Skip to main content
[Preprint]. 2023 Sep 23:2023.09.22.558964. [Version 1] doi: 10.1101/2023.09.22.558964
Algorithm 1: Pseudocode of PG-SGD in 1D.
PGSGD(G):input:variation graphG=(V,E,P)output:Ndimensional layoutLwithVnodesXPPathIndex(G)for path positionlookupLLayoutInitialization(V,N)ZInitZip(G,XP)Zipfian distributionforηinannealingschedule:foreachplannedtermupdate:siUnif(XP)uniform sampling of astep fromPpPath(si,XP)path ofsiif(coolingflip)thensjUnif(StepCount(p,XP))uniformsamplingofastepfrompelsesjZip(p)Zipfian sampling of astepfrompendpiStepPos(si)nuc.positionpjStepPos(sj)nuc.positionndijpipjnuc.distanceldijliljlayout distancewij1.0ndijterm weightμwijηlearning rateifμ>1:μ1endδμldijndij2the actual deltaifabs(δ)<=0thenSTOPwe cantoptimize morerδldijsize of the updatelili+rldijupdatevicoordinatesljljrldijupdatevjcoordinatesendendend