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During mammalian embryo development, pluripotent epiblast cells
diversify into the three primary germ layers, which will later give rise to
all fetal and adult tissues. These processes involve profound transcriptional
and epigenetic changes that require precise coordination. Peptidylarginine
deiminase IV (PADI4) is a transcriptional regulator that is strongly associ-
ated with inflammation and carcinogenesis but whose physiological roles
are less well understood. We previously found that Padi4 expression
is associated with pluripotency. Here, we examined the role of PADI4 in
maintaining the multi-lineage differentiation potential of mouse embryonic
stem (ES) cells. Using bulk and single-cell transcriptomic analyses of
embryoid bodies (EBs) derived from Padi4 knock-out (Padi4-KO) mouse
ES cells, we find that PADI4 loss impairs mesoderm diversification and
differentiation of cardimyocytes and endothelial cells. Additionally, Padi4
deletion leads to concerted downregulation of genes associated with
polarized growth, sterol metabolism and the extracellular matrix (ECM).
This study indicates a requirement for Padi4 in the specification of the meso-
dermal lineage and reports the Padi4 associated transcriptome, providing
a platform for understanding the physiological functions of Padi4 in
development and homeostasis.

This article is part of the Theo Murphy meeting issue ‘The virtues and
vices of protein citrullination’.
1. Introduction
Pluripotency is the potential of stem cells to self-renew indefinitely and give rise
to any differentiated cell type. During gastrulation, pluripotent epiblast cells
differentiate into the three primary germ layers—endoderm, mesoderm and
ectoderm—which subsequently give rise to all of the tissues and organs in
the adult organism [1]. This essential developmental stage happens from
embryonic day (E) 6.5 to 8.5 and is accompanied by profound transcriptional
and epigenetic changes as cells adopt different identities and fates [2–5].

The peptidylarginine deiminase (PADI or PAD) enzymes catalyse the post-
translational conversion of arginine protein residues to non-coded citrullines.
Peptidylarginine deiminase IV (PADI4) is a predominantly nuclear enzyme
with well-established roles as a transcriptional regulator, although emerging evi-
dence implicates it also in the regulation of inflammatory signalling and the
extracellularmatrix (ECM) (reviewed in [6]). PADI4 becomes activated under con-
ditions of infection and sterile inflammation, where it modulates the expression of
inflammatory cytokine genes [7,8] and chromatin de-compaction [9,10]. Aberrant
PADI4 expression and activity are features of various inflammatory diseases and
cancers and PADI4 has been shown to act as a cofactor to key oncogenic

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2022.0236&domain=pdf&date_stamp=2023-10-02
http://dx.doi.org/10.1098/rstb/378/1890
http://dx.doi.org/10.1098/rstb/378/1890
mailto:maria.christophorou@babraham.ac.uk
https://doi.org/10.6084/m9.figshare.c.6806493
https://doi.org/10.6084/m9.figshare.c.6806493
http://orcid.org/
http://orcid.org/0000-0001-5455-7283
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220236

2
transcriptional regulators [11–13]. Thus, PADI4 deregulation is
strongly associated with the pathophysiology of inflammatory
disorders, autoimmunity and cancer.

The physiological functions of PADI4 are less well
understood, as are its modes of action under physiological
conditions (whether through transcriptional, signalling or
cell–ECM regulation). In healthy mammals, Padi4 is most
highly expressed in the blood and the bone marrow, although
it does not have a cell-intrinsic role in mouse haematopoiesis
[14,15]. We previously demonstrated that PADI4 is also
expressed in embryonic stem (ES) cells andmediates the estab-
lishment of pluripotency during the reprogramming of somatic
cells to induced pluripotent stem (iPS) cells [10]. Padi4 is part of
the pluripotency network, as its expression is regulated by the
cardinal pluripotency factor Pou5f1, while Padi4 knock-down
or pharmacological inhibition lead to the downregulation of
pluripotency markers such as Nanog and Tcl1 [10].

Here, we examined the expression of Padi genes during
mouse gastrulation using previously published single-cell
transcriptomic data [5] and found that Padi4 is expressed in epi-
blast cells from E6.5. To understand whether PADI4 has a role
inmaintaining the full differentiation potential of stem cells,we
interrogated the transcriptional and cellular consequences of
Padi4 loss in multi-lineage differentiation, using an embryoid
body (EB) differentiation system. This system involves the cul-
ture of ES cells in three-dimensional spheroid aggregates,
which results in their differentiation into cells of the three pri-
mary germ layers and faithfully recapitulates the cellular and
transcriptional changes that occur during early embryo devel-
opment in vivo [16,17]. Using bulk RNA-sequencing analyses,
we show that Padi4 knock-out (Padi4-KO) ES cells are impaired
in the upregulation of genes associated with polarized growth
and vessel formation, genes involved in sterol metabolism and
genes associatedwith the ECM.Using single-cell RNA sequen-
cing analyses we show that Padi4-KO EBs are impaired in the
differentiation of cells of the mesodermal lineage, cardiomyo-
cytes and endothelial cells. These results indicate that PADI4
has a role in mesoderm specification during gastrulation. The
PADI4-dependent transcriptome reported here may provide
a basis for further studies into the roles of PADI4 in cell
physiology, mammalian development and homeostasis.
2. Results
(a) Analysis of Padi gene expression during mouse

gastrulation
To understand the expression pattern of Padi4 during mouse
embryo development we interrogated previously published
single-cell RNA sequencing data of mouse gastrulation [5].
Padi4 is most highly expressed in the epiblast, which comprises
the pluripotent cell compartment, and its expression is detected
from E6.5 (electronic supplementary material, figure S1). As
embryos progress through gastrulation (E7–E8), sporadic
Padi4 expression is detected within the primitive streak, the
extra-embryonic lineages (extra-embryonic ectoderm and
endoderm), the caudal epiblast and caudal mesoderm, while
strong expression is detected in some gut cells and differen-
tiated cardiomyocytes by E8.5 (electronic supplementary
material, figure S1).

The expression of the other Padi family genes (Padi1, Padi2,
Padi3 and Padi6), all of which show different expression
patterns during this developmental window, is presented in
electronic supplementary material, figures S2–S5. Padi1 and
Padi3 arewidely expressed across the different stages of gastru-
lation (electronic supplementary material, figures S2 and S4).
Both PADI1 and PADI3 are expressed in the adult skin and
have been implicated in skin homeostasis [18], so we were sur-
prised to find strong Padi3 expression across the mesenchyme
and blood lineages. These data suggest that Padi3 has a yet
unexplored role in blood development. PADI1 was previously
been implicated in pre-implantation development, with PADI1
inhibition leading to arrest at the four-cell stage [19]. The
observed expression of Padi1 across the epilast and primitive
streak suggests that it may also regulate aspects of embryonic
development post implantation. Padi2, the ancestral member
of the Padi gene family, is most widely expressed in adult tis-
sues and, along with Padi3, was shown to maintain the stem
cell state of trophoblast stem cells [20]. However, Padi2 is
very sparsely expressed during gastrulation (electronic sup-
plementary material, figure S3), suggesting it is unlikely to
operate at the early lineage commitment stage of development.
Padi6, which has well-established roles in the oocyte and is
expressed highly in the pre-implantation embryo [21,22],
shows very sporadic expression during gastrulation (electronic
supplementary material, figure S5), suggesting that it does not
have a role during this stage of development.

(b) Padi4 loss results in widespread transcriptional
changes during embryonic stem cell differentiation

We previously demonstrated that Padi4 expression is associ-
ated with the pluripontent cell state [10]. This agrees with the
Padi4 expression observed during mouse gastrulation (elec-
tronic supplementary material, figure S1, E6–E7.25). To
assess the dynamics of Padi4 expression during exit from plur-
ipotency we profiled Padi4 mRNA levels in J1 mouse ES cells
during differentiation to EBs. We observe that Padi4 levels
decline quickly, with an 80% decline by day 2 and complete
downregulation by day 6 of EB differentiation (figure 1a).
These findings suggest that PADI4 has a role in pluripotent
cell function. To test this, we examined the transcriptional con-
sequences of Padi4 loss in pluripotent stem cells and during
multi-lineage differentiation. We used CRISPR-Cas9 to target
Padi4 exon 1, downstream of the transcriptional start side, in
J1 mouse ES cells. A number of clonal knock-out (KO) lines
were generated (figure 1b) while clonal wild-type (WT) control
clonal lines were generated through the same process in the
absence of targeting guide RNAs (gRNAs). Two WT (WT1
and WT2) and two KO lines (JA4 and JA10, named KO1 and
KO2, respectively, hereafter) were chosen for further analysis.
ES cell line KO1 contained indels that resulted in frame shift
mutations of +8 and +1 bases, while KO2 contained frame
shifts of +1 and −2 bases (electronic supplementary material,
figure S6). These mutations resulted in loss of PADI4 protein
expression (figure 1b). The Padi4-KO lines did not show a
defect in cell proliferation (figure 1c).

We conducted bulk RNA-sequencing analyses of the
above lines cultured in naive pluripotency conditions (2i/LIF)
and after 6 days of EB differentiation. Principal component
analysis (PCA, figure 1d, triangle points) and differential gene
expression analysis (DGE, figure 1e) show that WT and Padi4-
KO naive ES cells are highly similar at the transcriptional
level. We observed minimal transcriptional changes, with
15 genes upregulated and two genes downregulated in this
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Figure 1. Gene expression changes resulting from Padi4 deletion. (a) RT-qPCR analysis of Padi4 expression in clonal mouse ES cell lines at the naive state (day 0)
and after 2, 4 and 6 days of EB differentiation. Expression is relative to the geometric mean of Ubqc, Gapdh and Atp5b. Statistical analysis was not performed as
inappropriate for two biological replicates. (b) Immunoblot analysis showing PADI4 expression in naive mouse ES cell clonal lines targeted for PADI4 deletion using
CRISPR-Cas9. GAPDH presented as loading control. (c) MTT assay for the quantification of cell proliferation of the two WT and two Padi4-KO clonal lines used in RNA-
sequencing analyses. (d ) Principle component analysis (PCA) of the transcriptomic changes observed in two clonal Padi4-KO (red) and two clonal wild-type control
(blue) cell lines, at the naive pluripotent state (triangles) or after 6 days of EB differentiation (circles). (e) Differential gene expression analysis of WT and Padi4-KO ES
cells at the naive state. ( f ) Differential gene expression analysis of WT and Padi4-KO embryoid bodies after 6 days of differentiation. (g) Heat map of the top 60
differentially expressed genes. The complete dataset is presented in electronic supplementary material, file S1.
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state. Conversely, bulk RNA-sequencing analysis of EBs after 6
days of differentiation shows widespread transcriptional
changes in Padi4-KO compared to WT EBs, as demonstrated
by PCA (figure 1d, circle points) and DGE analyses
(figure 1f ). While we observe some inherent variability
between the clonal WT lines, we focused our analysis on
genes that show a clear change in expression between both
WT and the Padi4-KO lines. We observe 562 upregulated and
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185 downregulated genes. An unsupervised cluster analysis of
the top 60 differentially expressed genes across all conditions
is shown in figure 1g and the full dataset is presented in
electronic supplementary material, file S1. The most highly
downregulated gene is Tal1, a key regulator of mesoderm
diversification [5].
(c) The PADI4-regulated transcriptome is enriched in
genes involved in blood vessel growth, cell
metabolism and the extracellular matrix

To understand the types of biological processes altered by
Padi4 loss during embryonic stem cell differentiation, we
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interrogated the transcriptomic data obtained from WT and
Padi4-KO EBs using Gene Ontonogy (GO) analyses. The
gene lists returned for the GO analyses described below are
presented in electronic supplementary material, file S2.

We considered the upregulated and downregulated genes
separately, to understand which processes are impaired or
aberrantly enhanced, as a result of Padi4 loss. Considering
the processes enriched within the set of upregulated genes
(figure 2a), Gene Ontology for Cellular Component (GO:
CC) shows a very strong enrichment for factors associated
with lytic organelles (vacuole, lysosome, vacuolar membrane,
lysosomal membrane), suggesting functions in protein traf-
ficking and recycling. This is supported by an unexpected
Gene Ontology for Biological Process (GO:BP) enrichment
for glucuronate metabolism, a pathway involved in drug
metabolism through linkage of glycosidic bonds [23]. REAC-
TOME pathway analysis [24] supports this enrichment
(figure 2b). Together, these categories suggest an enhance-
ment of processes involved in clearance, however it is not
clear what the underlying mechanism for this enrichment
might be.
Considering the downregulated genes (figure 2b), GO:CC
reveals an enrichment of factors involved in polarized growth
and morphogenesis (growth cone, site of polarized growth,
distal axon). GO:BP supports this (tube morphogenesis,
anatomical structure morphogenesis, animal organmorphogen-
esis) andmore specifically points to tube andvessel development
(circulatory system development, blood vessel development,
vasculature development). Additionally, GO:BP reveals an
enrichment for factors involved in sterol metabolism. We note
that some of the genes involved in this category (Vldlr, Dhcr,
Hmgcr, Cyp57) also appear in the categories associated with
vessel development (see electronic supplementary material, file
S2). The enrichment for steroid metabolism is supported by
REACTOME pathway analysis, which also reveals enrichment
for factors involved in ECM organization and integrin–cell
surface interactions, pointing to cell–ECM communication.

The Padi4-dependent loss of expression of factors that
regulate blood vessel development suggested that PADI4 may
regulatedifferentiation intomesodermal andendothelial lineages
and prompted us to examinewhether Padi4 depletion affects the
complement of cell types present during EB differentiation.
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(d) Single-cell transcriptomic analysis of Padi4-KO
embryoid bodies reveals a loss of mesodermal
differentiation

To test whether PADI4 promotes lineage-specific differentiation,
we conducted single-cell RNA sequencing analyses of WT and
Padi4-KO EBs at day 6 of differentiation, using pools of WT or
Padi4-KOEBs.We identified10discernablecellpopulationclusters
based on gene expression (figure 3a). Assessing the enrichment of
each cluster in theWTandPadi4-KO cell populations revealed that
some of the clusters were under-represented in the Padi4-KO EBs,
withCluster 7beingdevoidofPadi4-KO cells andClusters 4, 6 and
8 being highly depleted (figure 3b). Considering the genes rep-
resented in cells within Cluster 7, we generated scores for the
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different cell types represented in mouse gastrulation. This
revealed a strong representation for cells of the mesodermal line-
age, specifically paraxial mesoderm, with some representation in
somitic and pharyngeal mesoderm (figure 3c). Further analysis
of the clusters depleted in Padi4-KO EBs showed that Clusters 4
and 6 are strongly identified as cardiomyocytes, while Cluster 8
is identified as endothelium (electronic supplementary material,
figures S7–S9).

To corroborate the conclusions of the above analyses, we
used qRT-PCR to measure the expression of key regulators of
mesodermal, cardiomyocyte and endothelial specification
in WT and Padi4-KO samples during the time course of EB
differentiation, in independent experiments (figure 3d ). We
find that Padi4 loss leads to impairment in Tal1 upregulation
at day 6, with strong downregulation by day 6. Similarly,
Padi4-KO EBs are impaired in the differentiation-dependent
upregulation of Vascular Endothelial Growth Factor Receptor
2 (Kdr) and the ETS transcription factor Friend of Leukemia
Virus Integration 1 (Fli1), which mark endocardial and
endothelial cells, from the earliest time points (day 4).

Collectively, the above results indicate that PADI4
supports mesoderm specification during early embryonic
development and may have a role in cardiomyocyte and
endothelial differentiation.
3. Discussion
In this study we exploited the high resolution afforded by the
single-cell transcriptomic atlas of mouse gastrulation [5] to
gain insight into the expression of the Padi family genes
during the critical window of early embryonic lineage specifi-
cation. Themain focus of this studywas to understandwhether
PADI4, which was previously shown to be associated with the
pluripotent state in pre-implantation development and during
cell reprogramming [10], has a role in regulating the differen-
tiation potential of pluripotent cells. To achieve this, we used
CRISPR-mediated genetic perturbation to delete Padi4 in
mouse ES cells and studied the effect of this perturbation on
the transcriptional changes associated with multi-lineage
differentiation. Finally, we mapped Padi4-dependent transcrip-
tional changes onto the mouse gastrulation atlas to understand
the lineages affected by Padi4 loss. Collectively our results
indicate a role for PADI4 in mesoderm specification and in
cardiomyocyte and endothelial differentiation in particular.

We observed minimal gene expression changes in naive
pluripotent cells and widespread changes in EBs. The fact
that the Padi4 gene itself is strongly downsregulated upon EB
differentiation indicates that the presence of PADI4 at the
naive pluripotency stage has long-lasting consequences
during differentiation, even in the absence of continuous gene
expression at that stage. Two potential reasons may underlie
this observation. It is possible that many of the gene expression
changes observed at the EB stage are indirect consequences of
Padi4 loss and downstream of direct PADI4 targets. In this
respect, the downregulation of Tal1, a key regulator of
mesoderm specification [5], may be operative in the observed
gene expression changes. Alternatively, PADI4 may contribute
to the epigenetic changes that favour mesodermal specifica-
tion, through post-translational modification (citrullination)
of histones, transcription factors or epigenetic regulators
[6,10,25,26]. It is worth noting that PADI4 acts as a co-regulator
of Tal1 in leukaemia, where it counteracts transcriptionally
repressive histone arginine methylation via histone citrullina-
tion. It is conceivable that a similar mechanism operates in
early development.

At later stages of gastrulation, we observe a loss of cell
identities that best correspond to endothelial cells and
cardiomyocytes in the mouse gastrulation atlas. These cell
identities are the earliest to differentiate from mesoderm and
this finding therefore further supports the link between
PADI4 and the mesodermal lineage. Gene Ontology analyses
have revealed that genes that show Padi4-dependent downre-
gulation are, among other categories, associated with the
ECM and cell–ECM interactions. This suggests that Padi4-KO
cells are aberrant in ECM deposition. Alternatively, PADI4
may modulate cell signalling and ECM properties through
citrullination of matrisomal proteins, as suggested previously
[27], and this may result in the observed changes in
ECM-associated genes.
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The transcriptomicdatapresentedhere alsogive anunbiased
overview of the types of genes that are regulated by PADI4 in
non-pathological conditions. To our knowledge, this is the first
dataset of this type. We were surprised to find a strong enrich-
ment, within the upregulated factors, in processes associated
with vacuoles, lysosomes and associated membranes. These
gene categories, in addition to genes associated with the ECM,
may collectively point to functions that underlie cell–ECM
communication. Further work is needed to understand the
mechanistic and functional significance of these findings.

Although this study has focused on early events in embryo-
nic cell differentiation, the general principles identified here
may translate across different aspects of development and
tissue homeostasis. The data presented here may therefore
serve as a primer for future work that will determine the
physiological functions of PADI4.
s.R.Soc.B
378:20220236
4. Methods
(a) Cell culture
J1 mouse ES cells were cultured on tissue culture dishes pre-coated
with 0.1% gelatine in 2i + LIF medium (GMEM (BHK21) medium
supplemented with 10% KnockOut Serum replacement, 1% fetal
bovine serum, 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential
amino acids, 1 mM sodium pyruvate, 2 mM L-glutamine,
50 ngml−1 LIF,MEK inhibitor PD0325901 (1 µM) andGSK3 inhibi-
tor CHIR99021 (3 µM). For the EB formation, 1 million J1 mESCs
cells were seeded in EB media (DMEM, 15% fetal bovine serum,
0.1 mM non-essential amino acids, 1 mM sodium pyruvate,
0.1 mM 2-mercaptoethanol, 2 mM L-glutamine) in 10 cm low
attachment plates (Greiner Bio-One, 633102). EB media was chan-
ged every 48 h by transferring cell suspensions to 15 ml Falcon
tubes and leaving at room temperature for 10 min to settle. Cells
were harvested at different time points for downstream analyses.

(b) PADI4 knockout using CRISPR-Cas9
J1 mESCs were transiently co-transfected using Lipofectamine
2000, following the manufacturer’s instructions, with a pCAG-
Cas9-GFP plasmid expressing Cas9 and GFP and gBlock (Inte-
grated DNA Technology) containing U6 promoter and Padi4
targeting sequences (CACCCGCGGACATCCAGCGGGG) in
exon 1 in 1 : 3 ratio, respectively. After 48 h of transfection, GFP-
positive cells were single-cell sorted in 96 well plate using
a fluorescence-activated cell sorter (FACS). After 7 days, at which
point transient expression of Cas9 and GFP no longer persisted,
colonies were accessed and propagated individually and screened
by western blotting and genomic DNA PCR using PCR primers:
PADI4_Scr_F – TCTTCTGCT GTTGCAGGCTT and PADI4_Scr_R
– TAATTGGCACGATAGGCCCCpCAG-Cas9-GFP [28]was a gift
fromKiranMusunuru (Addgene, http://n2t.net/addgene:44719).

(c) RT-qPCR
RNA was isolated using the RNeasy Mini Kit (Qiagen, 74104)
according to the manufacturer’s instructions. One microgram of
RNA was used for cDNA synthesis using the Qiagen Reverse-
Transcription kit (Qiagen, 205311). After 1 : 100 dilution of the
resulting cDNA, qRT-PCR was performed in triplicate using
the SYBR green JumpStart Readymix (Sigma, S5193). The com-
parative ΔΔCt method was used to quantify the relative levels
of genes of interest relative to the geometric mean
of Gapdh, UbqC and Atp5b. The primers were used at 200 nM
concentration, and their sequences are provided below. Tal1_
Forward: ACAACAACCGGGTGAAGAGG; Tal1_Reverse: ACT
TTGGTGTGAGGACCATC; Kdr_Forward: TTCCATGTGATC
AGGGGTCC; Kdr_Reverse: ACTGGTGTGAGTGATTCGCC;
Fli1_Forward: CTCTGGCCTCAACAAAAGTCC; Fli1Reverse:
TTTGAACTCCCCGTTGGTCC; Padi4_Forward: TCCTCCAGTCA
AGAAGAGTACCAT; Padi4_Reverse: GTCCATAGTATGAAAC
TCGAACCTT; UbqC_Forward: GAGTTCCGTCTGCTGTGTGA;
UbqC_Reverse: TCACAAAGATCTGCATCGTCA; Atp5b_Forward:
GGCCAAGATGTCCTGCTGTT; Atp5b_Reverse: GCTGGTAGCC
TACAGCAGAAGG; Gapdh_Forward: CTCCCACTCTTCCACC
TTCG; Gapdh_Reverse: GCCTCTCTTGCTCAGTGTCC.

(d) Immunoblotting
Cell lysates were prepared after scraping the cells in RIPA buffer
(25 mM Tris-cl (pH 7.4), 150 mM NaCl, 1% NP-40, 0.1% SDS,
0.5% sodium deoxycholate, 1 mMEDTA) supplemented with pro-
tease inhibitors (Roche, UK). Lysates were sonicated for five times,
10 s each, at 10 amplitudes andwere cleared by centrifugation and
quantified using the BCA reagent (Thermo). Normalized amounts
of total protein were resolved with SDS-PAGE and analysed by
immunoblotting with anti-PADI4 (Abcam, ab241810, 1 : 1000)
and anti-GAPDH (Abcam, Ab8245, 1 : 5000) antibodies.

(e) RNA sequencing and analysis
RNA was isolated using AllPrep DNA/RNA Mini Kit (Qiagen,
80204) following the manufacturer’s protocol. RNA sequencing
including library preparation was carried out by Novogene
Europe using 150-bp paired-end reads. Raw FASTQ fileswere sub-
ject to initial quality control analyses using the FASTQC software
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
FASTQ files were then trimmed using Trim-galore (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) and alig-
ned to the mouse genome (Grcm38) using hisat2 [29]. The
Seqmonk program (https://www.bioinformatics.babraham.ac.
uk/projects/seqmonk/) was used to generate raw counts and
differential gene expression performed using DESEq2 [30]. PCA,
volcano and MA plots were generated in R using ggplot2.
Genes were filtered on padj < 0.05 and FC > 1.5 and heat-map
analyses performed using top 60 differentially expressed genes
(30 upregulated and 30 downregulated) which were clustered
using the complete agglomeration method. For the genera-
tion of the heat map, the gene expression data were z-score
normalized, ½z� score ¼ ðx� meanðxÞÞ=ðs:d:ðxÞÞ�, where x
represents raw counts.

( f ) Gene Ontology analyses
For GO analysis, differentially expressed genes were sorted
based on log2FC and a ranked analysis was performed using
the gProfiler software [31]. All genes expressed in the cells
ware used as the custom background for the analysis. Ranked
GO analyses were performed separately for upregulated and
downregulated genes.

(g) Single-cell RNA sequencing
CellRanger v. 7.0.0 was used to process 10X single-cell RNA data
using the 10X mm10-2020-A transcription as reference. Down-
stream analysis was performed in R using Seurat v. 4.1.1. The
filtered count tables from CellRanger were imported and merged.
Data were quantitated using the Cell-wise Centred Log Ratio
method and then scaled and centred into z-scores. PCA was per-
formed on the 2000 most variable features, which showed that
PC1 divided by total read count. Further steps in the analysis pro-
ceeded using PCs 2 to 10. Dimension reduction projection was
performed using UMAP using default parameters. Clustering
was performed using Louvain clustering.

Enrichment of Padi4-KO cells in clusters was calculated as the
log2 ratio of the proportion of KO and WT cells falling in to each

http://n2t.net/addgene:44719
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
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cluster. Enrichment was assessed statistically using Fisher’s exact
test. Markers for single-cell clusters were calculated using a Wil-
coxon rank sum test with a false discovery cut-off of 0.05 and
average log2 fold change of ≥0.6.

Gastrulation single-cell data were taken from the Mouse-
GastrulationData Bioconductor package [5]. Cluster markers
were used to construct a combined module score method using
the Seurat AddModuleScore function, and this was applied to
the pre-normalized gastrulation data. The scores for all cells
were projected onto the pre-calculated UMAP coordinates, and
were summarized per cell type as defined in the original data.
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