voxel-based connectivity approaches to analyze
neuroimaging data acquired from two groups of healthy participants. Our
findings are consistent across six complementary processing pipelines: 1) SFC
and its temporal variance respectively decrease and increase across the
unimodal-transmodal and granular-agranular gradients; 2) increased myeli-
nation and lower EI-ratio are associated with more rigid SFC and restricted
moment-to-moment SFC fluctuations; 3) a gradual shift from EI-ratio to mye-
lination as the principal predictor of SFC occurswhen traversing fromgranular
to agranular cortical regions. Collectively, our work delivers a framework to
conceptualize structure-function relationships in the human brain, paving the
way for an improved understanding of how demyelination and/or EI-
imbalances induce reorganization in brain disorders.

The structural and functional connectivity patterns of the humanbrain
have been extensively mapped using macroscale neuroimaging. To
elucidate how the anatomical wiring of the brain sculpts its functional
connectivity in support of flexible cognition, recent studies have
increasingly focused on the extent to which structure and function are

coupled across brain regions1–3. A brain region’s ‘structure-function
coupling’ (SFC) refers to the manner in which its functional and
structural connectivity statistically depend upon one another. Here, a
structural connection is the whitematter projections linking two brain
regions, as measured by diffusion magnetic resonance imaging (MRI),
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whereas a functional connection is the statistical similarity between
hemodynamic responses arising from two brain regions, as measured
by functionalMRI (fMRI). Intuitively, a brain regionwith high SFC has a
stronger statistical correlation between its structural and functional
connectivity to other regions in the brain.

Regional variations in SFC among individuals track differences in
cognitive performance. For example, enhanced working memory
performance is correlated with weaker SFC in the unimodal somato-
sensory cortex and with stronger coupling in transmodal regions
within the fronto-parietal and default mode networks4. Further, indi-
vidual differences in SFC predict cognitive flexibility in a perceptual
switching task5, as well as composite cognition scores encompassing
multiple cognitive domains6. Beyond tracking individual differences in
cognition, SFC is altered in a range of neurological and psychiatric
disorders, including mild cognitive impairment and Alzheimer’s
disease7–9, stroke10,11, Parkinson’s disease12,13, multiple sclerosis14,15,
epilepsy16,17, bipolar disorder18,19, and schizophrenia20.

In parallel, multiple lines of evidence from studies in healthy
individuals have consistently demonstrated that the macroscale cou-
pling of structure and function varies spatially, with a gradual reduc-
tion in coupling emerging along a cognitive representational
hierarchy1,4,21–23. Specifically, evolutionarily conserved primary sensory
(unimodal) regions such as visual and somatomotor cortices display
relatively strong SFC, whereas evolutionarily rapidly-expanded trans-
modal association regions such as limbic and default mode areas dis-
play weaker SFC6,21–23. The presence of a dynamic SFC landscape along
the sensory-association hierarchy is thought to foster the emergence
of a wide range of functional responses untethered from the under-
lying anatomical backbone, in turn supportingflexible cognition4,5,24–26.

Understanding preciselywhy the coupling between structure and
function varies across different brain regions is a key challenge in the
field4,21,22. Insight could be gained by examining how SFC varies across
different—yet complementary—types of cortical hierarchies defined by
cyto-architectonic and functional properties, as such an examination
could clarify to what extent SFC captures the brain’s microscale cyto-
architectonic and macroscale functional principles. Complementary
insights could also be gained by pinpointing specific biological sub-
strates that statistically track (and conceptually explain) regional var-
iation in SFC.

Recent evidence suggests that the differential expression of
neuronal circuit properties—including intracortical myelination and
synaptic excitation or inhibition—could serve as such biological sub-
strates. Histological and neuroimaging studies show that high-SFC
areas in the primary sensory andmotor cortex are heavily myelinated,
whereas lower-SFC areas in the association cortex are less
myelinated6,25,27–31. Moreover, regional heterogeneities in intracortical
myelination have been linked to differences in functional connectivity
patterns across the cortical mantle; brain regions with similar intra-
cortical myelin profiles typically display stronger functional con-
nectivity to each other29,32. This correspondence is particularly high
within unimodal brain regions; transmodal regions such as the pos-
teromedial cortex, the anterior insular cortex, and the superior por-
tions of the inferior parietal lobule, instead, display a lower
correspondence between intracortical myelination and functional
connectivity, even after correcting for inter-regional proximity29.
Lastly, the relationship between structural and functional connectivity
drastically changes throughout normative development—a critical
period of enhanced neuroplasticity and myelination—which could
point towards intracortical myelination’s potential involvement as one
of its mediators4,33.

Besides intracorticalmyelination, neuromodulation has also been
implicated as a potential driving factor determining to what extent the
brain’s functional expression is tethered to the underlying anatomical
connectivity. Following a similar spatial pattern as intracortical mye-
lination, synaptic excitation increases from unimodal sensory to

transmodal association cortex, tracking a concomitant increase in
dendritic complexity and spine count34. Further, immunostaining
investigations tracking the differential expression of inhibitory neuron
subtypes, evince a unimodal-transmodal gradient of dynamic inhibi-
tory control34,35. Put together, the ratio between excitatory and inhi-
bitory receptor densities (EI-ratio) appears to increase along the
sensory-association hierarchy36. What is more, recent work looking
into the differences in SFC between patients with Parkinson’s disease
and healthy controls identified an increased association between the
expression of various neurotransmitter receptor genes and disease-
related structure-function decoupling12. Thus, given that such neuro-
modulatory systems typically alter the balance between the excitation
and inhibitionof their targetedneuronal circuits, wepostulated that EI-
ratio would also play an important role in shaping the healthy human
brain’s SFC.

The aforementioned observations collectively motivated our
hypothesis that the differential expression of intracorticalmyelination
and EI-ratio formally mediate the heterogeneous expression of SFC
across the cortex. Here, we use neuroimaging data acquired from two
groups of healthy participants and analyzed using six image proces-
sing pipelines, to address three complementary aims (Fig. 1). First, to
determine whether SFC captures macroscale functional and micro-
scale cyto-architectonic principles,we assess the spatial distribution of
SFC along four cortical gradients spanning the unimodal (sensory)-
transmodal (association) hierarchy: two functional gradients and two
cyto-architectonic gradients. Second, to determine why SFC varies
across the brain, we examine the relationship between SFC and two
biological substrates of interest—intracorticalmyelination and EI-ratio.
Third and finally, by combining elements from the two previous aims,
we investigate how SFC is dynamically shaped by these biological
substrates across different cyto-architectonic systems of varying
laminar differentiation. Collectively, this work aims to elucidate the
biological factors that explain the heterogeneous coupling between
structural and functional connectivity across the human cortex.

Results
Structure-function coupling variations along the cortical
hierarchy
We first examined the heterogeneous expression of SFC and its tem-
poral variance (Methods: Structure-Function Coupling) across the
unimodal (sensory)-transmodal (association) hierarchy in 100 unre-
lated subjects drawn from the Human Connectome Project (HCP)
(Methods: Datasets). For this purpose, the unimodal-transmodal hier-
archy was characterized using four complementary cortical annota-
tions (Methods: Cortical Hierarchies): two derived fromannotating the
cortex according to macroscale functional connectivity profiles (the
coarse 7 resting-state systems37 and the continuous principal func-
tional gradient38), and two derived from annotating the cortex
according to microscale cyto-architectonic profile similarities (the
coarse 5 von Economo/Koskinas-inspired cyto-architectonic classes39

and the continuous “BigBrain” gradient40,41). These four annotations
were chosen to broadly canvas the space of sensory-association hier-
archy from the lenses of both macroscale functional and microscale
cyto-architectonic organization.

After parcellating each HCP subject’s cortex into spatially con-
tiguous regions (Schaefer parcellation42; 400 brain regions), we com-
puted each brain region’s average SFC across subjects and designated
its regionalmembership into each of the four aforementioned cortical
annotations. In the 7 resting-state systems, SFC was highest in the
primary visual and somatomotor cortices, intermediate in the default
mode, dorsal attention, fronto-parietal, and ventral attention associa-
tion systems, and lowest in the limbic system (Fig. 2A; Supplemental
Table 1). A decrease in SFC along the unimodal-transmodal hierarchy
was also evident along the principal functional gradient, in the formof
a significant negative correlation between a brain region’s SFC and its
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assigned principal gradient scalar (Fig. 2C; r = −0.35; pspin =0.010);
lower assignments within this gradient capture primary sensory and
motor regions, whereas higher assignments capture regions within the
default mode network. Across the 5 cyto-architectonic classes, SFC
gradually decreased from granular (typically capturing sensory
regions)30,43,44 to agranular (typically capturing motor and association
regions)30,43,44 types and displayed its lowest value in the polar cortical
type (Fig. 2B; Supplemental Table 2). Similarly, we observed a sig-
nificant negative correlation between a brain region’s SFC and its
assigned location along theBigBrain gradient ofmicrostructureprofile
covariance (Fig. 2D; r = −0.42; pspin =0.020); primary sensory regions
occupy the lower end of this gradient while limbic regions represent
its apex.

Next, in order to examine how much SFC deviated from its mean
value over time, we assessed its moment-to-moment variance
throughout the duration of the resting-state fMRI scan. Specifically, we
computed each brain region’s average temporal SFC variance across
subjects (Methods: Processing Pipelines: Functional Connectivity;
Supplemental Material: Eq. 1) and examined its heterogeneous
expression along the unimodal (sensory)-transmodal (association)
hierarchy. In contrast to SFC, temporal SFC variancewas highest in the
limbic system, intermediate in the default mode, fronto-parietal, dor-
sal attention, and ventral attention systems, and lowest in the primary
visual and somatomotor cortices (Fig. 3A; Supplemental Table 3); a
significant increase in temporal SFC variance was observed along the
unimodal-transmodal hierarchy, as captured by the principal gradient
(Fig. 3C; r = 0.43; pspin = 3.5 × 10−4). Using cyto-architectonic annota-
tions, temporal SFC variance (unlike SFC itself) was highest in the polar
cortical type; the remaining 4 cortical types displayed—for the most
part—similar degrees of temporal SFC variance (Fig. 3B; Supplemental
Table 4). Under themore continuous BigBrain gradient, we observed a
significant positive correlation between a brain region’s temporal SFC
variance and its assigned location along the gradient (Fig. 3D; r =0.43;
pspin =0.003). To ensure that the correlations observed between a
brain region’s temporal SFC variance and its location in the sensory-
association hierarchy (as shown in Fig. 3C and 3D) were not con-
founded by the presence of any outlier regions, we repeated the
aforementioned analyses after excluding the outlier brain regions. An

outlier brain region was defined as one that exhibited a temporal SFC
variance at least three standard deviations away from themean (n = 7).
Consistent with our results when the outliers were included, temporal
SFC variance was significantly correlated with both the principal
functional gradient (r =0.42; pspin = 4 × 10−4) and the BigBrain gradient
(r =0.40; pspin =0.005).

To evaluate the reproducibility of our findings, we repeated the
above analyses (i) using a different widely-used cortical parcellation
(HCP multi-modal parcellation45; Supplemental Material: Supplemental
Analysis 1), (ii) using a complementary definition of functional signal
time series (seeMethods: ProcessingPipelines: FunctionalConnectivity;
Supplemental Material: Supplemental Analysis 2), and (iii) on the com-
plementary Penn sample to establish generalizability across different
subject samples (Supplemental Material: Supplemental Analysis 3). We
observed consistent results across all supplemental analyses.

In order to further investigate whether our findings were influ-
enced by the spatial scale of the cortical parcels used (400 and 360
brain regions, respectively), we repeated the above analyses using an
independent sample of healthy adults scanned at the University of
Pennsylvania (n = 14) with particularly high-resolution diffusion spec-
trum imaging (DSI). Capitalizing on this sample’s higher-resolution
diffusion scans than the HCP sample’s, the data were processed at the
voxel level such that each subject’s cortical voxel was designated as a
separate region (number of regions ranged between 60,744 and
83,680, depending on the subject; Methods: Voxel-based approach).

As above, for each subject we computed each cortical voxel’s SFC
and determined its membership into the four cortical annotations.
Similar to the atlas-based results, we observed a decrease in SFC along
the unimodal (sensory)-transmodal (association) hierarchy. The pri-
mary somatomotor and limbic cortices displayed the highest and
lowest SFC, respectively, within the 7 resting-state systems (Supple-
mental Fig. 13A; Supplemental Table 25). Further, we observed a sig-
nificant negative association between SFC and the assigned principal
functional gradient scalar across subjects (Supplemental Fig. 13C;
mean r = −0.16; range: [−0.24, −0.05]; pfisher < 10−4). Within the 5 cyto-
architectonic types, SFC gradually decreased from granular to agra-
nular types and displayed its lowest value in the polar type (Supple-
mental Fig. 13B; Supplemental Table 26).

Datasets: Processing Pipelines: Results:

Human Connectome Project
(HCP) Dataset

(N = 100 individuals)

Penn
Dataset

(N = 14 individuals)

Atlas-based analysis
(Schaefer parcellation: 400 brain regions;

fMRI runs averaged)

Atlas-based analysis
(Schaefer parcellation: 400 brain regions)

Voxel-based analysis
(60,744 – 83,680 brain regions, 

depending on the individual)

Main Manuscript

Supplemental Analysis 1

Supplemental Analysis 2A

Supplemental Analysis 2B

Supplemental Analysis 3

Main Manuscript

Atlas-based analysis
(HCP multi-modal parcellation: 360 brain regions;

fMRI runs averaged)

Atlas-based analysis
(Schaefer parcellation: 400 brain regions;

fMRI runs concatenated)

Atlas-based analysis
(HCP multi-modal parcellation: 360 brain regions;

fMRI runs concatenated)

Fig. 1 | Methodological pipeline. Schematic illustration of the processing pipelines used to analyze our datasets. The first column corresponds to the datasets used in this
study, the second column to the processing pipelines used to analyze each dataset, and the third column to the location of the results of each analysis.
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Fig. 2 | Regional variations in structure-functioncoupling: atlas-basedanalysis.
A Mean differences in structure-function coupling across the 7 resting-state func-
tional systems (generated using the 100 unrelated HCP subjects and Schaefer 400
atlas; n = 400 brain regions/datapoints). Data are presented as boxplots (median
value at center line, lower quartile at left bound, upper quartile at right bound) with
whiskers extending towards the minimum and maximum non-outlier values of the
data; single datapoints denote outliers. The brain regions in each functional system
are overlayed on the standardized fsaverage brain’s surface and illustrated on the
left side. LIM Limbic, VEN Ventral Attention, FP Fronto-Parietal, DMNDefaultMode
Network,DORDorsal Attention,MOTSomatomotor, VIS Visual.BMeandifferences
in structure-function coupling across the 5 cyto-architectonic classes (generated
using the 100 unrelated HCP subjects and Schaefer 400 atlas; n = 400 brain
regions/datapoints). Data are presented as boxplots (median value at center line,
lower quartile at left bound, upper quartile at right bound)withwhiskers extending
towards the minimum and maximum non-outlier values of the data; single

datapoints denote outliers. The brain regions involved within each class are over-
layed on the standardized fsaverage brain’s surface and illustrated on the left side.
POL Polar, AGR Agranular, FRO Frontal, PAR Parietal, GRA Granular. C Scatterplot
between the principal functional gradient scalar of each brain region and its cor-
responding structure-function coupling (n = 400 brain regions/datapoints). A lin-
ear regression was fit along with a 95% confidence interval (shown in red); the
correlation coefficient (two-tailed Spearman’s ρ: r), p-value corresponding to the
spatial permutation test (pspin), and histograms corresponding to each variable are
reported.D Scatterplot between the “BigBrain” gradient scalar of each brain region
and its corresponding structure-function coupling (n = 400 brain regions/data-
points). A linear regression was fit along with a 95% confidence interval (shown in
red); the correlation coefficient (two-tailed Spearman’s ρ: r),p-value corresponding
to the spatial permutation test (pspin), and histograms corresponding to each
variable are reported. Source data are provided as a Source Data file.
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Fig. 3 | Regional variations in temporal structure-function coupling variance:
atlas-based analysis. AMean differences in temporal structure-function coupling
variance across the 7 resting-state functional systems (generated using the 100
unrelated HCP subjects and Schaefer 400 atlas; n = 400 brain regions/datapoints).
Data are presented as boxplots (median value at center line, lower quartile at left
bound, upper quartile at right bound) with whiskers extending towards the mini-
mum and maximum non-outlier values of the data; single datapoints denote out-
liers. The brain regions involvedwithin each functional system are overlayed on the
standardized fsaverage brain’s surface and illustrated on the left side. DOR Dorsal
Attention, VIS Visual, MOT Somatomotor, VEN Ventral Attention, FP Fronto-Par-
ietal, DMN Default Mode Network, LIM Limbic. B Mean differences in temporal
structure-function coupling variance across the 5 cyto-architectonic classes (gen-
erated using the 100 unrelated HCP subjects and Schaefer 400 atlas; n = 400 brain
regions/datapoints). Data are presented as boxplots (median value at center line,
lower quartile at left bound, upper quartile at right bound)withwhiskers extending
towards the minimum and maximum non-outlier values of the data; single

datapoints denote outliers. The brain regions involved within each class are over-
layed on the standardized fsaverage brain’s surface and illustrated on the left side.
PAR Parietal, AGR Agranular, FRO Frontal, GRA Granular, POL Polar. C Scatterplot
between the principal functional gradient scalar of each brain region and its cor-
responding temporal structure-function coupling variance (n = 400 brain regions/
datapoints). A linear regression was fit along with a 95% confidence interval (shown
in red); the correlation coefficient (two-tailed Spearman’s ρ: r), p-value corre-
sponding to the spatial permutation test (pspin), and histograms corresponding to
each variable are reported.D Scatterplot between the “BigBrain” gradient scalar of
each brain region and its corresponding temporal structure-function coupling
variance (n = 400 brain regions/datapoints). A linear regression was fit along with a
95% confidence interval (shown in red); the correlation coefficient (two-tailed
Spearman’s ρ: r), p-value corresponding to the spatial permutation test (pspin), and
histograms corresponding to each variable are reported. Source data are provided
as a Source Data file.
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We next computed each cortical voxel’s temporal SFC variance
across subjects. In general agreement with the atlas-based results, the
transmodal default mode and limbic systems displayed the highest
temporal SFC variance. The dorsal and ventral attention systems dis-
played the lowest temporal SFC variance (Supplemental Fig. 14A;
Supplemental Table 27). Along the principal functional gradient, there
was a prominent increase in temporal SFC variance as one traversed
from lower to higher assigned gradient scalars (Supplemental Fig-
ure 14C; mean r = 0.16; range: [0.01, 0.35]; pfisher < 10−4). As for the 5
cyto-architectonic classes, temporal SFC variance was highest in the
frontal type and lowest in the agranular type (Supplemental Fig. 14B;
Supplemental Table 28).

Biological correlates of structure-function coupling: whole-
brain perspective
To better understand why SFC and temporal SFC variance vary across
the unimodal (sensory)-transmodal (association) hierarchy, we next
examined their relation to two microstructural markers: intracortical
myelination and EI-ratio (Fig. 4). Both markers were assessed by non-
invasive neuroimaging using previously established approaches.
Intracortical myelination was estimated using the subjects’ T1-weigh-
ted/T2-weighted ratio signal intensity, whereby a greater intensity
reflects greater intracortical myelination (Methods: Intracortical
Myelination)28. The EI-ratio was quantified using the functional signal
time series’ Hurst exponent, whereby a smaller exponent reflects a
heightened EI-ratio (Methods: Excitation-Inhibition Balance)46.

Across the 400brain regions definedby the Schaefer parcellation,
we observed a significant positive correlation between SFC and intra-
cortical myelin content (Fig. 5A; r =0.49; pspin = 1.5 × 10−4), and a

negative correlation between temporal SFC variance and intracortical
myelin content (Fig. 5B; r = −0.29; pspin =0.015). Higher SFC values
corresponded to larger Hurst exponents and thus a decreased EI-ratio
(Fig. 5C; r =0.46; pspin < 10−4), whereas higher temporal variance in SFC
corresponded to lowerHurst exponents and thus a heightened EI-ratio
(Fig. 5D; r = −0.38; pspin= 0.004). Notably, there was no significant
association between SFC and the Hurst exponent across the different
temporal windows (average Spearman’s ρ across brain regions: 0.04;
pfisher (FDR-corrected) = 1), indicating that SFC and EI-ratio do not co-
fluctuate over short periods of time (i.e., the duration of the fMRI scan)
when examined on the macroscale level.

To ensure that the association between a region’s SFC and either
biological marker was independent of the other marker and also
independent from that region’s position along the cortical hierarchy,
we re-examined the above relationships using multiple linear regres-
sion models. We found that SFC (dependent variable) was indepen-
dently and positively correlated with intracortical myelin content
(βstand = 0.359; 95% non-parametric bootstrap confidence interval
[BCI] = [0.357, 0.360];p < 10−4; variance inflation factor [VIF] = 1.84) and
with the Hurst exponent (βstand =0.420; 95% BCI = [0.421, 0.423];
p < 10−4; VIF = 1.25), after adjusting for the other biological marker, the
interaction effect between intracortical myelination and the Hurst
exponent, as well as the principal gradient and BigBrain scalar
assignments. Further, the correspondence between temporal SFC
variance (dependent variable) and theHurst exponent (βstand = −0.378;
95% BCI = [−0.379, −0.377]; p < 10−4; VIF = 1.25), but not intracortical
myelin content (βstand =0.077; 95% BCI = [0.075, 0.077]; p =0.12;
VIF = 1.84), remained significant after adjusting for the other marker,
the interaction effect between intracortical myelination and the Hurst

Fig. 4 | Spatial distributions of the variables of interest. Schematic of the spatial
cortical maps corresponding to structure-function coupling (A), temporal
structure-function coupling variance (B), T1-weighted/T2-weighted signal intensity
ratio as a proxy of intracortical myelin content (C), and the Hurst exponent of the

functional signal time series as a proxy of excitation-inhibition balance (D). For
visualization purposes, each variable of interest was normalized between 0 and 1
and mapped onto the standardized Conte69 surface space; the medial wall was
excluded from the schematic and is shown in dark gray.
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exponent, and the principal gradient and BigBrain scalar assignments.
Notably, the interaction effect between intracortical myelination and
the Hurst exponent was significant within this model (βstand = 0.206;
95% BCI = [0.205, 0.206]; p < 10−4; VIF = 1.08); thus, a potential causal
relationship between temporal SFC variance, intracorticalmyelination,
and the Hurst exponent was further explored via a mediation model.
Notably, the Hurst exponent was found to significantly mediate the
correlation between intracortical myelination and temporal SFC var-
iance (total effect = −0.0058; p < 10−4, indirect effect = −0.0014; BCI =
[−0.0024, −0.0006]). In otherwords—and according to thismediation
model—the Hurst exponent (i.e., EI-ratio) accounted for 24.1% of the
correlation between intracortical myelination and temporal SFC
variance.

To assess reproducibility and robustness across different proces-
sing pipelines and subject samples, we repeated all aforementioned
analyses (i) using the HCP multi-modal cortical parcellation, (ii) using a
complementary definition of functional signal time series (seeMethods:
Processing Pipelines: Functional Connectivity), and (iii) across the Penn
sample, andobserved consistent results (Supplemental Analyses 1, 2, 3).

To complement our atlas-based results, we also evaluated the
relationships between SFC, temporal SFC variance, intracortical
myelination, and the Hurst exponent at the voxel level. Across the

cortical voxels, there was once again a positive correlation between
SFC and intracortical myelin content (Fig. 6A; Supplemental Fig. 15A;
mean r = 0.11; range: [0.08, 0.18]; pfisher < 10−4), and a negative cor-
relation between temporal SFC variance and intracortical myelin
content (Fig. 6B; Supplemental Fig. 15B; mean r = −0.06; range:
[−0.13, −0.01]; pfisher < 10−4). Stronger SFC was also associated with
decreased EI-ratio in the form of higher Hurst exponents (Fig. 6C;
Supplemental Figure 15C; mean r = 0.12; range: [0.03, 0.27];
pfisher < 10−4). Interestingly, the relationship between temporal SFC
variance and Hurst exponents was non-linear and heteroscedastic
(Breusch-Pagan test: pfisher < 10−4). Accordingly, we used a quadratic
regression and found that the highest temporal variance in SFC
occurred for middle Hurst exponent values (Fig. 6D; Supplemental
Fig. 15D; mean βstand for quadratic term = −0.47; range: [−1.13, 0.26];
pfisher < 10−4); this finding points towards temporal fluctuations in SFC
reaching a plateau with increasing levels of relative synaptic inhibi-
tion. Lastly—and in contrast to the atlas-based analyses—there was a
significantly positive association between SFC and the Hurst expo-
nent across the different temporal windows (average Spearman’s ρ
across subjects and across brain regions: 0.03; ρ range across sub-
jects: [0.01, 0.08]; pfisher (FDR-corrected) < 10−4), indicating that SFC and
EI-ratio co-fluctuate over short periods of time (i.e., the duration of

Fig. 5 | Scatterplots between the variables of interest: atlas-based analysis.
Scatterplot showing the association between each brain region’s: mean structure-
function coupling and intracortical myelin content as estimated by the T1-weigh-
ted/T2-weighted signal intensity ratio (A), mean temporal structure-function cou-
pling variance and intracortical myelin content (B), mean structure-function
coupling and the Hurst exponent of the functional signal time series (C), andmean

temporal structure-function coupling variance and the Hurst exponent of the
functional signal time series (D). For each scatterplot, a linear regression was fit
along with a 95% confidence interval (shown in red); correlation coefficients (two-
tailed Spearman’s ρ: r), p-values corresponding to the spatial permutation test
(pspin), and histograms corresponding to each variable are displayed. n = 400 brain
regions in all panels. Source data are provided as a Source Data file.
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the fMRI scan), when examined under the finer spatial scale defined
by our voxel-based analysis.

Wenext re-examined the above relationships usingmultiple linear
regression models. Cortical voxels’ SFC was independently and posi-
tively correlated with intracortical myelin content (mean βstand =0.07;
range: [0.02, 0.11]; pfisher < 10−4;meanVIF = 1.06; range: [1.04, 1.08]) and
with the Hurst exponent (mean βstand = 0.12; range: [0.05, 0.25];
pfisher < 10−4; mean VIF = 1.02; range: [1, 1.05]), even after adjusting for
the effects of the other biological marker and the voxels’ placement
along the cortical hierarchy. After additionally including a non-linear
(Hurst exponent squared) component in the multiple regression
model to account for the non-linear relationship between temporal
SFC variance and the Hurst exponent, we found that temporal SFC
variance was independently and negatively correlated with intracor-
tical myelin content (mean βstand = −0.05; range: [−0.09, −0.01];
pfisher < 10−4, mean VIF= 1.06; range: [1.04, 1.08]) and with the squared
Hurst exponent (meanβstand = −0.46; range: [−0.82, 0.18]; pfisher < 10−4),
after adjusting for the other biological marker of interest and the
principal gradient assignment.

Biological correlates of structure-function coupling: regional
perspective
To further decipher how SFC is dynamically regulated within different
networks along the cortical hierarchy, we next combined elements
from the previous two sections to investigate the dynamic relationship
between SFC, temporal SFC variance, intracortical myelination, and
Hurst exponents acrossdifferent cyto-architectonic systemsof varying
laminar differentiation. Specifically, instead of applying multiple
regression models at the whole-brain level as we did in the previous
section, here we separately applied them to each von Economo/Kos-
kinas-inspired cyto-architectonic class.

We begin with the cyto-architectonic class that displayed the
highest SFC: the granular type. We observed a significant positive
associationbetween SFC (dependent variable) and theHurst exponent
but notwith intracorticalmyelin content, after adjusting for the effects
of the other biological marker (Table 1A). In the parietal and frontal
types, we observed a significant positive association between SFC and
the Hurst exponent as well as the intracortical myelin content
(Table 1A). Within the agranular cyto-architectonic class, we observed

Fig. 6 | High density plots between the variables of interest: voxel-based ana-
lysis – representative subject shown. High density plots showing the association
between each cortical voxel’s: mean structure-function coupling and intracortical
myelin content estimatedby theT1-weighted/T2-weighted signal intensity ratio (A),
mean temporal structure-function coupling variance and intracortical myelin
content (B), mean structure-function coupling and the Hurst exponent of the
functional signal time series (C), and mean temporal structure-function coupling
variance and the Hurst exponent of the functional signal time series (D). For plots
(A), (B), and (C), a linear regression was fit along with a 95% confidence interval
(shown in red); correlation coefficients (two-tailed Spearman’s ρ: r), p-values

corresponding to the spatial permutation test (pspin), and histograms corre-
sponding to each variable are displayed. In plot (D), a quadratic regression was fit
along with a 95% confidence interval (shown in red); the standardized β coefficient
and bootstrapped p-value corresponding to the quadratic regressionmentioned in
the voxel-based analysis component ofourResults section: ‘Biological Correlates of
Structure-Function Coupling: Whole-brain perspective,’ are also reported. Data
shown in this figure were obtained from a representative subject that was analyzed
using our voxel-based connectivity approach. Scatterplot versions of the above
plots are shown in Supplemental Fig. 15. n = 71,561 voxels in all panels. Source data
are provided as a Source Data file.
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that SFC was positively correlated only with intracortical myelin con-
tent but not with the Hurst exponent, within the same regression
model (Table 1A). Taking these results together, we notice a distinct
pattern as we transition from granular to agranular cortical regions: a
gradual shift from the Hurst exponent to intracortical myelin content
as being the principal predictor of SFC (as supported by the numerical
changes in the standardized β and false discovery rate-adjusted p-
values: Table 1A; Fig. 7). Importantly, this pattern was also reproduced
across our Supplemental Analyses (Supplemental Material: Supple-
mental Analyses 1, 2, 3; Supplemental Tables 9, 14, 19, 24). Notably, the
cortical type with the lowest SFC and relatively high levels of granu-
larization—the polar type—was an exception to this rule, with SFC not
being significantly correlated with either intracortical myelin content
or the Hurst exponent (Table 1A; Supplemental Material: Methodolo-
gical Considerations and Study Limitations).

Interestingly, the temporal SFC variance correlated significantly
with both intracortical myelin content and the Hurst exponent, across
most cyto-architectonic classes. It was, however, more persistently
dependent upon the Hurst exponent across all cortical types, after
adjusting for the effects of intracortical myelin content (Table 1B;
Supplemental Tables 9, 14, 19, 24).

Using the voxel-based approach produced similar results. Speci-
fically, within the granular type, we again observed a positive inde-
pendent correlationbetween SFC and theHurst exponent but not with
intracortical myelin content (Table 2A). Within the polar and parietal
types, intracortical myelination’s effect size in predicting SFC
increased; SFC independently correlatedwith bothmyelin content and
the Hurst exponent (Table 2A). Further, SFC independently correlated
with both biological markers within the frontal and agranular types,
with intracorticalmyelination’s predictive effect of SFC surpassing that
of the Hurst exponent within the frontal type (Table 2A). Thus, these
voxel-level results support, once again, the notion of a gradual tran-
sition from granular to less granular cortical regions in the degree to
which the Hurst exponent (and therefore EI-ratio) and intracortical
myelination predict SFC.

Similar to the atlas-based results, temporal SFC variance displayed
a stronger dependence upon the Hurst exponent as its predictor
across all cyto-architectonic classes. Specifically, temporal SFC var-
iance was independently correlated with the squared Hurst exponent,
after adjusting for the effects of the Hurst exponent and intracortical
myelin content in each cyto-architectonic class (Table 2B). In the voxel-
based analyses, intracortical myelin content was also independently
correlated with temporal SFC variance across all classes with a lower,

however, overall effect size compared to that of the Hurst exponent
(Table 2B).

Discussion
In order to better understand how structure shapes and constrains
function in the human brain, recent work has introduced the notion of
SFC, a metric quantifying how strongly a brain region’s functional
connectivity with other brain regions mirrors its structural con-
nectivity. SFC has often been found to capturemore than just the sum
of its parts: regional variations in SFC can more accurately predict
differences in cognitive performance as well as track neurological
disease symptomatology and duration, than structural or functional
connectivity alone6,16,17,19,47,48. Hence, we sought to understand how SFC
varies across different brain regions within the healthy humanbrain, as
well as why—what underlying biological factors mediate such
variation?

We specifically addressed three complementary aims. First, we
assessed changes in SFC and temporal SFC variance across the
sensory-association gradient. Second, we examined whether the spa-
tial expressions of SFC and its temporal variance were correlated with
those of intracortical myelination and EI-ratio across the cortex. Third,
we analyzed the association of SFC and its temporal variancewith both
intracortical myelination and EI-ratio, within different cyto-
architectonic cortical types, in order to investigate how SFC is dyna-
mically regulated at the level of individual networks. To ensure the
generalizability of our results, we analyzed neuroimaging data
obtained from two independent groups of healthy participants using
six complementary processing pipelines: atlas-based approaches
capitalizing on two different brain parcellation schemes, and a voxel-
based approach of uncommonly high resolution wherein each sub-
ject’s cortical voxel was designated as a stand-alone brain region.

Addressing our first aim, we asked to what extent SFC captures
macroscale functional and microscale cyto-architectonic organization
principles, and we answered that question by examining regional
variations in SFC and its temporal variance across the cortical hier-
archy. Across all processing pipelines, we found an overall increase in
temporal SFC variance along the unimodal (sensory)-transmodal
(association) hierarchy, where the highest deviations from the mean
occurred in the limbic regions. This finding largely parallels results
from a recent study using a different definition of temporal SFC var-
iance (see Supplemental Material: Methodological Considerations and
Study Limitations), also demonstrating that a region’s ability to dyna-
mically fluctuate its SFC over time depends on its location along the

Table 1 | Atlas-based multiple linear regression analyses

Intracortical Myelin Hurst Exponent

A. Structure-Function Coupling

Cortical Type βstand 95% BCI Bootstrapped p-value (FDR) βstand 95% BCI Bootstrapped p-value (FDR) VIF

Granular 0.144 [0.099, 0.108] 0.370 0.758 [0.765, 0.771] 6.7 × 10−4 1.00

Polar 0.332 [0.256, 0.267] 0.370 −0.124 [−0.112, −0.102] 0.651 1.26

Parietal 0.407 [0.402, 0.405] <10−4 0.567 [0.562, 0.565] <10−4 1.00

Frontal 0.423 [0.423, 0.426] <10−4 0.326 [0.322, 0.324] <10−4 1.06

Agranular 0.465 [0.465, 0.469] <10−4 0.121 [0.121, 0.126] 0.449 1.11

B. Temporal Structure-Function Coupling Variance

Granular 0.446 [0.411, 0.417] 0.051 −0.604 [−0.596, −0.590] 0.003 1.00

Polar −0.485 [−0.496, −0.491] 0.004 −0.446 [−0.446, −0.441] 0.002 1.26

Parietal −0.184 [−0.187, −0.184] 0.051 −0.370 [−0.373, −0.368] 0.004 1.00

Frontal −0.135 [−0.136, −0.134] 0.051 −0.261 [−0.258, −0.255] 5 × 10−4 1.06

Agranular −0.262 [−0.259, −0.256] 0.004 −0.570 [−0.559, −0.554] <10−4 1.11

Results corresponding to the atlas-based analysesdiscussed in section: ‘BiologicalCorrelates ofStructure-FunctionCoupling:Regional perspective.’βstand : standardizedβcoefficient; 95%BCI : 95%
bootstrapped standardized β coefficient confidence interval; Bootstrapped p-value (FDR) : bootstrapped p-value adjusted for multiple comparisons (two-tailed test; false discovery rate [FDR]:
Benjamini-Hochberg method); VIF : Variance Inflation Factor.

Article https://doi.org/10.1038/s41467-023-41686-9

Nature Communications |         (2023) 14:6115 9



unimodal-transmodal hierarchy49. Put together, these observations
could indeed reflect the inherently increased functional connectivity
variability found in heteromodal association cortices, compared to
unimodal cortices50.

Moreover, SFC consistently and gradually decreased along the
unimodal-transmodal hierarchy, in agreement with previous work on
the field1,4,6,21–23,49. Specifically, in our analyses, SFC decreased while
transitioning from granular cortical areas with pronounced laminar
organization (i.e., granularization), such as the primary sensory
regions, to areas with progressively diminishing laminar

differentiation, namely the parietal, frontal, and finally agranular cyto-
architectonic cortical types, reaching its lowest value in the agranular
limbic regions. The sole deviation from this pattern was found in the
polar cortical type, which had a significantly lower SFC and higher
temporal SFC variance compared to the remaining 4 cyto-
architectonic classes, despite its relatively high granularization. This
result can be usefully interpreted from a functional perspective: the
polar cortical type predominantly comprises higher-order visual
association areas and a large portion of the transmodal orbitofrontal
cortex44. The latter region flexibly encodes reward and punishment
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Fig. 7 | Shift from intracorticalmyelination to excitation-inhibition ratio as the
principal predictor of structure-function coupling, when transitioning from
agranular to granular cortical regions: an illustration. A Parcellation of the
cortex into the 5 von Economo/Koskinas-inspired cyto-architectonic classes:
agranular (orange), frontal (red), parietal (blue), polar (green), and granular (pur-
ple). B Schematic illustration of the types and distribution of cells expected to
occupy the numbered cortical layers within each cyto-architectonic class. Purple
cells represent Cajal-Retzius neurons; red star-shaped cells represent stellate cells;
green cells with triangular somata represent pyramidal cells; myelin sheaths are
shown indark yellow; and the stripes across each column represent the outer (layer
IV) and inner (layer V) stripes (or bands) of Baillarger (myelinated fibers arising
mostly from the thalamus) in dark yellow. While transitioning from granular to
agranular cortical types, we notice an increase in axonalmyelination, an increase in
the number and size of pyramidal neurons, and a decrease in the number of small
stellate neurons. C–G The left side of each panel displays the brain regions

corresponding to each cyto-architectonic class. The middle figure corresponds to
the expected cellular distribution and composition of each class as defined in panel
(B). The third figure on the right represents a visual scalewherein the contributions
of intracortical myelination and excitation-inhibition (EI) ratio (in the form of the
Hurst exponent) in predicting structure-function coupling are “weighed” against
each other. For each cyto-architectonic class, such “weight” was determined by
computing the ratio between the βstand coefficient corresponding to the Hurst
exponent and the βstand coefficient corresponding to intracortical myelin across
our three main processing pipelines: the Schaefer 400 atlas-based (Table 1), the
HCPmulti-modal atlas-based (Supplemental Table 9), and the voxel-based (Table 2)
analyses. This generated three ratio values for each cortical type which were then
averaged, to generate one representative ratio value per cortical type indicating
howmuch—on average—one variable contributesmore than the other in predicting
structure-function coupling. The averaged ratio is shown underneath the ‘domi-
nant’ variable’s name across each scale. Created with BioRender.com.
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values of stimuli51, supporting the notion that higher-order association
areas heavily involved in emotional regulation have particularly low
‘static’ SFC that fluctuates markedly across time.

Furthermore, studies using definitions of SFC other than the
correlational approach utilized in this work have also found a hetero-
geneous decoupling between structure and function across the
sensory-association hierarchy. Such definitions have quantified SFC by
invoking (i) spectral graph theory, where a brain region’s functional
brain activity (typically the blood oxygen level-dependent [BOLD]
signal) is expressed as a weighted linear combination of the harmonic
components of the brain’s structural connectome (i.e., as definedby its
eigendecomposition); structure-function decoupling can then be
assessed as the ratio between the higher spatial frequency ‘decoupled’
and lower spatial frequency ‘coupled’portions of the spectrum22,52, and
(ii) linear regression modeling approaches, where a brain region’s SFC
is assessed by how well its empirically-defined functional connectivity
can be predicted by linear models incorporating markers of structural
organization, such as Euclidean distance, shortest path length, and
communicability, obtained from the structural connectome21,49. Such
complementary approaches can be particularly informative in deci-
phering the spatial and topological attributes of the structural con-
nectome most relevant in mediating SFC.

Addressing our second aim, we asked why SFC regionally varies
across the brain, andweanswered that question by examiningwhether
the heterogeneous spatial expressions of SFC and temporal SFC var-
iance across the cortex were correlated with that of intracortical
myelination and the functional time series’ Hurst exponent, which
represents a proxy for EI-ratio. Across both atlas- and voxel-based
analyses, we found that the functional connectivity patterns of heavily
myelinated brain regions strongly reflect their underlying structural
connectivity patterns; increased myelination also constrained how
much the correlation between structure and functiondeviated from its
mean value over time. Similarly, the functional connectivity of brain
regions characterized by increased levels of relative inhibition, in the
form of an increased Hurst exponent, largely mirrored the strength of
the underlying anatomical connectivity; regions with increased levels
of relative inhibition exhibited lower SFC variance over time, as well.
Notably, in our atlas-based analyses, the EI-ratio accounted for 24-50%
of the correlation between intracortical myelin and temporal SFC
variance.

Our results highlight the critical role that both myelination and EI
balance play in regulating how much and how often the BOLD signal
propagation patterns deviate from the underlying anatomical back-
bone. Increased levels of myelination have been reported to suppress
the formation of new axonal tracts and synapses27,53, thus potentially
constraining the emergence of functional signals that deviate from
structural paths. In turn, the heavymyelinationobserved in somebrain
regions, such as the primary sensory and motor cortices, could sup-
port these regions’ functional specialization. Lower levels of myelina-
tion, on the other hand, allow for greater functional signal variability
and continuous neuronal remodeling to take place at various time
scales29,31,54, enabling the emergence of functional dynamics that can
more richly diverge from structural connectivity. The enhanced affi-
nity for neuroplasticity within lightly myelinated transmodal regions
could thus foster the emergence of flexible functional dynamics
characteristic of adaptive behavior and learning.

In parallel, brain regions predominantly characterized by inhibi-
tory regimes would also be expected to display functional dynamics
that deviate less from the underlying structural paths. Indeed, neuro-
nal assemblies characterized by increased relative inhibition—whether
due to decreased synaptic excitation or increased inhibition—favor
BOLD activity of decreased signal amplitude55,56, a decreased plateau
phase following the initial peak (i.e., faster response adaptation)57, and
lower overall baseline neuronal firing rates57–59. Additionally, inhibition
acts as a stabilizing agent of cortical activity, constraining any aberrantTa
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amplification of neuronal firing arising from recurrent excitation60,61;
synaptic inhibition can also spatially and temporally constrain the
spread as well as sharpen the evoked BOLD signals in response to
sensory input62–66.

Addressing our third and last aim, we asked whether the relation
between SFC and the two biological substrates of interest changes
across the sensory-association hierarchy, and specifically within cor-
tical regions of varying cyto-architectonic properties. Pioneering work
in the early 20th century led to the parcellation of the cerebral cortex
into 5 distinct structural types based on cellular morphology, cyto-
architectonic properties, and cortical thickness: granular, polar, par-
ietal, frontal, and agranular39,43,44,67,68. At one end of the spectrum, the
thin granular cortex (also known as koniocortex) is distinguished by
well-defined, highly-developed cortical layers II and IV, and houses
densely packed small stellate and pyramidal cells, collectively referred
to as granule neurons39,43,67; these cells typically have short axons
projecting locally within the cortex and very small multi-polar cell
bodies, with a cell body diameter ≲10μm69. Functionally, the granular
cortex encompasses primary sensory (visual, auditory, and somato-
sensory) areas and parts of the parahippocampal gyrus43,44,68. At the
opposite end of the laminar differentiation spectrum, the thicker
agranular cortex has particularly thin or absent granular laminae II and
IV, and predominantly houses large pyramidal neurons spanning
multiple cortical layers43,69. Although typically associated with motor
cortices, the agranular cortex also encompasses limbic regions such as
the anterior fronto-insular and cingulate cortices68,70. The remaining
cortical types (polar, parietal, frontal) capture intermediate, progres-
sively decreasing levels of granularization with generally increasing
neuronal cell sizes43.

Across processing pipelines, we observed a gradual shift when
traversing from granular to agranular cortical types, from the EI-ratio
(i.e., Hurst exponent) to intracortical myelin content as being the
principal predictor of SFC. Given the aforementioned differences in
the cyto-architectonic properties of the cortical types, this finding is
intuitive: granule cells predominantly found in the granular cortical
regions are typically unmyelinated, mainly due to their small axonal
diameters (≲0.3μm68,71,72; neurons in the central nervous system with
axonal diameters ≲0.3μm are usually unmyelinated73–76) and the
increased metabolic cost that would be required to myelinate such
short axons projecting locally, without necessarily an accompanying
enhancement of signal conduction velocity76,77. In turn, the lack of
myelin sheath directly exposes these axons to the extracellular space,
making them particularly susceptible to subthreshold excitability
changes77. Therefore, the correspondence between structural and
functional connectivity within cortical regions characterized by
increased levels of granule cells would be expected to be more
dependent upon fluctuations in excitation and inhibition, rather than
intracortical myelin levels.

On the other hand, the large pyramidal neurons prominently
occupying cortical areas with decreased levels of granularization are
highly myelinated78,79; small granule cells are significantly sparser in
these layers. Following the same line of reasoning as above, it would
thus be expected that the contribution of intracortical myelination
levels in these regions in predicting their macroscale SFC would sig-
nificantly increase. Interestingly, in our voxel-based analyses both
intracortical myelination and EI-ratio played a significant role in pre-
dicting SFC in the agranular cortical regions. In the coarser atlas-based
analyses, however, this effect was averaged out, leaving only intra-
cortical myelination as the primary predictor of SFC in that cortical
type. This finding could indicate that on themacroscale level captured
by the atlas-basedparcellations, intracorticalmyelination cumulatively
plays a more significant role than EI balance in shaping the coupling
between structure and function in agranular cortical regions.

Finally, intracortical myelination and EI-ratio together played a
significant role in shaping temporal fluctuations in SFC. Overall, the EI-

ratio had a larger effect size in predicting moment-to-moment SFC
variance than intracortical myelination, and consistently correlated
with the amount of moment-to-moment SFC variance across each
cyto-architectonic class in both atlas- and voxel-based analyses. This
finding is not surprising given how the balance between excitation and
inhibition also fluctuates on a moment-to-moment basis80. Intracor-
tical myelination, on the other hand, does not typically fluctuate on
such short timescales in the resting brain, and it is thus likely to con-
strain how often the BOLD signal propagation patterns can deviate
from the anatomical backbone on a slower time scale.

Collectively, the extent to which the spontaneous activity of a
brain region is tethered to the underlying white matter projections is
evidently shaped by the regional intracortical myelin content and EI-
ratio. Intracortical myelination and neuromodulation, however, are
highly multi-faceted properties, each representing the concerted sum
of other biological properties. Myelination patterns, for instance, rely
upon glial-neuronal interactions81,82 as well as genetic and environ-
mental influences83,84, and have been shown to extend well into the
third decade of life84. Moreover, neuronal excitation and inhibition
patterns are mediated by the release of excitatory (e.g., glutamate) or
inhibitory (i.e., gamma-aminobutyric acid) neurotransmitters, and
modulated by the activity of major regulatory systems in the central
nervous system, such as the dopaminergic, noradrenergic, ser-
otonergic, and cholinergic systems, at any given time. Therefore, it
would be critical to examine in future studies how each of these indi-
vidual facets of neurobiology sculpts the dynamic relationship
between structural and functional connectivity in the human brain, at
rest or during a task, in health or disease.

In this study, we examined the regional dependence between
structure and function across complementary cortical hierarchies, and
aimed to identify the biological factors that mediate such coupling in
the human brain. We assessed the correlation between structure and
function using atlas- as well as voxel-based connectivity, capturing the
underlying anatomy and dynamics inmarked detail. Our findings were
consistent across all processing pipelines and cohorts employed, and
are three-fold: (1) SFC and its temporal variance respectively decrease
and increase across the unimodal-transmodal and granular-agranular
gradients, (2) increased intracorticalmyelination and lower EI-ratio are
associated with a more rigid coupling between structure and function
and restricted moment-to-moment SFC fluctuations, and (3) there is a
gradual shift from EI-ratio to intracortical myelination as being the
principal predictor of SFC when traversing from granular to agranular
cortical types; EI-ratio appears to be the principal predictor of tem-
poral SFC variance within each cyto-architectonic type. Overall, our
results identify regional intracortical myelination and EI balance as
factors that synergistically shape how strongly coupled the functional
expression of the human cortex is to its underlying anatomical con-
nectivity. Such an explanatory relationship could provide invaluable
insight into the aberrant coupling between structure and function in
neurological andpsychiatric disorders characterized by demyelination
and/or EI imbalances.

Methods
Datasets
Human Connectome Project. A sample of 100 unrelated healthy
subjects (54% female; mean age = 29.1 ± 3.7 years; age range = 22–36
years) was drawn from the HCP dataset, as publicly provided by the
HCP1200 subjects data release85. Subjects within this sample were
scanned on a customized Siemens “Connectome” Skyra 3 T scanner
(32-channel Siemens head coil) and underwent high-resolution 3 T
MRI, including T1-weighted (3D Multi-echo Magnetization–Prepared
Rapid Gradient Echo [MEMPRAGE] sequence; voxel size: 0.7mm iso-
tropic; repetition time [TR]: 2400ms; echo time [TE]: 2.14ms), T2-
weighted (3D sampling perfection with application-optimized con-
trasts by using flip angle evolution [SPACE] sequence; voxel size:
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0.7mm isotropic; TR: 3200ms; TE: 565ms), resting-state fMRI (gra-
dient-echo echo-planar imaging [EPI] sequence; four runs; 1200
volumes/run, 14:33min:sec each; voxel size: 2mm isotropic; TR:
720ms; TE: 33.1ms), and high angular resolution diffusion imaging
(spin-echo planar imaging sequence; voxel size: 1.25mm isotropic; TR:
5520ms; TE: 89.5ms; max b-value: 3000 s/mm2; 270 non-colinear
directions; 18 b0 acquisitions) sequences86,87. Informed consent was
obtained from all subjects, and the procedures were approved by the
Washington University Institutional Review Board.

Penn sample. Healthy individuals (n = 14; 78.6% female; mean age =
22.8 ± 3.2 years; age range = 18–28 years) were prospectively enrolled
at the University of Pennsylvania between November 16, 2016 andMay
19, 2018, and recruited from the local community. Subjects within this
sample were scanned using a Siemens Magnetom Prisma 3T scanner
(64-channel head/neck coil) and underwent high-resolution 3 T MRI,
including T1-weighted (3D MEMPRAGE sequence; voxel size: 0.9mm
isotropic; TR: 2500ms;TE: 2.18ms), T2-weighted (3D SPACE sequence;
voxel size: 0.9mm isotropic; TR: 3200ms; TE: 565ms), resting-state
functional MRI (two runs; 1200 volumes/run, 20:07min:sec each;
voxel size: 3mm isotropic; TR: 500ms; TE: 25ms), and diffusion
spectrum imaging (DSI; voxel size: 1.8mm isotropic; TR: 4300ms; TE:
102ms; max b-value: 5000 s/mm2; 731 directions; 22 b0 acquisitions)
sequences. Informed consent was obtained from all subjects, and the
procedures were approved by the University of Pennsylvania Institu-
tional Review Board.

Processing pipelines
In order to analyze our two samples and test the reproducibility of our
results, we utilized six complementary processing pipelines (Fig. 1): (1)
atlas-based approaches wherein each subject’s cortex was parcellated
using two common brain atlases; structural and functional con-
nectivity values were estimated between all region pairs defined by
these coarse-grained atlases, and (2) a significantly more fine-grained
voxel-based approach, wherein each subject’s cortical voxel was
designated as a stand-alone brain region; for each participant, struc-
tural and functional connectivity values were estimated between all
possible pairs of their cortical voxels. For this purpose, custom scripts
were written using bash shell scripting (version 3.2.57).

Atlas-based approach. This approach was used to analyze both the
HCP and Penn samples. The results corresponding to the HCP sample
can be found in the Results section of the Manuscript and in the
Supplemental Material, under Supplemental Analyses 1 and 2. The
results corresponding to the Penn sample can be found in the Sup-
plemental Material, under Supplemental Analysis 3 (Fig. 1).

For each subject, we first estimated their structural connectivity,
then their functional connectivity, and lastly their SFC. The different
types of connectivity were quantified using two commonly used brain
atlases: the functionally-inspired Schaefer atlas42 (400 cortical parcels)
and the HCP multi-modal atlas45 (360 cortical parcels).

Structural connectivity. The subjects’ diffusion scans were first
minimally pre-processed using the HCP consortium pipelines
(https://github.com/Washington-University/HCPpipelines), which
included applying b0 intensity normalization, correcting for EPI
distortion, Eddy currents, subject motion, and gradient nonlinearity,
and registering them to the subject’s native T1-weighted anatomical
scan88. Further processing of diffusion data was carried out using the
MRtrix3 toolbox89. Multi-shell, multi-tissue constrained spherical
deconvolution was first performed to generate fiber orientation
densities. Anatomically constrained probabilistic tractography was
then applied using a second-order integration over fiber orientation
distributions method, to more accurately track fibers through
crossing regions90. An initial whole-brain tractogram containing ten

million streamlines was generated for each subject, which was then
corrected by assigning each streamlines a weight to reduce known
biases in tractography data and bettermatch the diffusion properties
of the empirical data (SIFT2 approach)6,91. Each subject’s refined
whole-brain tractogramwas finally mapped to each parcellated brain
atlas (Schaefer and HCPmulti-modal) that had been registered to the
subject’s native space, to produce two subject-specific, symmetric,
weighted structural connectomes (Schaefer atlas: 400 ROIs × 400
ROIs, HCP multi-modal atlas: 360 ROIs × 360 ROIs). In each con-
nectome, the structural connectivity between any two given brain
regions (i.e., network edge)was defined as the SIFT2-weighted sumof
the streamlines connecting these two regions divided by the sum of
the regions’ gray matter volumes6.

Functional connectivity. Similar to the diffusion scans, the resting-
state fMRI scans were also minimally pre-processed using the HCP
consortium pipelines. These pre-processing pipelines included cor-
recting for gradient distortion, subject motion, and EPI image distor-
tion, as well as intensity normalization and registration of the
functional scans to the standard MNI space88. The resulting functional
signal time series were accurately aligned across subjects using an
areal feature-based cross-subject alignment method (MSMAll)45 and
further denoised from artifact and linear trends using an independent
component analysis and hierarchical fusion of classifiers approach
(sICA + FIX)92.

In the HCP sample, pre-processed time series corresponding to
each run were then demeaned and normalized. Then two com-
plementary approaches were followed: First, all four runs (1200
volumes per run) were averaged into one run (1200 volumes) for each
subject, using the Connectome Workbench toolbox; the time series
corresponding to the voxels within broader brain regions were aver-
aged to produce matrices of size: number of ROIs × 1200 volumes
(Schaefer atlas: 400 ROIs × 1200 volumes, HCP multi-modal atlas: 360
ROIs × 1200 volumes), for each subject. The results corresponding to
this approach can be found in the Results section of the manuscript
and in Supplemental Analysis 1, found in the SupplementalMaterial. In
the second approach, instead of averaging the demeaned and nor-
malized pre-processed time series corresponding to the four runs into
one average run (1200 volumes), we concatenated all four runs across
time (1200 volumes × 4 runs) for each subject. The time series corre-
sponding to the voxels within broader brain regions were then aver-
aged to produce matrices of size: number of ROIs × 4800 volumes
(Schaefer atlas: 400 ROIs × 4800 volumes, HCPmulti-modal atlas: 360
ROIs × 4800 volumes), for each subject. The results corresponding to
this approach can be found in the Supplemental Material, under Sup-
plemental Analyses 2A and 2B.

‘Static’ functional connectivity matrices for each atlas were com-
puted by calculating the Pearson’s correlation between the average
signal time series of any two given brain regions; each entry in the
functional connectome is equal to the Pearson’s correlation coefficient
between the activity time series of the regions corresponding to the
matrix element’s row and column. In order to examine how each
subject’s functional connectivity changes across time, we split each
atlas’ signal time series matrix into 20 continuous non-overlapping
time windows. This procedure allowed us to generate 20 ‘temporally-
contiguous’ functional connectomes per subject.

Structure-function coupling. For each atlas, the SFC of each subject’s
brain region was defined as the Pearson’s correlation coefficient
between the row corresponding to that region in the structural con-
nectome and the row corresponding to that region in the ‘static’
functional connectome (Schaefer atlas: 1 × 400 ROIs, HCPmulti-modal
atlas: 1 × 360 ROIs), after excluding the self-connection and any other
entries where either the regional structural or functional connectivity
was equal to zero.
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To examine how much SFC deviates from its mean value over
time, we also computed its moment-to-moment variance throughout
the duration of the resting-state fMRI scan. Here, insteadof computing
one ‘static’ SFC value for each brain region—aswasdone in the analyses
described earlier—we computed an SFC value for each one of the
‘temporally-contiguous’ functional connectivity matrices defined in
the ‘Functional Connectivity’ section above, and the underlying
structural connectivity matrix (once again, self-connections and
entries where either the regional structural or functional connectivity
was equal to zero were excluded). Since we used 20 non-overlapping
time windows, we ended up with 20 SFC values for each brain region,
for each subject. Each brain region’s temporal SFC variance was then
defined as the variance across their corresponding 20 ‘temporally-
contiguous’ SFC values (Supplemental Material: Eq. 1).

The two analyses just described produced two metrics that
quantified the nature of coupling between a brain region’s structural
and functional connectivity: (i) a ‘static’ SFC: a metric indicating how
strongly coupled functional connectivity is to theunderlying structural
connectivity, overall, and (ii) the temporal SFC variance: a metric
indicating how much SFC deviates from its mean value over time.

Intracortical myelination. Intracortical myelination was assessed
using a previously validated T1-weighted/T2-weighted ratio
approach88, the scripts for which were provided by the latest
HCP1200 subjects data release. There are threemain pipelines used by
the HCP consortium to compute intracortical myelin surfacemaps for
each subject, and we describe them briefly here: within the first Pre-
FreeSurfer pipeline, the T1- and T2-weighted sequences are first cor-
rected for gradient and readout distortions. The undistorted T2-
weighted image is then registered to the undistorted T1-weighted
image, afterwhich they are bothbias-field corrected. In the subsequent
FreeSurfer pipeline, the undistorted bias-corrected T1-weighted image
in each subject’s native volume space is input into the FreeSurfer
software suite (https://www.surfer.nmr.mgh.harvard.edu)93 to gen-
erate highly accurate white matter and pial cortical surfaces. The T1-
weighted image is then intensity normalized, and contrast signal
intensity information from the undistorted bias-corrected T2-weigh-
ted image is used to update the pial surfaces such that they exclude
dura and blood vessels. Registration of the T2- to the T1-weighted
image is fine-tuned even further throughout this pipeline, using Free-
Surfer’s boundary-based registration tool by incorporating informa-
tion from the reconstructed surfaces. During the last PostFreeSurfer
processing pipeline, the FreeSurfer-derived white and pial surfaces,
along with other morphometric measurements such as cortical thick-
ness, curvature, and folding patterns, are used to define a highly
accurate, high-resolution cortical ribbon volume. The T1-weighted
image is then divided by the aligned T2-weighted image—a mathema-
tical process shown to enhance the contrast related to myelin
content27,28,88. The resulting T1-weighted/T2-weighted ratio of the
voxels within the cortical ribbon is mapped onto the mid-thickness
surface (the latter of whichwas created by averaging thewhite and pial
surfaces) to reduce partial volume effects. This overall process pro-
duces T1-weighted/T2-weighted ratio volumetric as well as surface-
based ‘intracortical myelinmaps’ in both the subject’s native as well as
standardized space.

In order to extract brain regions’ intracortical myelin content, we
set each subject’s surface-based ‘intracortical myelin map’ and the
cortical parcellation of interest mapped into the same space (stan-
dardized fsaverage_LR32k space) as inputs for the wb_command -cifti-
parcellate and -cifti-convert -to-text commands. The latter generated a
text file for each atlas containing each brain region’s ID and its corre-
sponding average T1-weighted/T2-weighted ratio signal intensity; the
signal intensitywas used as a proxy of that region’s intracorticalmyelin
content.

Excitation-inhibition balance. The balance between synaptic excita-
tion and inhibition at the neuronal or neuronal circuit level broadly
refers to the relative amounts of excitatory and inhibitory synaptic
inputs at that level, at any given time scale80. It is typically expressed as
the ratio of excitatory to inhibitory inputs. This EI-ratio is under tight
neuromodulatory control and is critical for circuit function and sta-
bility; deviations outside a narrow range have been reported to be
pathogenic46,80,94,95. Previous work using models of neuronal networks
has indicated that changes in EI-ratio are captured by the spectral
properties of the recorded electrophysiological signal activity and
particularly by the exponent of its 1/f spectral power law, an index that
is mathematically related to the signal time series’Hurst exponent46,96.
This relationship between the Hurst exponent and EI-ratio was also
validated in (i) simulated functional BOLD signal data, as well as (ii)
resting-state functional BOLD data obtained from mice while chemo-
genetically manipulating the excitability of their pyramidal neurons;
according to that relationship, a heightened EI-ratio would then be
reflected as a decrease in the Hurst exponent of the functional signal46.

Because changes in the Hurst exponent of resting-state fMRI time
series can be interpreted as a shift in synaptic EI-ratio46, we computed
the Hurst exponent of each brain region’s pre-processed resting-state
signal time series and used it as a proxy of the overall EI-ratio within
that region. The methodological approach used to perform this com-
putation is described in detail elsewhere46. In brief, for each atlas and
for each subject, each brain region’s pre-processed resting-state signal
time series were modeled as multivariate fractionally integrated pro-
cesses, and the corresponding Hurst exponent was estimated via the
univariate maximum likelihood method and a discrete wavelet
transform46,97.

Voxel-based approach. We used a voxel-based approach to analyze
the Penn sample. For each subject, we first assessed their structural
connectivity, then their functional connectivity, and lastly their SFC. In
this case—and in contrast to the atlas-based approach—the different
types of connectivity were investigated at the cortical voxel level
where each subject’s cortical voxel was defined as a separate brain
region.

Structural connectivity. The Penn subjects’ high-resolution DSI scans
were first pre-processed using QSIPrep (https://qsiprep.readthedocs.
io/en/latest/; version 0.8.0)98. Initial motion correction was performed
using only the b =0 images; an unbiased b0 template was constructed
over three iterations of affine registrations. Then, the SHORELine
method was used to estimate head motion in b >0 images99. This
procedure entails leaving out each b >0 image and reconstructing the
others using 3dSHORE100; the signal for the left-out image served as the
registration target. A total of two iterations were run using an affine
transform. Model-generated images were transformed into alignment
with each b >0 image. Both slice-wise and whole-brain Quality Control
measures (cross correlation and R2) were calculated. A deformation
field to correct for susceptibility distortions was estimated based on
fMRIPrep’s fieldmap-less approach. The deformation field resulted
after co-registering the b0 reference to the same-subject T1-weighted-
reference with its intensity inverted101. Registration was performed
with antsRegistration (ANTs 2.3.1), and the process was regularized by
constraining deformation to be nonzero only along the phase-
encoding direction and modulated with an average field map tem-
plate. Based on the estimated susceptibility distortion, an unwarped
b0 reference was calculated for a more accurate co-registration with
the anatomical reference. Each subject’s DSI time series were resam-
pled to AC-PC orientation, generating a pre-processed DSI run in AC-
PC space (output space: T1-weighted image; output resolution: 1.8mm
isotropic). After the diffusion scans were pre-processed, QSIPrep was
used to estimate the diffusion orientation distribution functions
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(dODF) at each voxel, using generalized q-sampling imaging with a
mean diffusion distance of 1.25mm.

After pre-processing and reconstructing the diffusion scans, we
invoked the MITTENS Python library (https://github.com/mattcieslak/
MITTENS) to perform analytic tractography on the reconstructed DSI
data102. In contrast to deterministic and probabilistic tractography, this
recently established tractography approach calculates connection
probabilities between different brain regions without relying on
extensive simulations. Given each voxel’s dODF and a set of a priori
anatomical/geometric constraints, analytic tractography can be used
to derive closed-form solutions to the tracking problem, directly
computing voxel-to-voxel transition probabilities102. First, we calcu-
lated inter-voxelfiber transitionprobabilities by using the referenceb0
image generated by the pre-processing stage and the diffusion dODF
output by the reconstruction stage of QSIPrep as inputs (maximum
turning angle = 35 degrees; step size in voxel units =

p3
2 ). This process

outputs volumetric (nifti) files for each neighbor direction. We then
constructed directed graphs for each voxel, where edges were formed
to each of that voxel’s 26 spatial neighbors and weighted by the
negative logarithmof transition probability fromone voxel to another,
all while taking into account the dODF of both the source and desti-
nation voxels (double-ODF method). After supplying MITTENS with a
corticalmaskwhere each cortical voxel wasdesignatedwith a different
index, the likelihood that a cortical voxel was connected to any other
cortical voxel was calculated as the geometric mean of the product of
the transition probabilities along the shortest path between the two
voxels; the shortest path between voxels was found using Dijkstra’s
algorithm103. A structural connectivity matrix was thus generated for
each subject, where each row and column corresponded to a different
cortical voxel; each entrywas set equal to the likelihood that that voxel
was connected to any other cortical voxel. Because each subject had a
different number of cortical voxels, the resulting structural con-
nectivity matrices ranged in size between 60,744 × 60,744 and
83,680 × 83,680, depending on the subject. Given the substantial
number of brain regions (and their potential interactions) considered,
we thresholded our structural connectivity matrices in order to miti-
gate the presence of spurious connections that could have potentially
biased our results104. We specifically applied density-based threshold-
ing where we kept 70% of the strongest edges in the connectome and
set all others to zero.

Functional connectivity. The Penn group’s resting-state fMRI scans
were pre-processed using the CONN (https://web.conn-toolbox.org/
home; version 20.b) toolbox105,106. We specifically ran CONN’s “default
pre-processing pipeline for volume-based analyses (direct normal-
ization to MNI-space).” Each subject’s functional scans were first co-
registered and resampled to a reference image (set as the first scan of
the first session). A slice-timing correction procedure then followed,
correcting for any potential temporal misalignment that may have
occurred during the sequential acquisition of the fMRI data; acqui-
sitions with a framewise displacement above 0.9mm or global BOLD
signal changes above 5 standard deviations were flagged as potential
outlier scans. The structural scans were segmented into gray matter,
white matter, and cerebrospinal fluid tissue classes using SPM (ver-
sion 12), and both structural and functional scans were subsequently
normalized into MNI space (180 × 216 × 180mm3 bounding box;
functional scans set to 2mm isotropic; structural scans set to 1mm
isotropic). Lastly, the functional images were smoothed using an
8mm full-width half-maximum Gaussian kernel, in order to increase
the BOLD signal-to-noise ratio106. CONN’s default denoising pipeline
was then applied, which used linear regression of potential con-
founders identified in the BOLD signal and temporal high-pass fil-
tering. Potential confounding effects that were regressed out of the
BOLD signal time series included noise components from white
matter and cerebrospinal areas, estimated subject motion

parameters (i.e., 3 rotation and 3 translation parameters, and their 6
associated first-order derivatives), identified outlier scans from the
pre-processing step, as well as session-related effects (such as con-
stant and linear BOLD signal trends). Temporal frequencies below
0.008Hz were also removed from the BOLD signal in order to miti-
gate the effects of low-frequency drifts. Denoising outputs were
manually inspected to ensure approximately centered distributions
of the resulting functional connectivity data.

We then registered the pre-processed, denoised functional image
fromMNI into the subject’s b0 reference image created byMITTENS in
our structural connectivity analyses. The samecorticalmask as the one
supplied toMITTENSwas thenoverlayedonto the registered functional
image, in order to extract the BOLD signal time series corresponding
to each cortical voxel, for each subject. Similarly to the atlas-based
approach, a ‘static’ functional connectivity matrix was computed by
calculating the Pearson’s correlation between the signal time series of
any two given cortical voxels. Voxel-based ‘temporally-contiguous’
functional connectomes (20 per subject) were also generated as
described in the atlas-based approach.

Exclusion criteria. After the structural and functional scans had been
pre-processed and denoised, we manually examined the Quality Con-
trol files exported by MITTENS and CONN, to assess the quality of the
data. Given that structural and functional connectivities were being
assessed at the voxel-level, we chose to apply particularly conservative
quality control criteria when deciding which subjects to include in our
analyses: subjects with at least one “bad” slice found (i.e., slices that
significantly differed in intensity patterns from the slices acquired
before and after)98 in the pre-processed diffusion images (n = 2) or
resting-state functional scans with mean framewise displacement
exceeding 0.2mm (n = 3) were excluded from the analysis107,108. Using
these criteria, we included 9 (88.9% female; mean age = 22.8 ± 2.7
years; age range = 19–27 years) of the total 14 subjects scanned with
both diffusion spectrum and resting-state functional imaging.

Structure-function coupling. The SFC of each subject’s cortical
voxel was defined as the Spearman’s correlation coefficient
between the matrix row corresponding to that voxel in the thre-
sholded structural connectome and the matrix row correspond-
ing to that voxel in the ‘static’ functional connectome, after
excluding the self-connection and any other entries where either
the regional structural or functional connectivity was equal to
zero. Using this definition of SFC and the same approach as the
one described in the atlas-based analyses, we also computed each
cortical voxel’s moment-to-moment (temporal) SFC variance
across 20 contiguous non-overlapping time windows.

Intracortical myelination. Intracortical myelination in the Penn
sample was assessed using the previously validated HCP Pipeline
(https://github.com/Washington-University/HCPpipelines/wiki/
Installation-and-Usage-Instructions#running-the-hcp-pipelines-on-
example-data; version 4.3.0). Specifically, the scripts in the three HCP
pipelines (PreFreeSurfer, FreeSurfer, and PostFreeSurfer) were run to
generate the T1-weighted/T2-weighted ‘myelinmaps’ for each subject as
a proxy for their intracortical myelin content. The individual steps per-
formed by each pipeline have been described above in our atlas-based
approach. For each subject, the resulting T1-weighted/T2-weighted ratio
volumetric file was then registered from MNI into the subject’s b0
reference image (obtained from MITTENS); the signal intensity at each
cortical voxelwas thenextractedusing the samecorticalmask as theone
used in our voxel-based structural and functional connectivity analyses.
In order to exclude voxels that might potentially represent non-brain
tissue or voxelswith aberrantly high or low signal intensity, we only kept
values within one standard deviation away from the mean signal inten-
sity of the non-zero intensity voxels within the cortical ribbon mask28.
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Excitation-inhibition balance. The same pipeline used to estimate
the EI-ratio in our atlas-based approach—in the form of the func-
tional signal time series’ Hurst exponent—was also used here. Spe-
cifically, each cortical voxel’s pre-processed resting-state signal
time series were modeled as multivariate fractionally integrated
processes, and the corresponding Hurst exponent was estimated
via the univariate maximum likelihood method and a discrete
wavelet transform46,97.

Cortical hierarchies
To examine the regional distribution of the variables of interest across
the cortex, we assigned each brain region (as defined in the ‘Atlas-
based approach’ and ‘Voxel-based approach’ sections above) an index
representing its putative placement along the broader cognitive
representational and cyto-architectural hierarchy. For that purpose,
we utilized four complementary cortical annotations: (1) 7 resting-state
systems (visual, somatomotor, dorsal attention, ventral attention,
limbic, fronto-parietal, and default mode) estimated by intrinsic
functional connectivity37 (resting-state systems; coarse metric), (2) the
principal gradient of cortical organization derived by the decomposi-
tion of connectivity data and intrinsic geometry of the cortex38 (prin-
cipal functional gradient; continuous metric), (3) 5 cyto-architectonic
classes/types (agranular, frontal, parietal, polar, and granular) derived
from cellular morphological properties39 (von Economo/Koskinas-
inspired cyto-architectonic classes; coarse metric), and (4) the “Big-
Brain” cortical gradient derived by modeling the similarity of cortical
columns’ microstructural profiles40,41 (BigBrain gradient of micro-
structure profile covariance; continuous metric). The first two anno-
tations spatially group brain regions along the unimodal
(sensory)–transmodal (association) hierarchy based on their func-
tional connectivity profiles; the latter two assign brain regions into the
same cortical class/type based on their cellularmorphological profiles.
Themembership of each brain region into each of the four mentioned
cortical annotations was assigned in the following way:

Atlas-based approach
Schaefer ROI → Resting-state systems. The assignment of each
Schaefer (400 parcels) ROI into its corresponding resting-state system
(1–7 systems) was provided as part of the Schaefer atlases download
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_
projects/brain_parcellation/Schaefer2018_LocalGlobal)42.

Schaefer ROI → Principal functional gradient. The Schaefer (400
parcels) atlas (filename: Schaefer2018_400Parcels_7Networks_order_
FSLMNI152_2mm.nii.gz) and the principal functional gradient (file-
name: volume.grad_1.MNI2mm.nii.gz) were provided by their respec-
tive downloads (mentioned above), in the same space. We then
extracted the principal gradient scalars corresponding to all voxels
within a given Schaefer ROI and computed theirmean, which was then
set as the average principal gradient scalar of that Schaefer ROI.

Schaefer ROI→ Cyto-architectonic classes. The CSV files containing
vertices’ assignments to the Schaefer 400 parcels and von Economo/
Koskinas-inspired cyto-architectonic parcellations (sampled on the
standardized Conte69 surface template) were downloaded from the
ENIGMA toolbox109 (https://enigma-toolbox.readthedocs.io/en/latest/
index.html). Using these files, we extracted the cyto-architectonic
assignments corresponding to all vertices within each Schaefer ROI
and computed their mode; the corresponding mode was set as the
cyto-architectonic assignment of that Schaefer ROI.

Schaefer ROI → “BigBrain” gradient. The BigBrain gradient scalar
corresponding to each Schaefer ROI was calculated as previously
described40,41 and provided as part of the ENIGMA toolbox as a CSV file.

HCP multi-modal ROI → Resting-state networks. The HCP multi-
modal atlas in cifti file format was first mapped to the resting-state
functional systems in the same format and grayordinates space (RSN-
networks.32k_fs_LR.dlabel.nii; https://balsa.wustl.edu/study/show/
WG33), using the Connectome Workbench toolbox (wb_command
-cifti-create-dense-from-template). We then extracted the resting-state
assignments corresponding to all grayordinates within a given HCP
multi-modal ROI and computed their mode; the corresponding mode
was set as the resting-state systemassignmentof thatHCPmulti-modal
ROI110.

HCP multi-modal ROI → Principal functional gradient. We used the
principal functional gradient in the same grayordinate space as the
HCP multi-modal atlas (cifti file format: hcp.gradients.dscalar.nii;
https://github.com/neuroanatomyAndConnectivity/gradient_
analysis). We then extracted the principal gradient scalars corre-
sponding to all grayordinates within a given HCPmulti-modal ROI and
computed their mean, which was then set as the average principal
gradient scalar of that HCP multi-modal ROI.

HCP multi-modal ROI → Cyto-architectonic classes. The CSV files
containing vertices’ assignments to the HCP multi-modal and the von
Economo/Koskinas-inspired cyto-architectonic parcellations (sampled
on the standardizedConte69 surface template)weredownloaded from
the ENIGMA toolbox109 (https://enigma-toolbox.readthedocs.io/en/
latest/index.html). Using these files, we extracted the cyto-
architectonic assignments corresponding to all vertices within each
HCP multi-modal ROI and computed their mode; the corresponding
mode was set as the cyto-architectonic assignment of that HCP multi-
modal ROI.

HCP multi-modal ROI → “BigBrain” gradient. The BigBrain gradient
scalar corresponding to each HCP multi-modal ROI was calculated as
previously described40,41 and publicly provided as part of the ENIGMA
toolbox as a CSV file.

Voxel-based approach
Cortical voxels → Resting-state systems. Using the guidelines pro-
vided in the resting-state systems’ online documentation37 (https://
github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Yeo2011_fcMRI_clustering/1000subjects_reference/Yeo_
JNeurophysiol11_SplitLabels/project_to_individual), we registered the
resting-state systems from the standardized fsaverage space into each
subject’s volumetric space (in FreeSurfer terminology: their orig.mgz
space). Afterwards, we registered those systems into each subject’s
reference b0 space (generated by MITTENS) using the antsApply-
Transforms command (ANTs 2.3.1) with the “MultiLabel” interpolation
flag. The resulting atlas was dilated three times to ensure that all cor-
tical voxels were assigned a resting-state system affiliation. Lastly,
using this dilated atlas and the same cortical ribbon mask as the one
mentioned in our voxel-based structural and functional connectivity
analyses, we extracted each cortical voxel’s resting-state system
affiliation.

Cortical voxels → Principal functional gradient. We first registered
the principal functional gradient (volume.grad_1.MNI2mm.nii.gz;
https://github.com/neuroanatomyAndConnectivity/gradient_analysis)
from MNI into each subject’s reference b0 space (generated by MIT-
TENS) using the antsApplyTransforms command (ANTs 2.3.1). The
registered gradient was dilated once to ensure that all cortical voxels
were assigned a gradient scalar. Lastly, using this dilated atlas and the
same cortical ribbon mask as the one mentioned in our voxel-based
structural and functional connectivity analyses, we extracted each
cortical voxel’s corresponding principal gradient scalar.
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Cortical voxels → Cyto-architectonic classes. The von Economo/
Koskinas-inspired cyto-architectonic atlas was downloaded in MNI
ICBM 2009a Nonlinear Symmetric stereotaxic space (http://www.
dutchconnectomelab.nl)111. We then registered this atlas into each
subject’s reference b0 space (generated by MITTENS) using the
antsApplyTransforms command (ANTs 2.3.1) with the “MultiLabel”
interpolation flag. The resulting atlas was dilated three times in order
to ensure that all cortical voxels were assigned a cyto-architectonic
cortical type affiliation. Lastly, using this dilated atlas and the same
cortical ribbon mask as the one mentioned in our voxel-based struc-
tural and functional connectivity analyses, we extracted each cortical
voxel’s cyto-architectonic cortical type affiliation.

Statistical analyses
Statistical analyses were performed using the SPSS statistical software
(version 28: IBM Corp.), MATLAB (version R2021a: The MathWorks,
Inc.), and Python (version 3.7).

Atlas-based approach: dataset. For our ‘Atlas-based approach’ ana-
lyses delineated above, we generated and analyzed two datasets: one
wherein each row corresponded to each Schaefer ROI (for a total of
400 rows) and another wherein each row corresponded to each HCP
multi-modal ROI (for a total of 360 rows). Each dataset’s column cor-
responded to the variable of interest (e.g., SFC, temporal SFC variance,
intracortical myelin content, and Hurst exponent) averaged across
subjects (unless otherwise specified above).

Voxel-based approach: dataset. For our voxel-based approach, we
generated one dataset for each Penn subject that passed our quality
control assessments (for a total of 9 datasets), as each subject had a
different number of cortical voxels. Within each dataset, each row
corresponded to each cortical voxel of that subject, and each column
reflected the variable of interest corresponding to that subject’s
cortical voxel.

Each statistical analysis described belowwas applied separately to
each one of these 9 datasets. Correlation and regression coefficients
corresponding to each dataset were then averaged and a mean value
was reported. In order to combine the p-values generated for each
analysis pertaining to each dataset (subject) into one representative
combined p-value, we applied Fisher’s method ofmeta-analysis112. This
method entailed calculating first the following test statistic Twith a χ2-
distribution and 18 degrees of freedom (=number of datasets x 2):

T = � 2
Xn

i= 1

lnðpiÞ ð1Þ

where ln is the natural logarithm and pi the p-value corresponding to
dataset i. The combined p-value (referred to as pfisher in the manu-
script) is then calculated as follows:

pf isher = 1� χ2cdf T ; v=2nð Þ ð2Þ

where χ2cdf is the cumulative distribution function (cdf) for a χ2-dis-
tribution with v degrees of freedom (here, n = 9)113,114.

ANOVA tests. One-way analysis of variance (ANOVA) tests were used
to statistically compare the overall differences in SFC and temporal
SFC variance across the 7 resting-state systems and 5 cyto-
architectonic classes, described in the ‘Structure-Function Coupling
Variations along the Cortical Hierarchy’ section of the Results. The
ANOVA tests were followed by post-hoc correction for multiple com-
parisons (Tamhane’s T2—equal variances not assumed) analyses to
examine the statistical differences between all possible pairs among
the resting-state systems and all possible pairs among the cyto-
architectonic classes.

Bivariate analyses and spatial permutation tests. Comparisons
between the four variables of interest: SFC, temporal SFC variance,
intracortical myelin content, and the Hurst exponent, were carried
out in the form of previously established spatial permutation tests
(threshold for significance: p < 0.05)115,116. In contrast to bivariate
correlations such as Spearman’s or Pearson’s, spatial permutation
tests take into account the potential spatial autocorrelation that
might exist between variables and neighboring brain regions as well
as hemispheric symmetry, by generating a set of appropriate spatial
autocorrelation-preserving null models for each hemisphere. Spe-
cifically, the empirical two-tailed Spearman’s correlation between
any two spatial maps (i.e., two variables) is compared to a dis-
tribution of null Spearman’s correlations, generated by projecting
one of the spatial maps into a sphere, randomly rotating that
sphere, and then projecting the rotated sphericalmap back onto the
brain surface115,116. In our study, this ‘spin test’ was repeated 10,000
times to generate 10,000 null correlations, for each comparison.
The empirical Spearman’s correlation coefficient (r) and the p-value
derived by comparing the empirical with the null correlations
(referred to in the manuscript as pspin) were reported for each
bivariate comparison described in our atlas-based analyses. In the
voxel-based analyses, we reported a mean r, its [min, max] range
across the 9 subjects, and the combination of all subjects’ pspin
values into one combined pfisher value, as described in the “Voxel-
based approach: Dataset” section above.

Furthermore, we also tested the assumption of homoscedasticity
in our analyses (i.e., the assumption that the varianceof the residuals in
the regressionmodel is constant as the independent variable changes)
using the Breusch-Pagan test: we (i) first fit the regressionmodel using
our empirical dependent and independent variables, (ii) calculated the
square of the unstandardized residuals of themodel, and (iii) then fit a
new regression model using the squared residuals as the new depen-
dent variable. The p-value between the squared residuals and the
independent variable was then calculated for each subject; these p-
values were then combined into one pfisher value, as described in the
“Voxel-based approach: Dataset” section above.

Multiple linear regression analyses and non-parametric boot-
strapping. Multiple linear regressionmodelswere used to examine the
statistical relationship between two variables, after adjusting for the
effects of other pertinent variables. SFC and temporal SFC variance
were designated as the dependent variables, whereas intracortical
myelin content and the Hurst exponent were designated as the inde-
pendent variables. To account for the presence of an interaction effect
between these two independent variables, we included their interac-
tion effect in the multiple linear regression models described in the
‘Biological Correlates of Structure-Function Coupling: Whole-brain
perspective’ section, as an additional independent variable. We spe-
cifically (i) created centered versions of the two variables using the
following formula:

Xi,centered =Xi � average Xð Þ ð3Þ

whereXi is the variable of interest (here, intracorticalmyelin content or
Hurst exponent) corresponding to brain region i, and X is a vector
corresponding to the variable’s values across all brain regions.We then
(ii) computed an ‘interaction effect’ set equal to the product of the two
centered variables, and (iii) used the centered intracortical myelin
content, centeredHurst exponent, their interaction effect, and the two
gradient assignments of cortical hierarchy placement (the principal
functional gradient and “BigBrain” gradient assignments) as the inde-
pendent variables. The latter two variables were included to ensure
that any potential relationships were not driven by a similar co-
variation of the given variables across the same cortical hierarchy.
Centered variables of intracortical myelin content and the Hurst
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exponent were used to mitigate any potential multicollinearities
among the independent variables. Although there were no significant
multicollinearities present in the atlas-based analyses when the
interaction term was included (i.e., Variance Inflation Factor [VIF] < 2
— see the end of this sub-section)117, there were significant multi-
collinearities introduced in the voxel-based analyses (VIF values of
intracortical myelin content and interaction effect > 46, across
subjects). Hence, we did not include the interaction term between
intracortical myelin content and the Hurst exponent as an additional
independent variable in our voxel-based multiple regression models.

Moreover, to address the non-linear relationship and significant
heteroscedasticity between the temporal SFC variance and the Hurst
exponent in our voxel-based analyses, we incorporated a non-linear
term (square of the Hurst exponent) as an additional independent
variable in the ‘Biological Correlates of Structure-Function Coupling:
Whole-brain perspective’ and ‘Biological Correlates of Structure-
Function Coupling: Regional perspective’ sections.

Standardized β (βstand) coefficients and p-values were computed
for each independent variable within each multiple linear regression
model (ordinary least squares regression), using non-parametric
bootstrapping. This process entailed (i) fitting the original empirical
data into the multiple regression model and calculating the βstand
coefficients, (ii) sampling the original empirical data with replacement,
and (iii) re-fitting themultiple regressionmodel on this newly sampled
dataset and extracting the resulting βstand coefficients. We repeated
steps (ii)-(iii) 10,000 times to generate robust confidence intervals for
the βstand coefficients and the corresponding ‘bootstrapped’ p-values.
For each multiple regression model mentioned in the atlas-based
analyses of our Results section, we reported the empirically derived
βstand coefficient for each independent variable, the corresponding
95% confidence interval as calculated by the non-parametric boot-
strapping approach (and referred to in the text as 95% BCI), and the
resulting p-value. Similarly, for our voxel-based analyses, we reported
the mean empirically-derived βstand coefficient for each independent
variable across subjects, its [min,max] range across the 9 subjects, and
the combination of all subjects’ p-values into one combined pfisher
value, as described in the “Voxel-based approach: Dataset” section
above. Overall, applying non-parametric bootstrapping into our
regression models allowed us to robustly examine how variable the
βstand coefficients were in each model, without making any assump-
tions about the distribution of the data.

Lastly, to ensure that there were no collinearities among our
variables within the multiple regression models, we also reported the
VIF within each analysis; a threshold of VIF > 5 was used to indicate
significant collinearity117.

Mediation model. The mediation analysis reported in our atlas-based
analyses in the Results section: ‘Biological Correlates of Structure-
Function Coupling: Whole-brain perspective’was performed using the
PROCESS (v3.4) statistical macro for SPSS118. Intracortical myelin con-
tent was designated as the independent variable, the Hurst exponent
of the functional signal time series as the mediator, and the temporal
SFC variance as the dependent variable. The Hurst exponent (as a
proxy of EI-ratio) was chosen as the mediator in this model—rather
than the independent variable—as it fluctuates on a moment-to-
moment basis80. The hypothesized mediation effect was tested using
bootstrapping (10,000 samples); a BCI that did not include zero indi-
cated a significant mediation effect.

Citation diversity statement
Recent work in several fields of science has identified a bias in citation
practices such that papers from women and other minority scholars
are under-cited relative to the number of such papers in the field119–123.
We obtained the predicted gender of the first and last author of each
reference by using databases that store the probability of a first name

being carried by a woman123. By this measure (and excluding self-
citations to the first and last authors of our current paper), our refer-
ences contain 12% woman(first)/woman(last), 9.3% man/woman, 21.4%
woman/man, and 57.3% man/man. This method is limited in that (a)
names, pronouns, and social media profiles used to construct the
databases may not, in every case, be indicative of gender identity and
(b) it cannot account for intersex, non-binary, or transgender people.
We look forward to future work that could help us better understand
how to support equitable practices in science.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Human Connectome Project dataset used in this study is publicly
available at https://db.humanconnectome.org/. The University of
Pennsylvania sample dataset analyzed as well as the scripts generated
for the purposes of this study are available from the corresponding
authors upon request. Source data are provided with this paper.

Code availability
A copy of the custom-made scripts used to perform themain atlas- and
voxel-based analyses described in this manuscript—as well as instruc-
tions on how to run them—can be found in: https://github.com/
pfotiad/SFC_Nature_Comm_2023.git.
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