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Over the past 30 years, a community of scientists has pieced together every base pair of the human reference genome from telomere to 
telomere. Interestingly, most human genomics studies omit more than 5% of the genome from their analyses. Under “normal” circum-
stances, omitting any chromosome(s) from an analysis of the human genome would be a cause for concern, with the exception being sex 
chromosomes. Sex chromosomes in eutherians share an evolutionary origin as an ancestral pair of autosomes. In humans, they share 3 
regions of high-sequence identity (∼98–100%), which, along with the unique transmission patterns of the sex chromosomes, introduce 
technical artifacts in genomic analyses. However, the human X chromosome bears numerous important genes, including more “immune 
response” genes than any other chromosome, which makes its exclusion irresponsible when sex differences across human diseases are 
widespread. To better characterize the possible effect of the inclusion/exclusion of the X chromosome on variants called, we conducted a 
pilot study on the Terra cloud platform to replicate a subset of standard genomic practices using both the CHM13 reference genome and 
the sex chromosome complement-aware reference genome. We compared the quality of variant calling, expression quantification, and 
allele-specific expression using these 2 reference genome versions across 50 human samples from the Genotype-Tissue Expression con-
sortium annotated as females. We found that after correction, the whole X chromosome (100%) can generate reliable variant calls, allow-
ing for the inclusion of the whole genome in human genomics analyses as a departure from the status quo of omitting the sex 
chromosomes from empirical and clinical genomics studies.
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Introduction
The X and Y chromosomes in placental mammals share an evolu-
tionary origin as an ancestral pair of autosomes (Graves 2008). 
Due to this shared ancestry and subsequent chromosomal rear-
rangements, the X and Y chromosomes in humans are highly di-
vergent yet share regions of high-sequence identity (∼98–100%; 
Fig. 1a), which introduces regions of varying ploidy across this 
chromosomal pair. Although this is well understood biologically, 
it introduces technical artifacts within modern genomic analyses 
that require correction to prevent potentially erroneous conclu-
sions (Webster et al. 2019; Carey et al. 2022). Although these tech-
nical artifacts have remained ignored in many empirical and 
clinical studies, they have been used as a justification to ignore 
the sex chromosomes on a grand scale and, therefore, the import-
ance of sex-linked variation to human health is likely to be greatly 
underestimated (Wise et al. 2013; Khramtsova et al. 2019; Natri 

et al. 2019; Köferle et al. 2022; Inkster et al. 2023; Sun et al. 2023). 
In this study, we aim to better grasp the scope of data lost by ex-
cluding or misrepresenting the sex chromosomes in human gen-
omics. We urge empiricists and clinicians to confront these 
issues moving forward to simultaneously increase the number 
of genome-wide association studies and reduce the number of 
autosome-wide association scan studies currently being pub-
lished (Sun et al. 2023).

The typical human genome contains a diploid count of 46 chro-
mosomes (2n = 46), but reference genome-based analyses require 
a haploid representation of each chromosome for correct infer-
ence (e.g. n = 23). In humans, the reference genome complement 
includes haploid representations for each autosome (n = 22) but 
not the sex chromosomes X and Y (n = 2); thus, the human refer-
ence genome contains an n = 24 chromosome representation 
(Fig. 1b). The X and Y deviate from autosomal expectations in 
that (1) not all individuals possess a Y chromosome, making the 
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mapping of all reads to the Y chromosome erroneous in XX (or X0 
for example) samples and (2) the X and Y retain regions of high- 
sequence similarity (maintaining between 98 and 100% sequence 
identity) due to their shared ancestry (Olney et al. 2020; Rhie et al. 
2022). Thus, particular regions on the X and Y chromosomes vio-
late the assumption that reference genome representation for lin-
ear alignments be uniformly haploid.

According to the most recent telomere-to-telomere (T2T) hu-
man reference genome (CHMv2.0), the X chromosome makes up 
5.04% of the total genome size and contains approximately the 
same percentage of annotated genes (Nurk et al. 2022). Thus, 

many published studies in humans blatantly ignore 5% or more 
of the human genome when conducting routine genomic analyses 
(Wise et al. 2013; Koboldt 2020; Zverinova and Guryev 2021). 
Indeed, despite recent advances in methodology to control for 
known technical artifacts inherent when analyzing the sex chro-
mosomes (e.g. Webster et al. 2019), little progress has been made 
to further incorporate the X chromosome into broader biological 
analyses (Wise et al. 2013; Carey et al. 2022; Sun et al. 2023).

We set out to identify the extent of technical artifacts intro-
duced by using the most complete human genome assembly cur-
rently available. Specifically, we aimed to better understand the 

(a)

(d)

(b)

(c)

Fig. 1. Overview of technical artifacts on sex chromosomes for read mapping and variant calling. a) Overview of regions of high-sequence identity 
between the X and the Y chromosomes. b) NGS reads originating from a karyotypically diploid XX individual. c) How reads from an XX-karyotype 
individual align to the Default reference and how masking the Y chromosome in these cases improves read MQ in these regions. d) Connecting changes in 
read mapping to differences in called variants across the X chromosome in the analysis presented in this paper. Dark/black regions can be viewed as 
presumed false negatives (variants missed with the Default reference), while light/gray areas can be viewed as false-positive calls (variants unique to the 
Default reference). Overlapping variant calls between the 2 reference genomes have been removed. The 3 regions that contain the most incorrect calls 
using the Default reference are the 2 PARs (beginning and end of the plot) and the XTR (just right of the plot center). SNPs are binned into 1 Mb windows.
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benefits of accurately representing the sex chromosome comple-
ment (SCC) when conducting standard genomic analyses. To 
parse the effects of the T2T-CHM13 reference genome on down-
stream analyses, we conducted parallel analyses using the 
GenBank default reference genome (Default) and a sex chromo-
some complement–aware reference (SCC-aware) using whole- 
genome resequencing and RNAseq data for 50 individuals from 
the Genotype-Tissue Expression (GTEx) project. We found that 
every analysis suffered in some capacity (in either accuracy, ro-
bustness, or both) because of not using the reference genome ap-
propriate for the data. In line with observations from previous 
simulation studies, we found an overwhelming number of new 
variants called, using an SCC-aware reference, that are missed 
when using a Default reference (Oill 2022) and that are focused 
in regions with higher-sequence similarity to the Y chromosome 
than a large part of the X chromosome [i.e. both pseudoautosomal 
regions (PARs) and the X-transposed region (XTR)]. These differ-
ences are substantial and constitute ∼5% of the total variants on 
the X chromosome.

Methods
Computational overview
All primary analyses for this project were conducted on the Terra 
platform (Schatz et al. 2022), which interfaces multiple biomedical 
genomic databases with Google Cloud (GCP) through the NIH 
Cloud Platform Interoperability Effort. As such, all analyses de-
tailed below were written in Workflow Description Language; 
they are available for reuse here (https://github.com/ 
DrPintoThe2nd/XYalign_AC3) and are also available for integra-
tion into others’ custom Terra workspaces via Dockstore 
(https://dockstore.org). Further, all analyses were conducted in a 
single, stable Docker container (Merkel 2014) including the follow-
ing software and their dependencies (in alphabetical order): 
BamTools [v2.5.2] (Barnett et al. 2011), BBMap [v38.96] (Bushnell 
2014), BCFtools [v1.15.1] (Li 2011), BEDTools [v2.30.0] (Quinlan 
and Hall 2010), bwa [v0.7.17] (Li and Durbin 2009), gatk4 
[v4.2.6.1] (McKenna et al. 2010), HISAT2 [v2.2.1] (Kim et al. 2019), 
OpenSSL [v1.1.1q] (OpenSSL Project 2003), pandas [v1.4.3] 
(McKinney 2010), RTGTools [v3.12.1] (Cleary et al. 2015), salmon 
[v1.9.0] (Patro et al. 2017), SAMBLASTER [v0.1.26] (Faust and Hall 
2014), SAMtools [v1.15.1] (Li and Durbin 2009), and Trim Galore! 
[v0.6.7] (Martin 2011; https://doi.org/10.5281/zenodo.5127899). 
This Docker is publicly available for reuse (https://hub.docker. 
com/r/drpintothe2nd/ac3_xysupp).

Data description
We selected a subset of 50 individuals annotated as female (N =  
50, 46, XX) from the GTEx project (Aguet et al. 2020). All samples 
were consistent with 46, XX-karyotype, except for one, which we 
discarded because of issues related to anomalous read depth (ad-
justed N = 49). Each individual possessed a minimum of whole- 
genome resequencing data and RNAseq data for the same tissue; 
we chose the nucleus accumbens region of the basal ganglia be-
cause brain regions tend to have a high number of expressed 
genes (Li et al. 2017), and there is little difference in how distinct 
tissues are affected by reference genome mapping (Olney et al. 
2020).

Variant calling
Because genomic data are stored on the cloud in a compressed 
alignment format (either CRAM or BAM, depending on data 
type), we first converted these files to unaligned read files, filtered 

PCR duplicates, and trimmed them using SAMtools, BBMap, and 
Trim Galore!, respectively. We used bwa (DNA) and HISAT2 
(RNA) to realign them to 2 different configurations of the recently 
published T2T human reference genome (CHM13v2.0; Nurk et al. 
2022). The first configuration of the reference used was the default 
version downloaded from GenBank (Default), while the other was 
prepared as an XX-karyotype-specific reference genome by hard- 
masking the Y chromosome (SCC-aware) using XYalign (Webster 
et al. 2019). This type of approach also improves variant calling in 
XY samples (Oill 2022; Rhie et al. 2022). As the downloaded genome 
version does not include a mitogenome sequence, both the 
Default and the SCC-aware reference genomes were spiked with 
the mitogenome from the GRCh38 reference to help prevent 
mtDNA reads from mismapping to our regions of interest. We 
called variants on chromosome 8 and the X chromosome using 
GATK’s HaplotypeCaller and GenotypeGVCFs functions. We fil-
tered to select only biallelic variants with ≥4 alleles present in 
called genotypes (AN ≥ 4), high mapping quality (MQ > 40.0), a 
minimum quality by the depth of 7 (QD > 7.0), and a total read 
depth of ≥10 but ≤2,500 (DP ≥ 10.0 && DP ≤ 2,500.0). We parsed 
and interrogated the resultant VCF files using BCFtools, 
RTGTools, and BEDTools to better characterize the technical arti-
facts involved in mapping to the Default vs SCC-aware reference 
genomes.

RNAseq analyses
We analyzed the effects of reference genome on 2 common 
RNAseq data analysis, gene expression analysis, and allele- 
specific expression (ASE) analysis using salmon and GATK, re-
spectively. We generated Default and SCC-aware reference tran-
scriptomes for salmon analysis by extracting transcripts from 
the Default and SCC-aware genomes from the RefSeq annotation 
file using gffread [v0.12.1] (Pertea and Pertea 2020). We soft- 
masked an alternate version of the Default genome using 
RepeatModeler [v2.0.3] (Flynn et al. 2020) to facilitate the gener-
ation of index decoys via the generateDecoyTranscriptome.sh 
script accompanying salmon software distribution. We ran sal-
mon using the trimmed RNAseq reads for each individual for 
each reference transcriptome using the –gcBias and – 
validateMappings flags. For ASE, we split the filtered, genotyped 
VCF for each individual using BCFtools and combined each indi-
vidual VCF file with their realigned RNAseq data using GATK’s 
ASEReadCounter function. We compared the results between ref-
erence genomes as a deviation from a 1:1 relationship. For ASE, we 
also compared the efficacy of variant calling and alignment on the 
total number of transcripts identified as allele-specific.

Results
Sex chromosome–aware reference augments 
variant calling
On a broad scale, we identified that the SCC-aware reference 
alignment increased the number of properly paired reads mapped 
for many individuals (mean: +6,551; +0.0008%) and decreased in 
mapped reads with an MQ of 0 (MQ = 0) in every individual 
(mean: −605,396; −1.05%) (Supplementary Tables 1 and 2). 
These changes in read mapping resulted in changes in the total 
number of biallelic, single nucleotide variants (SNPs) among all 
49 individuals. In contrast, on chromosome 8, the total number 
of variants called were nearly identical between the 2 reference 
genome configurations, 719,826 variants and 719,824 variants 
for the Default and SCC-aware reference, respectively. At a 
per-individual scale, this course held, with the average number 
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of variants being 178,885 and 178,882 variants, respectively (Fig. 1; 
Table 1). However, this impartiality was not replicated on the X 
chromosome, where we found a sharp increase of 22,534 total 
SNPs (from 475,763 to 498,297) when using the SCC-aware refer-
ence configuration. This deviation also held for each individual 
in our study, with an average increase in the number of called 
SNPs from 98,877 to 105,413 (Table 1; Supplementary Table 3).

Across a large part of the X chromosome (∼95%), we found little 
variation between the 2 reference genome configurations (Fig. 1d; 
Table 2). Indeed, as a large part of the X chromosome shares little 
sequence identity between the X and the Y chromosomes, very 
few areas generate read mapping conflict between them, even 
for XX samples (Fig. 1). In the 3 regions of high-sequence similarity 
(PAR1, XTR, and PAR2), changes in the total number of SNPs called 
between reference configurations ranged from an 11% increase to 
a 730% increase in the XTR and PARs, respectively (Table 2). 
Indeed, we saw an increase in called variants in both genic 
(PARs: +564.39%; XTR: +13.59%) and intergenic (PARs: +894.71%; 
XTR: +10.37) regions (Table 2). Thus, while differences across a 
large part of the X chromosome are negligible, the differences in 
the number of called SNPs in the XTR and 2 PARs are significant 
in relation to both autosomes or to the rest of the X chromosome.

Default reference distorts gene expression 
quantification on the X
Somewhat contrary to the exceptional differences between vari-
ant calling with different reference genome configurations, differ-
ences between gene expression quantification are more subtle, 
yet still apparent (Fig. 2). For gene expression quantification, we 

calculated transcripts per kilobase million (TPM) and found that 
differences between expression levels are greatest in PAR1, fol-
lowed by PAR2, and then the rest of the chromosome 
(Supplementary Fig. 3a). However, contrary to expectations we 
find little change in expression values within the XTR 
(Supplementary Fig. 3a). Also contrary to expectations, we find 
no relationship between observed expression differences and 
transcript length (Supplementary Fig. 3b) or expression level 
(Supplementary Fig. 3c and d).

When examining ASE levels, or the allele balance ratio, we see 
an opposite pattern—where the higher expressed a transcript is, 
the more skewed the Default alignment data become on the X 
chromosome. We observed that allele balance values are general-
ly inflated using the Default reference (Fig. 2). Importantly, we see 
a premature summit, or abbreviated climb, from allele balance 
values from 0.5 to 1.0, when using the Default reference genome 
—where allele balance values >0.9 get rounded up to 1.0 (Fig. 2). 
Because there is an extra alignment step in ASE analysis relative 
to regular expression quantification (i.e. variant calling), we at-
tempted to parse which aspects of ASE analysis are most affected 
by which segment of the analysis. We paired each potential vari-
ant calling output (VCF file) with each potential RNAseq align-
ment output (BAM file) by rerunning the analysis in a 
“round-robin”, or “all-vs-all”, format. We found that the VCF file 
(and thus the reference genome used for variant calling) chosen 
to run ASE had the greatest influence on the number of recovered 
biallelic transcripts (Table 3).

Discussion
As expected, there were negligible differences in all analyses be-
tween results on chromosome 8 between Default and 
SCC-aware reference genomes (Fig. 2; Tables 1 and 3). However, 
the differences on the X chromosome were substantial (Figs. 1
and 2; Tables 1–3). The most numerous differences between the 
Default and SCC-aware reference genomes were the sheer num-
ber of (presumed) false negatives when using the Default refer-
ence, i.e. variants called using the SCC-aware reference but 
missed with the Default reference (Table 2). There were also (pre-
sumed) false positives, variants called with the Default reference 
that were absent in the SCC-aware reference; however, these 
made up a small fraction of the observed differences (Table 2). 
To expand on this concept, we calculated the major allele fre-
quencies for all sites in both the Default and SCC-aware VCFs 
(Supplementary Fig. 1) and then filtered out variants that overlap 
between the 2 (Supplementary Fig. 2). We expected that if 1 spec-
trum contained an increase in false positives the major allele fre-
quency would skew more heavily towards 1.0 (an increase in 
singleton calls). Indeed, this is exactly what we observed in both 
PAR regions and the XTR (Supplementary Figs. 1 and 2).

Although the PARs make-up only ∼1.77% of the X chromosome, 
they contain ∼5% of both genic (5.39%) and indiscriminate (all) 
SNPs (4.65%) within our sampled individuals. However, using 
the Default reference genome, these numbers are unfathomably 
low for both genic (0.85%) and indiscriminate SNPs (0.59%). This 
pattern also holds, albeit mediated by genetic divergence between 
X and Y alleles relative to the PARs, within the XTR. The XTR 
makes up ∼3.04% of the X chromosome, yet the numbers of called 
SNPs increase substantially when using the appropriate 
SCC-aware reference compared to the Default for both genic 
(2.2–2.4%) and indiscriminate SNPs (4.0–4.3%).

Our expression analyses of RNAseq data may be the first pub-
lished RNAseq analyses using the CHM13_v2.0 assembly. Our 

Table 1. Numerical differences in variant calling outcomes on 
chromosome 8 and the X chromosome between SCC-aware and 
default reference alignment.

Category Chrom Default SCC-aware % change  
(SCC/D)

Total SNPs 8 719,826 719,824 −0.0002%
Per-indiv. avg SNPs 8 178,885 178,882 −0.002%
Per-indiv. ref allele 8 540,938 540,939 0.0002%
Total SNPs X 475,763 498,297 4.74%
Per-indiv. avg SNPs X 98,877 105,413 6.61%
Per-indiv. ref allele X 376,884 392,882 4.07%

Numbers are quality-filtered biallelic SNPs for chromosome 8 (top) and the X 
chromosome (bottom).

Table 2. Dissection of differences in variant calling within regions 
of interest across the x chromosome.

Category Default SCC-aware % change 
(SCC/D)

Added 
(F−)

Lost 
(F+)

Total SNPs 475,763 498,297 +4.74% 23,279 745
Non-PAR/ 

XTR
453,822 453,882 +0.01% 150 90

PARs 2,790 23,161 +730.14% 20,931 560
XTR 19,151 21,254 +10.98% 2,198 95
Genic 

SNPs
162,989 171,351 +5.13% 8,600 238

Non-PAR/ 
XTR

157,957 157,979 +0.01% 45 23

PARs 1,390 9,235 +564.39% 8,042 197
XTR 3,642 4,137 +13.59% 513 18

Numbers are quality-filtered biallelic SNPs across various regions on the X 
chromosome (top) and within genic regions only across various regions on the X 
chromosome (bottom).
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comparative expression analysis suggests that a notable amount 
of gene expression differences can be found throughout the X 
chromosome but are most notable in PAR1 (Supplementary Fig. 
3a). Interestingly, we note that ASE analysis especially suffers 
from a 2-fold increase in error when using an inappropriate refer-
ence genome. The first introduction of error, as mentioned previ-
ously, is the substantial number of false negatives introduced 
during variant calling via mapping WGS reads (Tables 1 and 2). 
The second error is introduced during mapping RNAseq reads to 
the Default reference, whereby correcting for either factor (called 
SNPs or RNAseq mapping) can partially recover some of the poten-
tially missed transcripts in an ASE experiment (Table 3). However, 
to take full advantage of ASE analyses on the X chromosome, it is 
essential to include both correctly called variants and correctly 
mapped RNAseq reads (Table 3; Supplementary Table 4).

In line with previous conclusions (e.g. Wise et al. 2013), the gen-
eral absence of the X chromosome in many analyses may be due, 
in part, to an increase in technical effort/ability to prepare the ref-
erence genome prior to analysis (Webster et al. 2019). The X 
chromosome makes up 5% of the haploid genome size of the typ-
ical XX human individual. Therefore, the “scorched earth” error 
rate of not including the X chromosome in genomics analyses of 
XX individuals is at least 5%. The introduction of read mapping er-
rors on the X chromosome only affects 5% of the total length of the 
X chromosome, which equates to only 0.25% of the variants called 
become unreliable when not accounting for SCC and using a 
Default reference genome (Fig. 1; Table 2). Thus, the common 

practice of purposefully introducing an error rate of 5% (excluding 
the X chromosome) to potentially avoid an error rate of 0.25% (in-
cluding the X chromosome) is excessive and, technically speaking, 
precludes the use of the term “genome-wide” in most association 
studies in humans (Wise et al. 2013; Sun et al. 2023). At a minimum, 
using a reference genome with Y PARs masked would provide a 
substantial improvement to the total variants called (Table 2). 
However, it is a relatively trivial task to inform the reference gen-
ome with the SCC when mapping samples and accommodate 
changes in ploidy across different regions; thus ensuring that reli-
able variant calls across, even within the PARs and XTR (Webster 
et al. 2019; Carey et al. 2022). We expect the broader utilization of 
the SCC-aware reference genome for alignment could be cata-
lyzed by it being made available alongside the Default on reposi-
tories such as NCBI’s GenBank, where the main hurdle to its 
inclusion may be low (Carey et al. 2022).

In conclusion, we conducted a pilot study of replicating a series of 
commonly used genomics tools/analyses across a subset of the GTEx 
data available on the cloud. We showed that technical artifacts in-
troduced by using the Default reference genome affect about 5% 
across the X chromosome but are most extensive in the PARs and 
XTR, ranging upwards of 700% in some regions. In line with prior 
work, we provided additional evidence that technical artifacts of in-
cluding the sex chromosomes in genomics analyses can be negated 
with available information and tools (Olney et al. 2020; Webster et al. 
2019). We are aware that, though the “eXclusion” of the X chromo-
some is widespread (Wise et al. 2013), the exclusion of the Y is even 
more extensive in empirical and clinical genomics (Sun et al. 2023). 
SCC-aware reference genomes can effectively negate the effects of 
homology on the sex chromosomes in XX individuals and reduce 
this mismapping in XY individuals, allowing for their accurate inclu-
sion in human genomics studies (Oill 2022). We are hopeful that re-
search groups will make the inclusion of SCC-aware references a 
staple part of their future projects, not only to better reflect the ori-
ginal intent behind the National Institutes of Health of the USA’s pol-
icy on the consideration of sex as a biological variable (https://orwh. 

(a) (b)

Fig. 2. Effects of the SCC-aware reference genome on common RNAseq analyses: a) gene expression (TPM) and b) allele balance (ASE). For allele balance, 
we used the SCC-aware reference called VCF as a measure to increase the total number of transcripts included (see Table 3). Both analyses use the 
T2T-CHM13v2 genome sequence for mapping.

Table 3. Efficacy of ASE analysis across differing modes of variant 
calling and RNAseq alignment strategies.

ASE mode chr8 # chrX #

Default VCF, Default RNAseq 885 819
Default VCF, SCC-aware RNAseq 885 823
SCC-aware VCF, Default RNAseq 885 834
SCC-aware VCF, SCC-aware RNAseq 885 835
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od.nih.gov/sex-gender/nih-policy-sex-biological-variable) but also to 
bring to humanity a better understanding of how sex chromosomes 
affect human health and disease states across the world.

Data availability
The data used in this study are available as follows: reference gen-
ome T2T-CHM13v2.0, GenBank: GCA_009914755.4. The GTE 
Project was supported by the Common Fund of the Office of the 
Director of the National Institutes of Health and by NCI, NHGRI, 
NHLBI, NIDA, NIMH, and NINDS. The GTEx data are described 
and available through dbGaP under accession phs000424.v8.p1. 
We received approval to access this data under dbGaP accession 
#8834 and code to replicate results on the Terra cloud computing 
environment on GitHub/Dockstore (https://github.com/ 
DrPintoThe2nd/XYalign_AC3).

Supplemental material available at G3 online.
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