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Abstract

Most studies of genome organization have focused on intra-chromosomal (cis) contacts because they harbor
key features such as DNA loops and topologically associating domains. Inter-chromosomal (trans) contacts
have received much less attention, and tools for interrogating potential biologically relevant trans struc-
tures are lacking. Here, we develop a computational framework to identify sets of loci that jointly interact
in trans from Hi-C data. This method, trans-C, initiates probabilistic random walks with restarts from a
set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci.
We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium
falciparum var genes, the mouse olfactory receptor “Greek islands”, and the human RBM20 cardiac splic-
ing factory. We then apply trans-C to systematically test the hypothesis that genes co-regulated by the
same trans-acting element (i.e., a transcription or splicing factor) co-localize in three dimensions to form
“RNA factories” that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci
with multiple binding sites of the same transcription factor interact with one another in trans, especially
those bound by transcription factors with intrinsically disordered domains. Similarly, clustered binding of
a subset of RNA binding proteins correlates with trans interaction of the encoding loci. These findings
support the existence of trans interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C
provides an efficient computational framework for studying these and other types of trans interactions,
empowering studies of a poorly understood aspect of genome architecture.
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Introduction

Mammalian interphase chromosomes are exquisitely folded in three dimensions to enable precise regulation
of gene expression (reviewed in (Hafner and Boettiger, 2023)). The study of such organization has been greatly
advanced by sequencing-based chromosome conformation capture (3C) technologies, chiefly Hi-C (Lieberman-
Aiden et al., 2009), and by orthogonal imaging approaches. A rapidly growing body of evidence indicates that
while a large portion of 3D genome architecture is largely invariant across cell types, specific dynamic changes
play a critical role in regulating gene expression during development and in disease (Krumm and Duan, 2019;
Zheng and Xie, 2019).

Most of our current understanding of 3D genome architecture centers around chromatin folding within
individual chromosomes, that is, on intra-chromosomal or cis contacts. These contacts give rise to a variety of
hierarchical features at different genomic scales, including different types of DNA loops (i.e., cohesin-mediated
looping and promoter-enhancer pairing), topologically associating domains (TADs; sub-megabase domains of
preferential self-interaction) (Dixon et al., 2012), and A/B compartments (chromosome-wide segregation of
active/inactive chromatin resulting from inter-TAD interactions) (Lieberman-Aiden et al., 2009). In contrast,
interactions across different chromosomes (inter-chromosomal or trans contacts) are poorly understood.

Chromosome-wide trans genome architecture distinguishes non holocentric chromosomes of eukaryotic
species in either a type-I, Rabl-like configuration (i.e., featuring centromere clustering, telomere clustering,
and/or a telomere-to-centromere axis) or a type-Il configuration characterized by chromosome territories
(Hoencamp et al., 2021). The latter is typical of mammalian chromosomes, which tend to occupy distinct
domains of the interphase nucleus (Cremer and Cremer, 2010). Although chromosome territories limit the
possibility for trans contacts, they do not represent hard boundaries: regions that overcome territorial topolog-
ical restrictions engage with each other within mRNA and tRNA factories, polycomb domains, the nucleolus,
nuclear speckles, and potentially other nuclear subcompartments (Fig. 1A; (Bhat et al., 2021)). Some of these
trans contacts involve specific loci whose interactions are important to gene regulation in enhancer hubs (Mon-
ahan et al., 2019), transcription factories (Osborne et al., 2004, 2007; Papantonis et al., 2012), and splicing
factories (Bertero et al., 2019). Despite these and a few other examples, whose discovery was serendipitous
or informed by domain-specific prior knowledge, the systematic discovery of functional trans interactions is
currently very challenging.

One reason for this difficulty is that trans contacts are 5 to 10 times less frequent than cis contacts,
depending on cell type and assay type. The number of possible trans contacts is also much larger than the
number of possible cis contacts; thus, trans contact data is typically quite sparse. Most importantly, there is
a lack of robust statistical and computational approaches to confidently identify reproducible trans contacts.
In this manuscript, we overcome this limitation by providing a computational framework that systematically
finds sets of jointly interacting loci from Hi-C data.

The method, trans-C, takes as input a Hi-C contact map as well as, optionally, one or more more seed
loci and uses a random walk algorithm to identify sets of trans-contacting loci. We validate trans-C in
three established problems of increasing complexity in Plasmodium, mouse, and human. We then deploy
trans-C to systematically test the hypothesis that genes co-regulated by the same trans-acting element (i.e.,
a transcription or splicing factor) co-localize in 3D to form “RNA factories” that maximize the efficiency
and accuracy of RNA biogenesis (Bertero, 2021). Our results suggest that many transcription factors (TFs)
participate in trans interacting chromatin domains (TIDs), and that these types of interactions are particularly
common for TFs with intrinsically disordered domains; in contrast, only a subset of RNA binding proteins
(RBPs) are enriched at TIDs, but these enrichments can be exceptionally strong and potentially disease-
relevant.

Overall, trans-C provides a powerful way to uncover and measure various types of trans interactions,
empowering both discovery and hypothesis-driven studies of genome structure-function relationships.

Results

trans-C randomly walks the Hi-C graph

Our goal is to algorithmically identify, from a given set of Hi-C data, a collection of genomic loci that
exhibit strong t¢rans interactions. We represent the Hi-C data as a matrix, referred to as a “contact map”,
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in which each axis corresponds to the complete genome and entries in the matrix represent Hi-C contact
counts (Fig. 1B). In practice, the genomic axes are discretized using fixed-width bins. The bin size is thus
inversely proportional to the effective resolution of the contact map. The contact map can be thought of as
the adjacency matrix of a corresponding Hi-C graph, in which nodes are genomic loci (bins) and edges are
weighted by the corresponding contact counts (Fig. 1C). Our goal is thus to find dense subgraphs in this Hi-C
graph.
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Figure 1: (A) Schematic of typical inter-chromosomal genome organization in mammals. Inter-chromosomal in-
teractions mainly involve genomic domains that extrude from chromosome territories and engage with a variety of
membraneless structures involved in gene regulation. (B) A Hi-C matrix captures the contact frequency of loci in a
genome-wide fashion. Zoomed in boxes illustrate that specific loci located on different chromosomes can exhibit strong
trans contacts among themselves. (C) Trans-C employs a random walk algorithm that traverses the Hi-C contact
graph choosing to move to a node (bin) probabilistically based on the strength of the edge (interaction). (D) The
output is a list of loci ranked by how frequently they are visited during the random walk: more frequently visited loci
interact more strongly in trans.

The problem of dense subgraph discovery arises in many application domains and consequently has been
very widely studied. Depending on the exact formulation and the notion of density, theoretical computer
science has shown that the problem complexity ranges from easily solved in linear time via a max flow
algorithm (Khuller and Saha, 2009) to computationally intractable (NP-hard) (Charikar, 2000). Common
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techniques to approximate the latter case, to which our specific problem belongs, are greedy approaches,
which iteratively select the best option available at the moment without guaranteeing that this strategy will
bring the global optimal result, (Charikar, 2000) and semi-random models, which account for model errors by
incorporating both adversarial and random choices in instance generation (Bhaskara et al., 2010).

trans-C approaches the discovery task of finding strongly interacting loci in trans using a random walk
with restart algorithm (Fig. 1C). This general approach has been applied successfully in domains as diverse
as web searching (Gibson et al., 2005), protein remote homology detection (Weston et al., 2004), and gene
functional prediction (Mostafavi et al., 2008). Prior to the random walk operation, trans-C performs three
pre-processing steps on the provided Hi-C contact map. First, to control for sequencing and accessibility
biases, Hi-C counts are ICE-normalized (Imakaev et al., 2012), thus equalizing the sum of counts per row and
column in the matrix. Second, the resulting matrix is processed using a binomial model to estimate interaction
p-values based on an empirical null model that accounts for biases arising from chromosomal territorialization
(i.e., small, gene-rich chromosomes generally occupying the nuclear interior and interacting more with each
other than with large, gene-poor chromosomes). Third, the negative log p-values are used as weights for the
network edges and subsequently refined using a “donut filter” (Rao et al., 2014) to highlight points that are
local maxima. trans-C then carries out a random walk with restart algorithm on the pre-processed Hi-C
graph. Each walk is initiated from a randomly selected locus and moves from a node to a neighboring one
probabilistically based on the weight of the edge. A parameter « controls the probability that the walk will
restart at a new, randomly selected locus. Mathematically, as an infinite number of walks are performed, the
frequency with which each node is visited converges to a stationary distribution. This distribution can be
computed analytically using the Perron-Frobenius theorem. We use the stationary distribution to obtain a
ranked list of trans interacting bins (Fig. 1D), because the most frequently visited nodes are the ones that
interact most strongly with the seed loci.

Trans-C uncovers the clustering of var genes critical for P. falciparum immune
evasion.

Having developed trans-C, we set out to test its ability to uncover known sets of loci that interact together
in trans in three different organisms. First, we focused on the protozoan Plasmodium falciparum, the parasite
responsible for the most lethal form of malaria, which has a haploid nuclear genome of 22.9 Mb across 14

chromosomes.
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Figure 2: (A) Schematic of Plasmodium falciparum in the trophozoite stage of its red blood cell life cycle, with a
zoomed in view of the nucleus highlighting its Rabl-like structure and the clustering of the var genes in a repressive
heterochromatic cluster. (B) Contact heat map comparing trans interactions among all 60 var genes versus 60
randomly selected bins. Clis contacts are in grey. (C) Performance evaluation of trans-C-mediated identification of
var gene clustering. We plot the ROC curves for two different life stages of P. falciparum. The var gene clustering is
essential in both stages and is uncovered by the random walk algorithm of trans-C with similar high AUROC (0.94 and
0.93 for trophozoite and schizont, respectively). We also report the performance of a simpler greedy heuristic (dotted
lines).
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The three-dimensional organization of the P. falciparum genome is strongly associated with gene expression
(Ay et al., 2014), particularly for genes involved in pathogenesis, immune evasion, and master regulation of gene
expression (Bunnik et al., 2018). Among these are the var genes, a family of 60 virulence genes responsible for
the antigenic variation of the parasite and evasion of the host immune system. Interestingly, only a single var
gene is active at a given time, the other var genes being maintained in a perinuclear cluster of heterochromatic
telomeres (Fig. 2A) (Duffy et al., 2017). This cluster is an excellent test case to validate the ability of trans-C
to uncover a group of biologically important genes that co-localize in 3D from Hi-C data.

To this end, we downloaded the Hi-C data for two stages of the P. falciparum life cycle, trophozoite and
schizont, both of which are known to be characterized by trans contacts between var genes (Ay et al., 2014).
We binned the genome at 10 kb resolution and processed the data as described in detail in Methods. To
visually highlight the varcluster, we extracted the bins containing var genes and also drew 60 bins at random
from the full set of genomic loci. The submatrix of trans contacts formed by the concatenation of the two
sets of bins shows a striking contrast between the wvarand non-var loci, as expected (Fig. 2B). Next, we
selected three var genes at random to act as seed loci and examined whether trans-C (with o = 0.5) could
automatically identify the remaining 57 var gene loci. For comparison we used as a baseline a method based
on a greedy heuristic which iteratively selects the bins that interact most strongly with the selected loci (see
“greedy heuristic” in Methods for details). For each approach, we plotted a receiver operating characteristic
(ROCQ) curve, in which each element is a genomic bin, labeled as positive (var gene) or negative (other loci;
Fig. 2C). In both Plasmodium life stages, trans-C quickly found the majority of the var genes by ranking their
corresponding bins highly: of the top 50 bins, 28 contained a var gene, and all 60 var genes were recovered
within the top 280 bins. trans-C outperformed the greedy heuristic baseline, with an area under the ROC
curve (AUROC) of 0.94 compared to 0.88 (Fig. 2C). This demonstrates that a random walk approach is more
suited to the task of identifying trans cliques even in the context of a remarkably clear example.

Identification of Greek islands regulating the expression of mouse olfactory recep-
tor genes.
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Figure 3: (A) Schematic of inter-chromosomal contacts in mouse olfactory neurons (mOSN). The Greek islands form
a multi-enhancer hub that is segregated from the inactive olfactory receptor (OR) genes. (B) Performance evaluation
of trans-C-mediated identification of Greek islands clustering. We plot the ROC curve for a = 0.5 in mOSNs versus
their progenitors (horizontal basal cells, HBCs). Trans-C correctly identifies Greek islands clustering specifically in
mOSNs. (C) Aggregated heatmap of ¢rans contacts among the top 60 loci selected by trans-C in mOSN. Each square
in the grid represents an average 250 kb bin in a Hi-C matrix of 41 x 41 bins centered at each interacting pair of loci
(reference). The exhibited spot-like structure highlights the highly specific nature of the inter-chromosomal interactions
of the Greek islands.

To further validate trans-C we turned to the mouse and its 2.6 Gb diploid nuclear genome, consisting of 40
chromosomes. Studying chromatin organization in mouse olfactory sensory neurons (mOSN), the Lomvardas
lab discovered that chromatin regions associated with olfactory receptor gene clusters from 18 chromosomes
make specific and robust interchromosomal contacts that increase in strength with differentiation (Lomvardas
et al., 2006; Markenscoff-Papadimitriou et al., 2014; Monahan et al., 2017). These contacts are orchestrated
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by intergenic olfactory receptor enhancers that form a multi-chromosomal super-enhancer that drives the
monoallelic and stochastic expression of a single mouse olfactory receptor gene (Fig. 3A) (Monahan et al.,
2019). The mOSN-specific trans contacts are arguably the strongest trans contacts in a mammalian genome
known to date; the regions involved in such interactions were dubbed “Greek islands” since they are sprinkled
across the chromosomes as the tiny islands are in the Mediterranean sea. Importantly, in horizontal basal cells
(HBCs), the quiescent stem cell progenitors of mOSNs, these inter-chromosomal contacts are absent.

We applied trans-C to a published mOSN Hi-C data (Monahan et al., 2019) using the same resolution as
the original analysis, 250 kb. From the list of 63 previously reported Greek islands, we randomly selected five
to use as seeds, and we measured the ability of trans-C to uncover the remaining 58. As a negative control, we
used the HBC Hi-C data. As expected, trans-C successfully identifies the Greek islands in mOSNs (AUROC
= 0.93; Table S1), while it fails to do so effectively in HBCs (AUROC = 0.71, Fig. 3B). At a false positive
rate of 10%, 95% of known Greek islands are identified, though we speculate that some of the false positives
may actually represent previously unidentified Greek islands.

To visually verify whether trans-C detects specific interchromosomal contacts, we selected the top 60
predicted bins from the ranked stationary distribution (30% of which are known Greek islands). For each pair
of loci from this set of 60, we extracted from the Hi-C data a 41 by 41 matrix centered at their interaction,
and we averaged these matrices (Fig. 3C). The resulting contact heatmap exhibits very strong punctuated
signal in the middle, suggesting that the top 60 loci ranked by trans-C form specific interactions that are not
driven by larger, non-specific “neighborhood” features. Thus, trans-C efficiently pinpoints trans cliques even
in a complex eukaryotic genome.

We also used the Greek island data set to evaluate how strongly the behavior of trans-C depends on its
primary parameter, the random walk restart probability a. We varied o between 0 (no restart) to 1 (restart
after every step) in small increments. We observed that the performance of trans-C is stable in the range [0.3,
0.7], while it deteriorates significantly in the two extremes when it approaches 0 or 1 (Fig. S1). This behavior
is expected: when « is close to 0 the random walk restarts infrequently and so its stationary distribution
becomes less dependent on the seeding bins and is mostly determined by the topology of the Hi-C graph. At
the extreme, when o = 0 the walk is “memoryless” and entirely independent of the starting Greek islands
(not shown). On the other hand, when « is close to 1 there is little or no exploration along the graph. In this
setting, the Hi-C data is essentially ignored, and consequently no discoveries can be made.

Dissecting the RBM20 splicing factory during cardiomyocyte differentiation

We next sought to explore the sensitivity of trans-C in a more challenging model in the human genome.
We previously identified (Bertero et al., 2019) a network of gene loci that increase their association inter-
chromosomally during cardiac development of human pluripotent stem cells (hPSCs) and are targets of the
muscle-specific splicing factor RBM20 (Fig. 4A). Functional experiments indicated that the main RBM20
target, the large TTN pre-mRNA (which contains over 100 binding sites for RBM20), nucleates RBM20
foci that promote trans interactions with secondary RBM20 targets, which maximizes the efficiency of their
alternative splicing. We therefore dubbed the network a “trans interacting chromatin domain” (TID) and
the resulting structure a “splicing factory”. Of note, however, the cumulative interaction score of the TID
calculated from shallow Hi-C data (90 M contacts) was only modestly enriched compared to a null model (p
= 0.05), indicating that these interactions are less easily detected by Hi-C and are likely to be much more
transient in nature compared to those involving the Greek islands.

We set out to test whether trans-C would re-identify the RBM20 TID in an independent, more deeply
sequenced Hi-C dataset of hPSC differentiation into the cardiac lineage (ZNS billion read pairs per sample
(Zhang et al., 2019)). Besides various progenitors and early hPSC-derived cardiomyocytes (hPSC-CMs), this
dataset also contains older hPSC-CMs obtained after 80 days of in vitro differentiation and FACS-sorted using
an expression reporter for the mature marker ventricular myosin light chain 2 (MLC-2v; MYL2 gene). We
first attempted to recover the trans network of 16 RBM20 target genes from our original report, using five
of them (TTN, CACNA1C, CAMK2D, KCNIP2, CAMK2G@) as seeds for trans-C. Figure 4B shows the ROC
curve for day 0 (hPSCs), 15 (early CMs) and 80 (late CMs). The best performance is achieved using Hi-C
data from day 80 (AUROC = 0.84; Table S2), when cardiac development is most advanced, in line with the
important role of RBM20 in cardiac maturation (Guo et al., 2012). Second is day 15 (AUROC = 0.78), and
last is day 0 (AUROC = 0.75). The improvement in ROC area as differentiation advances is in line with
biological expectation (i.e., RBM20 is not expressed at day 0, moderately expressed at day 15, and maximally
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Figure 4: (A) Schematic of the RBM20 splicing factory, a muscle-specific inter-chromosomal structure organized by
the TTN pre-mRNA, which binds to > 100 copies of RBM20, thus nucleating foci that engage with other RBM20
targets to promote their alternative splicing (blue arrows). (B) Performance evaluation of trans-C in uncovering the
RBM20 splicing factory in early (day 15) versus late (day 80) cardiomyocytes (CMs) differentiated from pluripotent
stem cells (hPSC; also analyzed as “day 0” baseline control). ROC curves are calculated using a list of TTN-interacting
from our previous Hi-C study (Bertero et al., 2019). (C) Similar to B, but the positive list consists of loci directly
bound by RBM20. (D) Aggregated heatmap of trans contacts between the top 60 loci selected by trans-C in late CMs.
Each square in the grid represents an average 100 kb bin in a Hi-C matrix of 41 x 41 bins centered at each interacting
pair of loci extracted from the Hi-C data (reference). The dense region in the middle reveals the specific nature of the
trans interactions at the RBM20 splicing factory.

expressed at day 80). We note, however, that the performance at day 0 is better than random, suggesting
that some structure that brings the loci close together is present even in undifferentiated cells.

Encouraged by these results, we decided to use trans-C to expand our knowledge of the RBM20 TID. Our
original list of 16 genes was not the result of an unbiased search but rather reflected our prior knowledge of
RBM20 biology: these 16 genes were the known splicing targets of RBM20 in both human and rat hearts that
were also upregulated in hPSC-CM. As an alternative strategy to identify genes involved in the RBM20 TID
in an unbiased fashion, we hypothesized that such genes would encode for transcripts most strongly bound by
RBM20 and thus enriched within the splicing factory. To test this hypothesis we leveraged our recent dataset
that measured RBM20 binding to RNAs using enhanced UV crosslinking and immunoprecipitation (eCLIP)
(Van Nostrand et al., 2016).

We downloaded RBM20 eCLIP data from hPSC-CMs (Fenix et al., 2021), binned the genome at the same
resolution as the Hi-C matrix, 100 kb, and counted the number of peaks that fall in each bin. We selected
the five bins with the most eCLIP peaks, which contained the genes TTN, SLC8A1, OBSCN, NEAT1, and
LBD3. Using these as seed loci, we ran trans-C with @ = 0.5 on Hi-C matrices from differentiating hPSC-CMs
(Zhang et al., 2019). Our goal was to test whether trans-C would uncover the remaining 202 bins with eCLIP
peaks. We note that this experimental setup is very different from the previous ones. Here, we are using Hi-C
data to find binding sites in an orthogonal eCLIP dataset. The resulting ROC curves (Fig. 4C) show the
same trend discussed for Figure 4B: best performance is at day 80 (Table S3), second at day 15, and last at
day 0, consistent with biological expectation.

Next, we performed a second analysis in which we restricted the list of RBM20 targets to those whose RNA
is bound by RBM20 on at least three sites and is differentially spliced in hPSC-CMs with RBM20 knocked
out (Fenix et al., 2021). The resulting list of 45 high confidence RBM20 targets was efficiently recovered by
trans-C in day 80 hPSC-CMs, with AUROC = 0.84 (Fig. S2), compared to AUROC of 0.82 for the full list of
RBM20 bound loci.

Lastly, similarly to our observation for trans contacts between the Greek islands (Fig. 3C), the aggregated
contract frequency heatmap for loci involved in the RBM20 splicing factory showed a clear punctuated pattern,
supporting the spatial specificity of these interactions (Fig. 4D). In all, we conclude that trans-C captures
even weak and/or unstable yet biologically meaningful trans subnetworks associated with RNA biogenesis
and, further, that our method can be used in conjunction with independent datasets to interrogate different
but spatially proximal processes.


https://doi.org/10.1101/2023.09.21.558852
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.21.558852; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

TF binding loci exhibit strong interactions in trans

The identification of dense subnetworks of trans Hi-C contacts that are enriched for RBM20 targets sup-
ports our hypothesis that RNA biogenesis influences 3D chromatin organization by bringing into proximity
co-regulated nucleic acids, so as to maximize the efficacy and specificity of their processing (Fig. 5A (Bertero,
2021)). We specifically propose that, as in the case of RBM20, RNA factories arise from the clustered binding
of trans-acting factors to one or more core co-regulated genes and/or their encoded transcripts, which in turn
recruit accessory targets of the same factors. This hypothesis predicts the existence of both transcription
factories specialized for certain TFs and other RNA factories specialized for various RNA binding and regula-
tory proteins. We set out to test this hypothesis systematically using trans-C, as an example of its potential
applicability to address biological questions. First, we focused on TFs, hypothesizing that the genes most
strongly bound by a given TF would be associated with strong TIDs. To test this notion, we used the most
deeply sequenced Hi-C dataset to date: an ultra-deep Hi-C map of human GM12878 lymphoblastoid cells (Gu
et al., 2021), which contains in total a staggering 33 billion mapped reads, 3.7 billion of which correspond to
trans contacts. We performed our analysis at 100 kb resolution, which results in non-zero counts for 85% of
all pairwise trans contacts. The ENCODE project (ENCODE Project Consortium, 2012) produced chromatin
immunoprecipitation sequencing (ChIP-seq) data for 110 TF's in this cell line, providing an ample resource to
test our hypothesis in a systematic manner. For each ChIP-seq dataset we subdivided the human genome at
100 kb resolution and counted the number of peaks in each bin.

First, we took the 40 bins with the most peaks for each TF and calculated the weight of the subnetworks
formed by these bins. The distribution of this subnetwork weight across all 110 TFs is shown in blue in Figure
5B. For comparison, we randomly drew 1000 sets of 40 bins and plotted the distribution of their weight in
green. Clearly, the subnetworks of loci selected based on ChIP-seq peak density form stronger interactions
in trans than random sets of loci. This is a first important hint that many TFs may be indeed involved in
specific trans contact networks.

Second, for each TF individually, we formed a seed by selecting the five bins with the most peaks from its
corresponding ChIP-seq track, and we ran trans-C to identify a set of potential interactors in trans. We took
the top 40 predicted bins for a given TF and observed that these bins are enriched with ChIP peaks not only
for the TF that spawned the seed, but also for ChIP peaks of other TFs (Fig. S3). This is not surprising
because many TFs act in concert, and many loci contain proximal binding sites of several TFs (Ibarra et al.,
2020). When examining the weights of subnetworks formed by trans-C (TF-based seed, purple in Fig. 5B) we
noted that they were heavier on average than the subnetworks based on the ChIP-seq signal only (TF loci,
blue). This observation validates that trans-C finds loci that interact even more strongly in ¢rans with the
seed bins than the just the bins most bound by the respective TF.

We also assessed how well trans-C can build dense subnetworks when it is seeded from biologically unrelated
loci. To that end, we first drew 20 times five random loci to use as seeds and ran trans-C. The subnetworks it
built were significantly weaker than the TF-based ones. This is likely due to the fact that a randomly drawn
seed set likely includes loci that are not interacting with one another, while the loci in the TF-based seed
tend to have strong interactions in trans. Thus, in order to establish a more stringent baseline, for each TF
we repeatedly drew five random bins until we found a set that has the same total weight as the TF-based
seed. We called this random seed “matched random” and generated 20 such sets for each TF. Interestingly,
when using this matched random seed the subnetworks that trans-C found were once again weaker on average
than the ones it found using TF-based seed (Mann-Whitney test p = 0.004; orange in Fig. 5B). At an
individual level, the weight of subnetworks for 40% (44 out of 110) TFs identified from the TF-based seeds
were significantly stronger than those from matched random seeds (Fig. 5C) These observations confirm the
common sense conception that the interchromosomal interactions of biologically unrelated loci are mostly
noise, while providing more rigorous support to the hypothesis that co-regulated loci are often enriched for
trans contacts.

Examining the distribution of the trans-C subnetwork weights identified for different TFs (Fig. 5B, pur-
ple) we noticed a bimodal distribution, indicating that some TFs are associated with stronger TIDs. This
bimodality did not correlate with differences in the expression level of the two groups of TFs (data not shown),
nor in their preference to bind to loci in the A or B compartments (Fig. S4). Intrinsically disordered regions
(IDRs) within proteins, which lack a defined tertiary structure and are thus prone to self-aggregation, are
emerging as an important mediator of subcellular condensates involved in multiple aspects of cell function,
including nuclear regulations (Wright and Dyson, 2015). We thus investigated the correlation between the
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Figure 5: (A) Schematic of the mechanistic hypothesis for the formation of specialized RNA factories involving
trans interacting chromatin domains. Multiple copies of trans-acting regulatory factors (i.e., transcription or splicing
factors) bind to core nucleic acids, aggregate to form new clusters and/or enrich pre-existing ones, and recruit accessory
co-regulated nucleic acids. RNA factories promote the efficacy and accuracy of RNA biogenesis processes (thicker black
arrows). (B) Trans-C-identified subnetworks in lymphoblastoid cells built from loci characterized by strong binding
of transcription factor (TF) have dense contacts. We plot the distribution of subnetwork weights for five types of
equally sized sets of loci: (1 - green) sets of randomly drawn loci; (2 - yellow) sets built by trans-C from a seed of five
randomly drawn loci; (3 - blue) sets of loci with the highest number of ChiP-seq peaks for a given TF; (4 - orange)
sets built by trans-C from a random seed of five loci whose starting subnetwork weight was matched to the seed of
group 5; and (5 - purple) sets built by trans-C from a seed of five loci with highest number of ChiP-seq peaks for a
given TF. On average, sets seeded from loci most strongly bound by TFs interact more strongly in ¢rans than any of
the other four types of sets of loci, including the stringent “matched seeds” controls (p-value by Mann-Whitney test).
(C) For each TF analyzed in B, we compare the weights of subnetworks obtained with trans-C from “TF-based seeds”
(single data point) and “matched seeds” (average of 20 subnetworks £ standard deviation). In red are comparisons
with significantly different weights (p-value < 0.05 after FDR correction). (D) The strongest TF-based subnetworks
correspond to TFs with a higher intrinsically disordered protein (IDP) score. We plot the IDP scores for the bottom
and top quartile of TFs ranked by the weight of the resulting trans-C “TF-based seeds” subnetwork (purple violin plot
in B). The difference is statistically significant by Mann-Whitney test.

intrinsic disorder in TF structure and the strength of the trans-C subnetworks they are associated with. For
this analysis, we took the TFs whose seeds gave rise to the strongest and weakest subnetworks (top and bot-
tom 25% of the purple distribution in Fig. 5B, Table S4). We used the tool developed by the Dosztényi lab
(Mészéros et al., 2018) to calculate an average intrinsically disordered protein (IDP) score for each TF in the
two groups, and plotted them in Figure 5D. Interestingly, the difference between the two groups is statistically
significant (Mann-Whitney test p = 1.4 x 1075), suggesting that the TFs with more intrinsically disordered
regions form stronger interactions in trans. In all, trans-C allowed us to identify a large set of TF enriched
for IDR regions that are involved in strong TIDs and that may thus be important in efficient transcriptional
regulation of their target genes.

RNA binding proteins create strong trans interacting sets

Encouraged by these results on TF subnetworks, we also examined whether RNA binding proteins (RBPs)
are generally associated with TIDs. Because only a few RBP binding profiles are available for GM12878, for
this analysis we turned to human K562 cells, another lymphoblastic line, for which ENCODE reports 139
eCLIP datasets. Accordingly, we used a Hi-C matrix for that cell line from the ENCODE portal, although it
had far fewer trans reads (360 million) than the deeply sequenced GM12878. Similar to our TF analysis, we


https://doi.org/10.1101/2023.09.21.558852
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.21.558852; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

first divided the genome into 100 kb bins and counted the number of peaks in each bin for each RBP. Then,
for each RBP individually, we formed a seed by selecting the five bins with the most peaks and ran trans-C to
identify a set of potential interactors in trans. To form a null model per RBP, we repeatedly drew 20 contact
frequency-matched random seeds. We report the average total weight of the matched random seeds compared
to the RBP seed in Figure 6.

RNA binding protein-associated trans cliques

=<

g RBP p value
_%’ 5121 PRPF8  0.0021
2 RPS11 0.0021
£ ZRANB2  0.0021
'§ 64 WRN 0.0024
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=
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Figure 6: A subset of trans-C-identified subnetworks in lymphoblastoid cells built from loci characterized by strong
binding of RNA binding protein (RBP) have denser contacts than the corresponding random null model. We plot
the weight of a RBP-based subnetwork and the average weight of 20 matched random seed subnetworks (error bars
correspond to the standard deviation) for 139 RBPs. In red and reported on the right are those with significant p-values
after FDR correction.

Most RBP subnetworks built by trans-C were comparatively as dense as those from the corresponding
matched random seed, lying broadly along the y = z line. Nevertheless, several outliers are notably denser.
To assess this observation quantitatively we performed a signed ranked test per RBP and FDR controlled
the corresponding p-values. Seven proteins had corrected p-values lower than 0.05, which we considered as a
significance threshold (indicated in red in Fig. 6 and listed in Table S5). Distinctly from TFs, RBPs associated
with significantly stronger trans-C subnetworks were not characterized by higher IDP scores (data not shown),
indicating that other characteristics may explain their specific behavior in trans genome organization. In all
these analyses indicated that, unlike TFs, RBPs are not generally involved in stronger than average TIDs, but
that a small subset of RBPs is associated with very strong ones (enriched up to ~ 16 fold).

Discussion

Potential inter-chromosomal interactions occupy 90% of the pairwise 3D DNA contact space, and a sizable
fraction of measured interactions. While in certain species whose nucleus is characterized by chromosome
territories — such as humans and other mammals — a large fraction of trans contacts are likely nonspecific,
illuminating an even small fraction of specific and functional inter-chromosomal interactions may provide
important advances in our understanding of nuclear mechanisms such as transcription and splicing. In this
context, trans-C is an important step towards refined analytical methods to probe the trans contact space for
functional gene networks.

The study of trans contacts requires statistical methods designed for the specific task at hand. Approaches
devised for the analysis of cis interactions control for some biases that are not applicable to trans ones, such
as correction for the linear genomic distance between the interacting loci. To date, most analytical tools for
Hi-C data have been limited to cis interactions (Lin et al., 2019). Recent network-based strategies to study
inter-chromosomal interactions from bulk and single cell Hi-C (Kaufmann et al., 2015; Bulathsinghalage and
Liu, 2020; Joo et al., 2023) proposed probabilistic models that focus on identifying large patterns of trans
contacts (i.e., those involved in nuclear speckles and nucleoli) rather than small sets of interactions linked to
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a specific process. Trans-C is, to the best of our knowledge, the first method that controls for chromosome
territory biases to identify gene networks that “stand out” from other trans interactions resulting from the
random intermixing of neighboring chromatin domains.

We first validate the ability of trans-C to detect known examples of functional trans contacts. We find that
the approach outperforms a simpler greedy heuristic even in the case of the simple genome of P. falciparum,
which is characterized by remarkable trans contacts among var genes. In more complex and larger mammalian
genomes, trans-C not only identifies with high precision the mOSN Greek islands, but also the less striking
example of trans contacts represented by the RBM20 splicing factory. Thus, trans-C may find applicability
across nuclear genomes with different sizes and types of organization, and trans contacts of varying strength.
We demonstrate the utility of trans-C by using it to systematically seek for trans cliques around loci most
strongly bound by one of many TFs or RBPs. These analyses support the existence of a large number
of statistically significant TIDs readily measurable from Hi-C data, particularly in the case of intrinsically
disordered TFs. The concept of “bookmarked” transcription factories, Pol II clusters that are specifically
enriched for a set of TFs and their target loci, has been proposed over a decade ago (Cook, 2010), but
examples of this concept have been sparse (reviewed in (Bertero, 2021)). Our analysis of 110 TFs provides an
important piece of evidence to support this model for a sizable fraction of TFs, though a mechanistic dissection
of these leads will be required to firm up the conclusions.

Intriguingly, the few RBPs associated with significant TIDs are involved in a wide variety of functions. Not
only do we identify several factors involved in major and minor spliceosomes (PRPF8 and BUD13), but we
also identify alternative splicing regulators (ZRANB2), a multifunctional RNA processing factor (TARDBP), a
component of the RNA exosome complex (EXOSC10), a ribosomal protein (RPS11), and even a DNA helicase
involved in homologous recombination (WRN). We speculate that these factors exemplify a wide range of
chromatin structures involving both cis and trans interactions that regulate not only transcription but also
other aspects of nucleic acid biology such as DNA replication and repair, or various aspects of RNA biogenesis.
Notably, several of the RBPs highlighted by our trans-C analysis are known to be mutated in severe human
monogenic diseases: PRPF8 in retinitis pigmentosa (McKie et al., 2001), WRN in Werner syndrome (Yu
et al., 1996), and TARDBP in amyotrophic lateral sclerosis (Sreedharan et al., 2008). Moreover, mutations
in ZRANB2 have been linked to unfavorable prognosis in breast and liver cancer (Tanaka et al., 2020), while
RPS11 has been shown to be a key player in poor outcomes of glioblastoma patients (Dolezal et al., 2018).
Whether misorganization of trans genome architecture is implicated in the pathogenesis of these diseases is
an interesting topic for future investigations.

Overall, our work focuses on poorly studied between-chromosome contacts and provides an efficient compu-
tational framework for identifying potentially biologically important loci that interact in trans. We demonstrate
the flexibility and sensitivity of trans-C and provide examples of how our approach can be used to identify can-
didate gene networks for subsequent hypothesis-driven studies. Application of trans-C to the growing number
of Hi-C datasets from the ENCODE (ENCODE Project Consortium, 2012) and 4D Nucleome consortia (Reiff
et al., 2022) will reveal novel cell- or disease state-specific trans networks. Minor adaptations of trans-C will
also allow exploration of other proximity-ligation independent assays, such as SPRITE, GAM, and TSA-seq
(Beagrie et al., 2017; Chen et al., 2018; Quinodoz et al., 2018), which will collectively offer the potential to
accurately characterize inter-chromosomal architecture at varying spatial resolutions.

Methods

Overview

Trans-C takes as input a Hi-C contact matrix H of interaction counts and an initial set S of loci of interest
(“seed loci”) and outputs a set of loci U (containing S) that interact strongly together in trans. We refer to
U and its associated edges as a “dense subgraph.” We model the Hi-C interaction matrix H as a weighted
graph G = (V, E, W) with nodes V corresponding to the genomic loci (bins), edges E between pairs of loci,
and weights W on the edges reflecting the strength of the interactions represented by the edges. Thus, the
weight w;; on edge e;; between loci ¢ and j corresponds to the contact matrix entry h;;. Our goal is to find a
subset of loci that exhibit strong inter-chromosomal contacts. We propose two methods to solve this problem,
one that uses a random walk with restarts and a second that formulates the problem as a dense subgraph
optimization and solves it using a fast greedy heuristic.
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H Hi-C matrix

h; Contact count between loci ¢ and j
G Graph corresponding to H

v Set of all genomic loci

E Set of edges in G

W Set of weights on the edges of G
€;;  edge connecting loci ¢ and j

w;,; weight associated with edge e; ;

U Set of all genomic loci
S Set of seed loci

l User-specified size of desired subgraph

P Inner radius of the donut filter

q Oter radius of the donut filter

C Vector of peak counts

vj Boolean indicating wether locus 4 is in set U

Mij Boolean indicating wether locus ¢ interacts with j

Ay Change in the clique density score by adding loci k

T The stationary distribution the random walk converges to

Table 1: Notation

Random walk with restarts

Our first solution carries out random walks with restarts over the graph G and then uses the results of the
random walk to select the nodes in U. The walk is initiated from the set of seed loci S. At each step, with
probability « the walk restarts from a randomly selected seed locus, and with probability 1 —« the walk moves
to a neighboring locus picked probabilistically based upon W. Specifically, if A/(7) are the loci 7 interacts with,
then the walk goes from locus ¢ to locus j € N(i) with probability proportional to w; ;/ ZkeN(i) w; k. That
is, if at time ¢ the walk is at locus ¢, then the probability that it transitions to locus j at time ¢ + 1 is

1ij Wi, j +

= (1—
Pij = ( a)ZkeN(i) Wi,k

vy
ol
where 7;; = 1if j € N(¢) and 0 otherwise, and v; = 1if j € U and 0 otherwise. Hence, the guided random walk
is fully described by a stochastic transition matrix P with entries p;;. This stochastic matrix is non-negative
and by the Perron-Frobenius theorem it has a right eigenvector m corresponding to eigenvalue 1. Therefore,
7P = 7, and we can efficiently compute the stationary distribution 7 that the guided random walk converges
to. The score of each locus j is given by the jth element of 7. The loci that have high scores are most
frequently visited and, therefore, are more likely relevant as they are strongly connected to the seed loci. We
use these scores to rank all loci and include the top ¢ loci in U, where £ is a user-specified parameter. In this
work, we use ¢ = 40 unless otherwise stated.

Greedy heuristic

Our second solution builds a ranked list of loci in U in a greedy fashion. In this approach, we formalize
our goal as finding U € V such that the subgraph induced by |U| is dense; i.e., the following quantity is large:

score(U) = Z w;

i,j€U

We note that when we constrain the size of U, the problem is computationally hard as it can be reduced to
the maximum clique problem, which is NP-complete. As in the previous approach, we assume that the user
specifies an initial set S of seed loci, as well as the desired subgraph size £. Thus, formally, the optimization

problem we aim to solve is

max score(U 1
|U|=¢,SCcUeV ( ) ( )
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We propose to maximize Equation 1 using a greedy algorithm. The procedure begins by adding the seed loci
S to the initially empty set U. Then, in each step the heuristic expands U by examining all loci not currently
in U and selecting to add to U the one that yields the largest increase in Equation 1. Mathematically, the
greedy step finds

max Ay = score(|U Uk|) —score(U) = Wy
S = seone(U U D) = score(U) = 3

Ties are broken randomly. The greedy selection proceeds as long as Ay > 0 and |U| < 40. In practice, in the
calculation of A we exclude the single strongest interaction between k and U. We do so because we don’t
want a single very large wy, ; to dominate Ay; instead, our aim is that all loci in U interact strongly.

Data pre-processing

Prior to searching a given Hi-C matrix for dense subgraphs, we perform three pre-processing steps. First,
we normalize the Hi-C matrix using the iteractive correction and eigenvalue decomposition (ICE) procedure
(Imakaev et al., 2012). This procedure iteratively normalizes rows and columns of the matrix, producing as
output a matrix in which the marginal values are all equal to a specified constant. We carry out the procedure
on the entire Hi-C matrix, including cis and trans contacts, using the python package “iced” (Servant et al.,
2015).

Second, we adjust the matrix entries to account for the fact that chromosomes tend to occupy specific
regions of the nucleus, called chromosomal territories, and as a result some pair of chromosomes interact more
frequently. For each pair of chromosomes L and M (L # M) we find the total number of interactions between
any locus ¢ in L and j in M: T » = ZWeL;WeM hij. If T is the total number of trans-interactions in H,
then we rescale contact count h;; as h;j = h;; *T/Tp ar. During this step, we set all cis contacts (¢ and j are
on the same chromosome) to zero.

Third, we process H using a “donut filter” to emphasize points that are local minima in the 2D contact
map (Rao et al., 2014). Given a trans contact (i, j), we define its donut background as the set of all loci that
are at least p loci away from (4, j) but no further than ¢ loci away and which do not lie along the i or j axes.
Intuitively, p is the radius of the hole of the donut centered at (,j), ¢ is the outer radius of the donut, and
the donut has been sliced in four pieces along the ¢ and j axes. Mathematically,

1 itq  jtg i+p  jtp i—p—1 i+q Jj—p—-1 jta
DN(i,j) = N E E hap — E E hap — E ha,j — E ha,j — E hy,i — E hy,i
P9\ a=i—qb=i—q a=i—pb=i—p a=i—q a=i+p+1 b=j—q b=j+p+1

where we divide the sum by the total number of loci DN, ;, in the donut to obtain the average strength of
interactions in the donut. The enrichment for the contact (i, j) with respect to its local background can then
be calculated as h; j/DN(i,j). In practice, we select p = 2 and ¢ = 20, and we set w; ; = h; ;/DN(3, j).

Datasets

We apply our method to Hi-C data from three organisms. First, for Plasmodium falciparum, we ob-
tained Hi-C matrices from the trophozoite and schizont stages of the development of the parasite (accession
GSE126074) (Bunnik et al., 2018). As seed loci, we selected five genes at random from a curated list of
virulence genes, which are essential for the evasion of the host immune system and are known to come in close
contact in the nucleus (Gardner et al., 2002).

Second, for we downloaded mouse Hi-C data from the mature olfactory sensory neuron (4DN Portal id:
4DNFI3ZM6726I) (Monahan et al., 2019). As seed loci, we used five randomly selected loci from the list of 63
intergenic regions labeled as Greek islands by the authors of the study.

Third, we used human Hi-C matrices from three timepoints during cardiomyocyte differentiation day 0
(4DNFIT5YVTLO), day 15 (4DNFIIOUG5RF) and day 80 (4DNFISRH55DOQ) (Zhang et al., 2019). The raw
data was provided at 10 kb resolution, which we converted to 100 kb resolution. From the published list of 16
RBM20 targets (Bertero et al., 2019), we selected TTN, CACNA1C, CAMK2D, KCNIP2, and CAMK2G as
seed loci based on prior validation of the trans contacts between these loci.

In addition, we downloaded ChIP-seq data for 110 human transcription factors (TF) in the GM12878 cell
line and 139 eCLIP RNA binding proteins in the K562 cell line from the ENCODE portal (ENCODE Project
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Consortium, 2012). We split the human linear genome in 100 kb bins, and for a given protein ¢ counted the
number of peaks in each bin, producing a count vector C;. When more than one dataset is present for a given
protein, we aggregated the peaks from the datasets for that protein. For the TF analysis in the GM12878 cell
line we used the ultra-deep sequenced Hi-C matrix from (Gu et al., 2021) and for the RBP analysis in the
K562 cell line- the intact Hi-C matrix (ENCFF621AIY) from ENCODE.
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Supplementary Figure S1: Performance of trans-C in recovering the Greek islands in mouse olfactory neurons with
different values of the parameter alpha (refer to Fig. 3B).
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Supplementary Figure S2: Performance of trans-C in recovering a recall list of 45 high confidence RBM20 targets
in late CMs (refer to Fig. 4C).
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Supplementary Figure S3: Enrichment for TF peaks in subnetworks built by trans-C from TF-based seeds (refer to
Fig. 5B, violet plot). Each row corresponds to a TF and each column to a TF-based subnetwork built by trans-C. For
each TF-based subnetwork we report enrichment for peaks of other TFs using a hypergeometric test, and report the
negative logarithmic p-value in the corresponding cell.
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Supplementary Figure S4: Refer to Fig. 5B, violet plot. TFs that yielded the top and bottom quantiles of subnetwork
strength show no difference in their preference to bind loci in the A or B compartments. The y-axis measures the fraction
of bins bound by a TF that are in A compartment.
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