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Abstract

Modeling cell signal transduction pathways via Boolean networks (BNs) has become an 

established method for analyzing intracellular communications over the last few decades. 

What’s more, BNs provide a course-grained approach, not only to understanding molecular 

communications, but also for targeting pathway components that alter the long-term outcomes 

of the system. This has come to be known as phenotype control theory. In this review we study 

the interplay of various approaches for controlling gene regulatory networks such as: algebraic 

methods, control kernel, feedback vertex set, and stable motifs. The study will also include 

comparative discussion between the methods, using an established cancer model of T-Cell Large 

Granular Lymphocyte Leukemia. Further, we explore possible options for making the control 

search more efficient using reduction and modularity. Finally, we will include challenges presented 

such as the complexity and the availability of software for implementing each of these control 

techniques.
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1 Introduction and Motivation

In biology, phenotypes represent observable features such as apoptosis, proliferation, 

senescence, autophagy, and more. Mathematically, a phenotype is associated with a group 

of attractors where a subset of the system’s variables have a shared state. We define an 

attractor as a set of states from which there is no escape as the system evolves, and an 

attractor with a singleton state is called a fixed point. These shared states are then used as 

biomarkers that indicate diverse hallmarks of the system that one might view as rolling a 

ball down Waddington’s epigenetic landscape (Waddington 1957). Thus, phenotype control 
is the ability to drive the system to a predetermined phenotype from any initial state by 

inducing the appropriate gene knockouts or knock-ins (Plaugher 2022).
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One way mathematicians are able to assist biological researchers is through modeling cell 

signal transduction pathways. However, these pathways can be highly complex due to 

signaling motifs like feedback loops, crosstalk, and high-dimensional nonlinearity (Rozum 

and Albert 2022). To address these complexities, mathematical modelers have developed 

many strategies for creating and analyzing networks, traditionally classified based on the 

time and population of gene products. For instance, there are techniques for continuous 

population with continuous time such as ordinary differential equations (ODE) (Rozum and 

Albert 2022; Motter 2015), discrete population with continuous time such as the Gillespie 

formulation (Arkin et al. 1998; Taylor et al. 2016), and discrete population with discrete 

time such as BNs, logical models, and also their related stochastic counterparts (Shmulevich 

et al. 2002; Shmulevich and Dougherty 2010; Saadatpour et al. 2010; Murrugarra et al. 

2012; Murrugarra and Aguilar 2018). There are also numerous well developed statistical, 

agent based (ABM), and partial differential equations (PDE) models which are outside the 

scope of this review (Plaugher 2022). For this review, the framework of choice utilizes 

Boolean networks.

For models of diseases such as cancer, increasingly extensive effort is dedicated to 

understanding more than just the cancer cells themselves. Modelers have developed 

multicellular models including cancer, stromal, immune, and other cells to study the 

interplay between cancer cells and their surrounding tumor microenvironment (Aguilar et al. 

2020; Baker et al. 2018; Gong et al. 2017; Macklin 2019). Models that integrate interaction 

at differing size and time scales are referred to as multiscale. In such models, it is possible to 

simulate clinically relevant spatio-temporal scales, and at the same time simulate the effect 

of molecular drugs on tumor progression (Erkan et al. 2010; Farrow et al. 2008; Feig et al. 

2012; Gore and Korc 2014; Kleeff et al. 2007; Padoan et al. 2019). The high complexity 

of these models generates challenges for model validation such as the need to estimate too 

many model parameters and controlling variables at differing scales (Aguilar et al. 2020; 

Plaugher et al. 2022).

Obtaining a mechanistic understanding of gene signaling cascades can be quite convoluted 

and is not presently well-established. Even though multiscale or hybrid models would likely 

provide more realistic simulations, there are currently no control methods that apply directly 

to such models (Aguilar et al. 2020; Plaugher et al. 2022; Plaugher 2022). For this reason, 

we elect to utilize Boolean networks because they provide a course-grained description 

of gene regulatory networks without the need for tedious parameter discovery (Kauffman 

1969). This framework would also allow for approximating multistate, multiscale, or even 

continuous systems by projecting into a Boolean setting for analysis (Didier et al. 2011; 

Veliz-Cuba et al. 2022; Aguilar et al. 2020). While there are many techniques available 

for controlling Boolean networks, we will highlight methods that provide overarching 

theory, as well as some emerging techniques. These methods include computational algebra 

(Murrugarra et al. Sep 2016; Vieira et al. 2020), control kernel (Choo et al. 2018; Borriello 

and Daniels 2021), feedback vertex set (Mochizuki et al. 2013; Zañudo et al. 2017), and 

stable motifs (Zañudo and Albert 2015), where each tactic provides a complimentary 

approach depending on the information available (Plaugher et al. 2022; Plaugher and 

Murrugarra 2021). We will also include techniques to address efficiency with network 
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modularity (Kadelka et al. 2022) and reduction (Veliz-Cuba 2011; Saadatpour et al. 2013; 

Veliz-Cuba et al. 2014; Plaugher and Murrugarra 2021).

A major area of study we should briefly recognize is optimal control, which aims to find the 

best overall policy according to a given cost function. ODEs and PDEs provide an avenue 

for optimal control in the continuous setting, approaching problems such as variations 

of initial conditions, imposing bounds on the control, multiple states and controls, linear 

dependence on the control, free terminal time (Lenhart and Workman 2007), geometric 

analysis (Heinz and Urszula 2016), or even drug regimen optimization (Moore 2018). 

On the other hand, an optimal control policy for a Markov decision process (discrete) 

provides an action for each state of the system such that certain optimality criterion is 

achieved. For example, one could implement the infinite-horizon method with a discount 

factor (Murrugarra and Aguilar 2018; Yousefi et al. 2012; Aguilar et al. 2020). In the 

discrete setting, policies are typically obtained through the value iteration algorithm for 

approximating the solution of Bellman’s equation (Bertsekas 2019; Sutton and Barto 2018). 

The iterative nature of most optimal control problems often requires models to be small, 

whereas open-loop control permits larger networks.

Phenotype control has two main distinguishing features. Its objectives are related to 

dynamical attractors of highly nonlinear systems, and it focuses on open-loop interventions. 

These types of interventions are instances where the protocol is not adjusted based on the 

state of the system, inducing the control only at the front end. This is contrasted with 

optimal control, where the goal is to find a control policy that specifies the ideal control 

action for each state (Aguilar et al. 2020; Bertsekas 2019; Sutton and Barto 2018; Yousefi et 

al. 2012; Johnson et al. 2023). Thus, phenotype control theory is primarily concerned with 

identifying key markers of the system that aid in understanding the various functions of cells 

and their molecular mechanisms.

The format of this review will be as follows: Sect. 2 will provide an initial overview of the 

methods with discussion of overlapping features and application to a known cancer model 

(Sect.2.1), Sect. 3 will lay out the different techniques used to find target controls, Sect. 

4 will discuss methods to make the target discovery problem more efficient, Sect. 5 will 

address limitations and open problems, Sect. 6 will have some concluding thoughts and 

discussion.

Finally, readers can find additional supportive information in the “Appendix” including: 

foundational principles for finite dynamical systems (“Appendix 7.1”), toy models as basic 

examples of each method (“Appendix 7.2”), simulation techniques of suggested targets 

(“Appendix 7.3”), software with tutorials and how-to documentation (“Appendix 7.4”), and 

lastly “Appendix 7.5” has tables.

2 Overview of Control Methods

Depending on the specific aims and information available, Table 1 provides a set of 

complementary approaches for phenotype control and their key features. For instance, if 

you only have access to the wiring diagram, then feedback vertex set (FVS) is an option 
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for global stabilization. If you have the Boolean rules, and if the objective is to drive the 

system into one of the existing attractors, then stable motifs (SM) and control kernel (CK) 

are options. If you have the Boolean rules, and if the objective is to create a new attractor or 

to block existing attractors, then computational algebra (CA) is an option.

Despite the shared goals of these methods, each seeks distinct control objectives. They are 

each based on specific mathematical structures and lack a common theoretical framework 

that allows their complementary and synergistic application. Yet, we clearly see overlapping 

outcomes between methods. For example, it has been shown that the FVS establishes the 

upperbound for the magnitude of targets required to control the system (Borriello and 

Daniels 2021). Indeed, we observe that, among methods using pre-existing attractors, the 

control sets for CA and SM are subsets of the larger FVS results. On the other hand, CA and 

CK appear to produce minimal sets. Further, the CA and SM methods can produce the same 

results, or CA can be a subset of SM. See Tables 2 and 3.

However, a key unique feature of CA is the creation of new attractors, while other methods 

discussed rely on pre-existing attractors. This then leads to the potential for new target 

discovery as the long-term objectives change. Further, CA sets out to solve a system of 

polynomial equations, whereas FVS and SM rely on strongly connected components to find 

their targets. To explicitly see these connections, consider the following example.

2.1 Case Study: T-Cell Large Granular Lymphocyte (T-LGL) Leukemia

T-cell large granular lymphocyte (T-LGL) leukemia is a blood cancer in which there 

is an anomalous surge in white blood cells, called T-cells. Cytotoxic T-cells are part 

of the immune system that fight against antigens, even by killing cancer cells. These 

T-cells release specific cytokines that alter how the immune system responds to external 

agents by way of recruiting particular immune cells to fight infection, promoting antibody 

production, or inhibiting the activation and proliferation of other cells (Zañudo and 

Albert 2015). Once their job is complete they undergo controlled cell-death, however, 

T-LGL leukemia occurs when these T-cells evade apoptosis and maintain proliferation 

(Plaugher 2022). There are currently no standards of treatment established, however options 

include immunosuppressive therapy (such as methotrexate), oral cyclophosphamide (an 

alkylating agent), or cyclosporine (an immunomodulatory drug) (Loughran 2006). Since 

there continues to be a search for standard therapies for this disease, the identification of 

potential therapeutic targets is essential.

In (Saadatpour et al. 2011), a Boolean dynamic model was constructed consisting of 

a network of sixty nodes indicating the cellular location, molecular components, and 

conceptual nodes. For the sake of our analysis, we use the Boolean rules in Table 8 

(see “Appendix”). The main inputs to the network are “Stimuli”, which represent virus 

or antigen stimulation, and the main output node is “Apoptosis”. Model analysis revealed 

that the system contains three attractors, of which two are diseased and the other is healthy 

(determined by apoptosis activation). Table 2 lists the control targets discovered by each of 

the respective methods for the large T-LGL model, with the objective of activating apoptosis. 

Individual control methods are found in Table 2a–d, and control sets are separated by double 
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horizontal bars. Note that the CK method did not produce results for the large model because 

of its size (Plaugher 2022).

Likewise, an analysis of a smaller (reduced) model of T-LGL can also be useful (Saadatpour 

et al. 2011; Murrugarra and Aguilar 2018). Model analysis indicated that the reduced model 

in Fig. 1 contains two fixed points, one healthy and one diseased. Regulatory functions for 

the small T-LGL model can be found in Appendix Table 7. Table 3a–e list the control targets 

discovered by each of the respective methods for the small T-LGL model, with the objective 

of activating apoptosis. The control sets are separated by double horizontal bars as before 

(Plaugher 2022).

For both large and reduced models, we see that FVS provides an upper bound for the amount 

of targets needed to achieve network control, whereas CA and CK can provide minimal sets.

3 Description of Control Methods

3.1 Computational Algebra (CA)

The method based on computational algebra described in Murrugarra et al. (Sep 

2016),Vieira et al. (2020) seeks two types of controls: nodes and edges. These can be 

achieved biologically by blocking effects of the products of genes associated with nodes, or 

by targeting specific gene communications (see Fig. 3). The identification of control targets 

is achieved by encoding the nodes (or edges) of interest as control variables within the 

functions. Then, the control objective is expressed as a system of polynomial equations that 

is solved by computational algebra techniques. Though node and edge control are similar, 

they provide a range of biological options. One reason is that node control requires an entire 

node to be knocked out (or knocked-in), thereby removing all associated edges (see Fig. 3b). 

However, edge control simply requires an edge communication to be blocked (or continually 

expressed) (Plaugher 2022).

Let the function ℱ:F 2
n × U F 2

n denote a Boolean network with control, where U is a 

set of all possible controls. Then, for u ∈ U, the new system dynamics are given by 

x(t + 1) = ℱ(x(t), u). That is, each coordinate ui, j ∈ u encodes the control of edges as follows: 

consider the edge xi xj in a given wiring diagram. Then, we can encode this edge as a 

control edge by the following function:

ℱj x, ui, j ≔ fj x1, …, ui, j + 1 xi, …, xn

which gives

• Inactive control:

ui, j = 0, ℱj(x, 0) = fj x1, …, xi, …, xn

• Active control (edge deletion):

ui, j = 1, ℱj(x, 1) = fj x1, …, xi = 0, …, xn .
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The definition of edge control can therefore be applied to many edges, obtaining 

ℱ:F 2
n × F 2

e F 2
n where e is the number of edges in the diagram. Next, we consider 

control of node xi from a given diagram. We can encode the control of node xi by 

the following function:

ℱj x, ui
−, ui

+ ≔ ui
− + ui

+ + 1 fj(x) + ui
+

which yields

• Inactive control:

ui
− = 0, ui

+ = 0, ℱj(x, 0, 0) = fj(x)

• Node xi deletion:

ui
− = 1, ui

+ = 0, ℱj(x, 1, 0) = 0

• Node xi expression:

ui
− = 0, ui

+ = 1, ℱj(x, 0, 1) = 1

• Negated function value (irrelevant for control):

ui
− = 1, ui

+ = 1, ℱj(x, 1, 1) = fj xt1, …, xtn + 1.

Using these definitions, we can achieve three types of objectives. Let 

F = (f1,…, fn):F 2
n F 2

n with μ = μ1, …, μn  as a set of controls. Then we may:

• Generate new attractors. If y is a desirable state (i.e. apoptosis), but it is not 

currently an attractor, we find a set μ that solves

ℱj(y, μ) − yj = 0, j = 1, …n (1)

• Block transitions or remove attractors. If y is an undesirable attractor (i.e. 

proliferation), we want to find a set μ so that ℱ(y, μ) ≠ y. In general, we can use 

this framework to avoid transitions between states (say y z) so that ℱ(y, μ) ≠ z. 

We then solve

ℱj(y, μ) − zj + 1 = 0, j = 1, …n (2)

• Block regions. If a particular value of a variable, say xk = a, triggers an 

undesirable pathway, then we need all attractors to satisfy xk ≠ a. A subtle change 

in notation requires attention, because we have now used x to indicate variables 

(nodes) rather than specific values (states). We then find a set μ so that the 

following system has no solution
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ℱj(x, μ) − xj = 0 j = 1, …n
xk − a = 0. (3)

Notably, the Boolean functions F  must be written as polynomials (Murrugarra et al. Sep 

2016; Vieira et al. 2020). To complete the control search we then compute the Gröbner basis 

of the ideal associated with the given objective. For example, if we generate new attractors, 

we find the Gröbner basis for the ideal

I = ℱ1(y, μ) − y1, …, ℱn(y, μ) − yn . (4)

Therefore, we can determine all controls that solve the system of equations and detect 

combinatorial actions for the given model (Plaugher 2022). See “Appendix 7.2.1” for a 

detailed toy example of the CA method.

3.2 Control Kernel (CK)

A control kernel (CK) is defined as a minimal set of genes (nodes) such that external control 

of their expression is sufficient to steer the network dynamics toward a desired steady gene 

activation pattern (attractor) (Borriello and Daniels 2021). In other words, a CK is the set 

of nodes of minimal magnitude whose pinning reshapes the dynamics such that the basin 

of attraction of attractor A becomes the entire configuration space. There are three main 

contributors to the CK: input nodes (nodes with identity function as the updating rule), 

distinguishing nodes (subset of nodes where a pinning exists that is both compatible with 

attractor A and incompatible with the other initial attractors of the network), and additional 

nodes (minimal distinguishing node sets that are needed to remove additional attractors) 

(Borriello and Daniels 2021; Plaugher 2022).

To compute CKs, first start with pinning input nodes. Then a brute-force method is used to 

loop over sets of distinguishing nodes of increasing size for each attractor. A CK has been 

found when no other attractors exist after pinning. Uncontrollable complex attractors are 

identified by pinning all constant nodes. Note that input and distinguishing nodes provide 

only a lower bound to CK size because the pinning procedure can create new attractors. 

If more than one attractor remains, then the cycle does not have a CK (Borriello and 

Daniels 2021). CK discovery works well for small networks, however, larger networks prove 

more difficult due to the brute-force nature of the algorithm. In fact, the scaling of the set 

cardinality is logarithmic based on the number of attractors in the network (Borriello and 

Daniels 2021; Plaugher 2022). See “Appendix 7.2.2” for a detailed toy example of the CK 

method.

3.3 Feedback Vertex Set (FVS)

FVS control uses only the topological structure of a network and knowledge of target 

phenotype biomarkers to induce a phenotype change (Mochizuki et al. 2013; Zañudo et al. 

2017). In FVS control, by manipulating the internal state of the feedback vertex set (i.e. a 

subset of nodes that together intersect every cycle in the network), we disrupt all feedbacks, 

making the resulting network admit a single steady state, which can be aligned with one 
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of the original system’s dynamic attractors. Thus, a FVS of a graph is a minimal set of 

nodes whose removal leaves the graph without cycles. FVS control has been successfully 

applied to a variety of networks and has been shown to provide an upper bound on the 

cardinality of the single set of control nodes needed to reach all attractors (Borriello and 

Daniels 2021; Zañudo et al. 2017). The FVS method’s advantages include: (i) control simply 

requires fixing the internal state of the FVS to match that of the desired attractor, and (ii) 

making robust predictions that depend only on the network structure and not on dynamical 

details. For a transcription factor network underlying a phenotypic switch, the FVS is a set 

of transcription factors that, when controlled to match the expression of a desired phenotype, 

will shift the cell towards that phenotype (Plaugher 2022).

We formally define a feedback vertex set of a directed graph W  as a possibly empty subset 

I of vertices such that the di-graph W ∖ I is acyclic, where W ∖ I denotes the resulting 

di-graph when all vertices of I are removed from W , along with all edges from or towards 

those vertices. An alternative way to view FVS is as trees and forests. Recall that a tree is 

an undirected graph in which any two vertices are connected by exactly one path, that is, 

a connected acyclic undirected graph. A forest is defined as an undirected graph in which 

any two vertices are connected by at most one path, that is, an acyclic undirected graph, 

or a disjoint union of trees (Williamson 2010). Define a graph G = (V , E) that consists of a 

finite set of vertices V (G) and a set of edges E(G). Then a FVS of G is a subset of vertices 

V ′ ⊆ V (G) such that the removal of V ′ from G, along with all edges incident to V ′, results 

in a forest (Festa et al. 1999). As such, a FVS must contain all source nodes and a node in 

every cycle. In other words, a FVS is a set of “determining nodes” such that if the dynamics 

of the determining nodes are given for large times, then the dynamics of the whole system 

are determined uniquely for large times (Mochizuki et al. 2013; Fiedler et al. 2013; Plaugher 

2022). See “Appendix 7.2.3” for a detailed toy example of the FVS method.

3.4 Stable Motifs (SM)

Stable motif (SM) control is based on the identification of self-sustaining generalized 

positive feedback loops in the dynamic model. Each of these stable motifs determines a 

region of the state space from which dynamical trajectories cannot escape, called a trap 
space. Further, a stable motif (or a succession of multiple stable motifs) determines a 

dynamical attractor (i.e. phenotype). There is a SM control set associated with each attractor 

of the system, and the impact of numerous regulators on a single node can be addressed and 

analyzed with the method (Zañudo and Albert 2015).

By definition, a stable motif is a strongly connected subgraph of the expanded graph 

(defined subsequently) that (Plaugher 2022):

1. contains either a node or its complement but not both

2. contains all inputs of its composite nodes (if any exist)

First, implement the expanded network that is used to add information about the 

combinatorial interaction and signs of nodes. Composite nodes represent the AND 

interaction and complementary nodes represent the NOT interaction. Each original node 

i is denoted by xi in the expanded graph, and a complementary node ∼ xi  is added if 
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the original node represented suppression. Then, each NOT function is replaced by its 

appropriate complementary node in the function. Next, edges are included where each edge 

is a positive regulation, contrary to the original wiring diagram (Yang et al. 2018; Plaugher 

2022).

The second step is to make distinctions between OR rules and AND rules by using 

composite nodes for functions ivolving ANDs. To do this, the functions must be in 

disjunctive normal form in order to uniquely determine edges. A special node is included for 

AND rules, and edges are drawn from the non-composite nodes of the network that form the 

actual composite rule. It is noted that the benefit of such an action is that the reader is able 

to see all regulatory functions simply from the topology of the expanded network. Now that 

the expanded graph is complete, using the definition above we can search for SMs within the 

network. The group of nodes included in the SM represent partial fixed points, from which 

the remaining nodes can be calculated using the original Boolean functions (Yang et al. 

2018; Plaugher 2022). See “Appendix 7.2.4” for a detailed toy example of the SM method.

4 Efficiency Management

In the age of “Big Data”, models are increasingly large and ever more complex. Currently 

the human genome is estimated to have approximately 25,000 genes, and single genes 

can encode multiple proteins. What’s more, post-translational modifications add even more 

complexity to the proteome, with an estimated list of greater than one million proteins 

(Creative Proteomics 2018). Even networks of merely 100 nodes present a state space of 

magnitude 2100, which is much larger than the total estimated cells in the human body 

(Plaugher 2022). Therefore, the question of control efficiency is an open problem to address. 

Below, we present possible options for addressing network sizes that are too large for target 

discovery to be performed in a timely fashion.

4.1 Reduction Techniques

The magnitude of the BN state space for n genes is 2n. Thus, an increase of GRN size will 

exponentially increase the computational burden for its analysis, which means brute-force 

methods for small systems are not sufficient. A synonymous issue even arises for continuous 

GRNs. Many reduction techniques allow for the reduction of network size while preserving 

dynamical features (e.g., fixed points and periodic attractors), see (Veliz-Cuba et al. 2014; 

Saadatpour et al. 2013). Reduction techniques were implemented in a pancreatic cancer 

model that effectively decreased the total network size from sixty-nine nodes to twenty-two 

nodes, a 68% reduction (Plaugher and Murrugarra 2021). Critically, when a node was 

deleted, its function values were substituted directly into its downstream signal recipient(s) 

to maintain key network communications. Further, nodes containing self-loops cannot be 

removed, this includes input (source) nodes and self-modulating nodes.

First, remove nodes with one input and one output, but maintain nodes with self-loops 

and phenotypes as biomarkers (see Fig.4) (Veliz-Cuba 2011). Next, remove nodes with 

either one input and multiple outputs, or vice versa (see Fig. 5). Lastly, remove nodes with 

low connectivity relative to the remaining nodes (see Fig. 6). These techniques have been 
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shown to preserve fixed points but not complex attractors. Yet, there are results indicating 

a conservation of attractors (Veliz-Cuba et al. 2014; Saadatpour et al. 2013), seen in the 

preservation of all attractors from the reduced pancreatic cancer model discussed above 

(Plaugher and Murrugarra 2021). As such, this phenomena remains to be explored.

For an example of one input and one output, consider FGFR from the pancreatic cancer 

model (Plaugher and Murrugarra 2021). The original model’s neighborhood about FGFR is 

shown in Fig. 4a with Eqs. (5)–(6).

FGFR=bFGF (5)

RAS = (EGFR) (FGFR) (6)

After reduction, we obtain the neighborhood seen in Fig. 4b with Eqs. (7)–(8).

FGFR = bFGF (7)

RAS = (EGFR) (bFGF) (8)

For an example of either one input and multiple outputs, or vice versa, consider MEK from 

(Plaugher and Murrugarra 2021). The original model’s neighborhood about MEK is shown 

in Fig. 5a with Eqs. (9)–(11).

MEK=RAF (9)

ERK=MEK (10)

JNK=MEK (11)

After reduction, we obtain the neighborhood seen in Fig. 5b with Eqs. (12)–(14).

MEK = RAF (12)

ERK=RAF (13)

JNK=RAF (14)

Lastly, for an example of multi-connectivity removal, consider cJUN (Plaugher and 

Murrugarra 2021). The original model’s neighborhood about cJUN is shown in Fig. 6a 

with Eqs. (15)–(18).
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cJUN = (ERK) ∣ (JNK) (15)

EGF=cJUN (16)

mTOR = ( ∼ cJUN)&(AKT) (17)

Pro = (CyclinE)&((JNK) ∣ (cJUN)) (18)

After reduction, we obtain the neighborhood seen in Fig. 6b with Eqs. (19)–(22).

cJUN = ERK JNK (19)

EGF = (ERK) ∣ (JNK) (20)

mTOR = ( ∼ [(ERK) ∣ (JNK)])&(AKT) (21)

Pro = (CyclinE)&((JNK) (ERK) (JNK)) (22)

4.2 Modularity Techniques

Systems biology is capable of building complicated structures from simpler building blocks, 

even though these simple blocks (i.e. modules) traditionally are not clearly defined. The 

concept of modularity detailed in Kadelka et al. (2022) is structural by nature, in that, a 

module of a BN is a subnetwork in which the restriction of the network to the variables 

of a subgraph has a strongly connected wiring diagram. This framework introduces both 

a structural and dynamic decomposition that encapsulates the dynamics of the whole 

system simply from the dynamics of its modules. Consequently, the decomposition yields a 

hierarchy among modules that can be used to specify controls. That is, by controlling key 

modules we are able to control the entire network (Plaugher 2022).

Within the modularity framework, the dynamics of the state-space for Boolean network F
are denoted as D (F), which is a collection of all minimal subsets of attractors, A, satisfying 

F(A) = A. Further, if F  is decomposable (say into subnetworks H and G), then we can write 

F = H ⋊ G which is called the coupling of H and G. In the case where the dynamics of G
are dependent on H, we call G non-autonomous, denoted as G. Then we adopt the following 

notation: let A = A1 ⊕ A2 be a set of attractors of F  with A1 ∈ D (H) and A2 ∈ D GA1

(Plaugher 2022).

For an example, consider the network in Fig. 7a with

F x1, x2, x3, x4, x5, x6 = x3, x1, x2, x1x6, x4, x5 .
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From the given wiring diagram, we derive two SCCs where module one (red in 7b) flows 

into module two (green in 7b). That is, F = F1 ⋊ F2 with

F1 x1, x2, x3 = x3, x1, x2

F2 x4, x5, x6 = x6, x4, x5

F2 x4, x5, x6 = x1x6, x4, x5

D F1 = 000, 111, [001, 100, 010], [011, 101, 110]

Suppose we aim to stabilize the system into y = 000000. First we see that either 

x1 = 0, x2 = 0x2 = 0, or x3 = 0 stabilize module one (i.e. F1) to A1 = 000 by applying the FVS 

method from Sect. 3.3. Likewise, x4 = 0, x5 = 0 or x6 = 0 stabilize module two (i.e. F2
A1) to 

A2 = 000. Thus, we can conclude that u = x1 = 0, x6 = 0  is a possible combinatorial solution 

that achieves the desired result (Plaugher 2022).

5 Limitations

5.1 Validation

Even though phenotype control theory shows massive potential, the field overall has some 

limitations, along with those of each technique we have described. From a biological and 

translational perspective, it remains yet to be validated as a viable option for clinical 

application. Further, the human genome is highly complex, with signaling mechanisms 

that are far from well understood. This leads modelers to rely on speculative networks and 

hypothesized functional communication rules.

Regardless of method, each of the resulting outputs are merely theoretical controls and must 

be parsed to find tangible targets (or combinations of targets). Efficacy of the resulting 

targets can be established computationally, which is discussed in the “Appendix 7.3”. The 

parsing process can include brute-force testing of all controls, knowledge of the regulatory 

network topology, knowledge of literature pertaining to particular controls, or a mixture of 

various techniques (Murrugarra et al. Sep 2016; Plaugher et al. 2022). Some controls may 

not be biologically achievable, others may be insufficient if applied independently, while 

some simply do not perform as desired.

5.2 Methodological Unification

Since we do not apply optimal control, another constraint to address is how to select controls 

that prioritize certain interventions over others. These criteria might include selection 

according to effectiveness (e.g. shorter absorption time), total/side effects (e.g. number 

of changes in the original state space), target “depth” within the network, and practical 
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implementability. Many of the selection criteria will need stochasticity (such as for time 

to absorption), which can be achieved via Stochastic Discrete Dynamical Systems (SDDS) 

(Murrugarra et al. 2012, 2016) or asynchronous simulations (see “Appendix 7.1” for more 

details). The SDDS framework incorporates Markov chain (MC) tools to study long-term 

dynamics of Boolean networks by merging the synchronous and asynchronous update 

schedules to encode a more realistic MC.

When it comes to network reduction, techniques can prove extremely tedious if networks 

are notably large. Further, the reduction techniques can change the long-term outlooks of 

key analytical features such as cyclical attractors. It has been shown that the methods in 

Sect. 4.1 will maintain fixed points, but they do not necessarily maintain cyclical attractors 

(Veliz-Cuba et al. 2014; Saadatpour et al. 2013; Plaugher and Murrugarra 2021). Even 

though examples have been shown to maintain all attractors (Plaugher and Murrugarra 2021; 

Plaugher 2022), one can easily show counter examples that do not (see the small T-LGL 

model in Sect. 2.1). Thus, a fully developed methodology for efficient reduction is yet to be 

seen, which could be important for analyzing large models.

5.3 Computational Complexity

Additionally, computational complexity varies across methods. For instance, the CA method 

makes use of computing Gröbner bases for a system of polynomials and, depending on the 

algorithm used, it has been shown to have doubly exponential complexity (Murrugarra et al. 

Sep 2016). However, GRNs with small sets of regulatory nodes can compute Gröbner bases 

in a reasonable time (Murrugarra et al. Sep 2016; Hinkelmann et al. 2011).

For CK, the problem of finding the minimal set of controlling nodes was shown to be 

NP-hard (Akutsu et al. 2007), and the problem of the existence of multiple possible minimal 

control sets is NP-complete. Thus, when computing CKs, no algorithm is expected to run 

faster in the worst case than checking every possible subset of increasing size, since the 

rounds of pinning to find CK’s are representative of NP-hard problems. Moreover, the 

average CK sizes scale logarithmically with the number of attractors (Borriello and Daniels 

2021).

The computational time to find a single FVS is reasonable, the issue arises when trying 

to find all possible FVSs. The global stabilization of BNs have been shown to have 

computational complexity that is exponential with respect to the number of state variables 

(Cheng et al. 2011; Yang et al. 2021). However, while the problem of exactly identifying 

the minimal FVS has complexity of NP-hard, a variety of fast algorithms exist to find 

close-to-minimal solutions (Zañudo et al. 2017; Galinier et al. 2013).

Lastly, the complexity of calculating SMs using the domain of influence (DOI), through the 

expanded graph (Yang et al. 2018), is bounded by the order of the sum the number of nodes 

and edges in the expanded network, O Nex + Eex . Subsequent calculations for finding control 

sets from the DOI become more complex. So called “well behaved degree distribution” 

networks give calculated order O k2N2 , where k are the regulators for each node N. Those 
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networks considered to have “skewed degree distribution” are bounded by O(N3) (Yang et al. 

2018).

6 Conclusions

In this paper, we reviewed various techniques for implementing target discovery and control 

of gene regulatory networks. Due to the growing nature of the field, there are always 

emerging, novel techniques to implement and we acknowledge that the methods included 

here are not fully exhaustive (Cifuentes-Fontanals et al. 2022, ?; Murrugarra and Dimitrova 

2015; Yang et al. 2020; Murrugarra and Dimitrova 2021). Even so, we have set out to 

provide a list of varying options, depending on the specific aims and information available to 

users, that represent a broad range of applicable theory. We also hope to spark conversations 

and ideas for solving open problems in the field, as well as inspire application of these 

concepts across a wide range of disciplines, not strictly biology. For links to software and 

documentation, see “Appendix 7.4”.

In addition to toy examples for each method (see “Appendix 7.2”), we also applied each 

approach to a well known cancer model (T-LGL Leukemia) to explore overlaps and 

differences among the processes. In particular, we showed that FVS provides an upper 

bound for the amount of targets needed to achieve network control, whereas CA and CK 

can provide minimal sets. Perhaps the most versatile method shown is CA, where users 

have wide ranging options to personalize their search (i.e. nodes vs. edges, use existing 

attractors, generate new attractors, and block transitions or regions). These overlaps have 

also been shown in a computational pancreatic cancer model (Plaugher and Murrugarra 

2021; Plaugher et al. 2022).

Even though there is not a common theoretical framework to apply all methods, we do see 

that each is capable of affirming discoveries across other methods while also suggesting 

possible novel targets of their own. We believe the future is bright for synthetic modeling 

and control of cell signaling networks, and the methods reviewed herein are just the 

beginning.
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Appendix

7 Appendix

7.1 Finite Dynamical Systems

For the last few decades, a popular modeling approach for gene regulation has been 

to implement dynamical systems over finite fields. Here, functions can be interpreted 

as modeling information processing within cells, which determines cellular behavior. As 
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depicted in Fig. 8, xi1, …, xim  represent the input genes or predictor genes, fi xi1, …, xim  is the 

internal update function or predictor rule, and xi is the target gene.

Fig. 8. 
FDS for gene regulation (Plaugher 2022)

First, let X = X1 × X2⋯ × Xn be the Cartesian product of finite sets. A local model over a 

finite set X is an n-tuple of coordinate functions F = f1, f2…, fn , where fi:Xn X. Each 

function fi uniquely determines a function

F i: x1, …, xn x1, …, fi(x), …, xn

and x = x1, …, xn . Every local model defines a canonical finite dynamical system FDS
map, where the functions are updated as

f:Xn Xn, f : x1, …, xn f1(x), …, fn(x) .

Note that discrete does not necessarily imply finite. Take the natural numbers ℕ = 1, 2, 3, 4, 

… , for example. The set is clearly discrete, yet its cardinality is infinite. In general, we 

cannot always write a function as a tuple if the space is simply “discrete”. In order to 

provide structure to each Xi, we embed Xi into a finite field where, for some prime p,
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Xi F, |F | = pk .

For example, if we desire states of Low, Medium, and High to represent levels of gene 

expression, then Xi = L, M, H F 3 = 0, 1, 2 . We call these mixed-state models when 

states are non-binary. For the case when all states are binary (i.e. ON or OFF, HIGH or 

LOW, 1 or 0), we call these models Boolean networks (Plaugher 2022).

7.1.1 Boolean Networks—Boolean networks (BNs) are popular because we can build 

effective models without the use of constants or rates. This then eliminates the need for 

tedious parameter discovery. Rather, BNs focus on the mechanics and logic of the system. 

BN models were originally introduced in 1963 by Kauffman and Thomas to provide a coarse 

grained description of gene regulatory networks (Kauffman 1969; Thomas 1973). Within 

a BN there are three main components: structure (wiring diagram), functions (regulatory 

rules), and dynamics (attractors). As we begin to define our terms, it may be helpful to keep 

Fig. 9 in mind as a basic example. Given n binary variables, define a Boolean Network as an 

n-tuple of coordinate functions

F = f1, …fn : 0, 1 n 0, 1 n, fi: 0, 1 n 0, 1 .

Fig. 9. 
Simple Boolean network (Plaugher 2022)

The wiring diagram of F , call it W , is then defined as a directed graph with n nodes 

x1, x2, …, xn  such that there is an edge in W  from xj to xi if fi depends on xj. That is,
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xj xi if fi = f xi1, …, xij, …, xik

Within W  we denote positive edges as xj xi and negative edges as xj ⊣ xi (or sometimes 

xj ⊸ xi). Biologically, a positive edge is representative of activation while a negative 

edge represents inhibition. For example, in Fig. 9 we see the wiring diagram of 

F = f1, f2 = x2, x1 .

Now that we have structure and functions, the dynamics of F  are traditionally described 

as: (1) trajectories for all 2n possible initial conditions, or (2) a directed graph with nodes 

in F 2
n = 0, 1 n. In the first case, a trajectory is a sequence (x(t))t = 0

∞  given by the difference 

equations x(t + 1) = F(x(t)) for all t ≥ 0 (Kadelka et al. 2022). For example, Fig. 9 would 

yield deterministic trajectories

T1 = 00, 00, 00, …
T2 = 11, 11, 11, …
T3 = 01, 10, 01, 10, …
T4 = 10, 01, 10, 01, … .

The phase space (also called state space) of F  is the directed graph with vertex set Sn and 

edge set (s, f(s)) ∣ s ∈ Sn . Simply put, in a BN, S is the set of all possible states, and their 

respective transitions according to the model F  form the state space (see Fig. 10). A node 

s ∈ S is called transient if fk(s) ≠ s for all k > 1, a node s ∈ S is called periodic (or cyclic) 

if fk(s) = s for some k ≥ 1, and a node s ∈ S is called a fixed point if f(s) = s. We can also 

think of the phase space as having strongly connected components (SCCs), where a SCC is 

said to be terminal if it has no out-going edges. Thus, a transient state is not in a terminal 

SCC, a cyclic attractor is in a terminal k-cycle (k = 1 is a fixed point), and any instance of an 

SCC otherwise is a complex attractor. In other words, we define an attractor as a set of states 

from which there is no escape as the system evolves, and an attractor with a single state is 

called a fixed point. Thus, given sufficient time, the dynamics of a BN always end up in a 

fixed point or (complex) attractor.
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Fig. 10. 
Phase space of diagram 9 (Plaugher 2022)

Table 4

Dynamic truth table for Fig. 9

x1 x2 f1 = x2 f2 = x1

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1
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Fig. 11. 
Nonlinear Boolean network (Plaugher 2022)

Table 5

Standard Boolean logical rules

Rule Symbol Polynomial

AND x ∧ y, x&y xy
OR x ∨ y, x y xy + x + y
NOT ∼ x , x, ¬x x + 1

For example, it was previously shown above that F = f1, f2 = x2, x1 . To find the dynamics 

of the corresponding state space S = 00, 01, 10, 11 , one can construct truth Table 4 using 

lexicographic ordering. It is important to point out that we denote the states in order of the 

variable so that

s2 = 0, 1 = 01 = x1 = 0, x2 = 1 ,

because maintaining order is highly important for correct interpretation of state values. The 

left columns indicate the possible states of our nodes x1 and x2, whereas the right columns 

indicate their deterministic updates according to the functions f1 and f2. Therefore, from the 

framework we see in Fig. 10 that we have two fixed points and one cycle.

Up to this point we have only discussed linear BNs, but real-world models are almost always 

highly nonlinear (see Fig. 11). To accommodate these nonlinear regulatory networks, we 

implement various classes of functions based on three main Boolean logical rules - AND, 

OR, NOT. Some use XOR (exclusive OR), but for simplicity it is excluded here. Assume the 
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variables x and y are given in a BN. Then Table 5 summarizes the functionality and notation 

used for each of the three main rules.

Fig. 12. 
State-space dynamical variants according to update schedules (Plaugher 2022)

A common criticism of using discrete models for regulatory networks such as BNs is that 

deterministic dynamics are artificial. In reality biological systems do not contain a “central 

clock”, but instead the concentration levels of gene products change and respond to stimuli 

on varying time-scales. Thus, the update schedules chosen play a significant role in the 

accuracy of the model. Synchronous update schedules produce deterministic dynamics, 

wherein nodes are all updated simultaneously so that

x(0) x(1) = F(x(0)) x(2) = F(x(1)) ⋯ .

On the other hand, asynchronous update schedules produce stochastic dynamics, wherein a 

randomly selected node is updated at each time step so that

x(0) x(1) = x1(0), …, fi(x(0)), …, xn(0) ⋯ .

Lastly, sequential update schedules are performed asynchronously according to 

a designated permutation σ = σ1, …, σn  of (1, …, n). Specifically, if we define 

F i x1, …, xn = x1, …, fi(x), …, xn , then the update is given by

Fσ(x) = Fσn Fσn − 1 ⋯ Fσ1(x) ⋯

according to the order designated by σ. This is sometimes done when the ordering of gene 

updates are known, as some may update faster than others. For example, using our simple 

example in Figs. 9, 12 shows the varying impacts of these three update schedules.

We can easily observe from Fig. 12 that fixed points are maintained across all update 

schedules. However, cycles are not necessarily preserved. As a result, different update 

schedules lead to different dynamics in the state space, which could lead to different 
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attractors (or eliminate attractors), which would result in different target discoveries for 

interventions. This is where the framework of Stochastic Discrete Dynamical Systems 

(SDDS) is beneficial (Murrugarra and Aguilar 2018; Plaugher and Murrugarra 2021; 

Plaugher et al. 2022; Plaugher 2022). Developed in Murrugarra and Aguilar (2018), SDDS 

incorporates Markov chain tools to study long-term dynamics of Boolean networks. SDDS 

uses parameters based on designated propensities to model node (and pathway) signal 

activation and deactivation, also referred to as degradation. In essence, SDDS merges the 

synchronous and asynchronous update schedules described above. One propensity is used 

when the update positively impacts the node, in the sense that the node increases its value 

from OFF to ON. Another propensity is used when the update negatively affects the node in 

the sense that the node decreases its value from ON to OFF. More precisely, an SDDS of the 

variables x1, x2, …, xn  is a collection of n triples

F = fk, pk, pk k = 1
n

where for k = 1, …, n,

• fk: 0, 1 n 0, 1  is the update function for xk

• pk ∈ [0, 1] is the activation propensity

• pk ∈ [0, 1] is the deactivation propensity

Here, the parameters pk and pk introduce stochasticity. For example, an activation of xk(t) at 

the next time step (i.e. xk(t) = 0, fk x1(t), …, xn(t) = 1 and xk(t + 1) = 1) occurs with probability 

pk. An SDDS can be represented as a Markov Chain via its transition matrix, which can 

be viewed as transition probabilities between various states of the network. Elements of the 

transition matrix A are determined as follows: consider the set S = 0, 1 n consisting of all 

possible states of the network. Suppose x = x1, …, xn ∈ S and y = y1, …, yn ∈ S. Then, the 

probability of transitioning from x to y is

ay, x = ∏
i = 1

n
P xi yi (23)

where entries are stored column-wise and

P xi fi(x) =
pk, if xi < fi(x)
pk, if xi > fi(x)
1, if xi = fi(x)

and P xi xi =
1 − pk, if xi < fi(x)
1 − pk, if xi > fi(x)

1, if xi = fi(x)
.

It follows that P xi yi = 0 for any yi ∉ xi, fi(x) . Therefore, we achieve A = ay, x x, y ∈ S. Note 

that when propensities are set to p = 1, we have a traditional BN. With this framework, 

we built a simulator that takes random initial states as inputs and then tracks the trajectory 

of each node through time. Long-term phenotype expression probabilities can then be 

estimated, as well as network dynamics with (and without) controls (Plaugher 2022).
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Fig. 13. 
CA example (Plaugher 2022)

7.2 Elementary Examples for Control Methods

7.2.1 Computational Algebra—Consider the network in Fig. 13, with the following 

regulatory functions.
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f1 = ∼ x3 ∧ ∼ x5
f2 = ∼ x1 ∨ x4
f3 = ∼ x2 ∨ x5
f4 = x3
f5 = ∼ x4

Using Table 5, we rewrite our functions as the following simplified polynomials.

f1 = 1 + x3 + x5 + x3x5
f2 = 1 + x1 + x1x4
f3 = x2x5 + x2 + 1
f4 = x3
f5 = 1 + x4

We can then find the fixed points of the system by solving fi = xi for i = 1, …, 5. Another way 

to view this step is as finding roots of gi = 0 where gi = fi − xi, then finding the Grobner basis 

of the ideal I = g1, …, g5 . In any case, the example in Fig. 13 does not contain any fixed 

points. However, further state space analysis does reveal two attractors: 01011, 01100  and 

00101, 01010, 01110, 01111, 10001, 11000 . Now, we encode our edge controls as

ℱ1 = 1 + u3, 1 + 1 x3 + u5, 1 + 1 x5 + u3, 1 + 1 x3 u5, 1 + 1 x5
ℱ2 = 1 + u1, 2 + 1 x1 + u1, 2 + 1 x1 u4, 2 + 1 x4
ℱ3 = u2, 3 + 1 x2 u5, 3 + 1 x5 + u2, 3 + 1 x2 + 1
ℱ4 = u3, 4 + 1 x3
ℱ5 = 1 + u4, 5 + 1 x4

(24)

and node controls as

ℱ1 = u1
− + u1

+ + 1 1 + x3 + x5 + x3x5 + u1
+

ℱ2 = u2
− + u2

+ + 1 1 + x1 + x1x4 + u2
+

ℱ3 = u3
− + u3

+ + 1 x2x5 + x2 + 1 + u3
+

ℱ4 = u4
− + u4

+ + 1 x3 + u4
+

ℱ5 = u5
− + u5

+ + 1 1 + x4 + u5
+ .

(25)

Let’s consider the objective of generating new attractors, and assume we want our steady 

state to be y = 11110. In general, one can search the entire system for controls, but there may 

be special cases where limiting decisions can be made amongst collaborators. For arguments 

sake, suppose we want to find edge knockouts and limit our search to edges x3 x1, x5 x1, 

and x2 x3. Then the updated edge equations (Eq. 24) become

ℱ1 = 1 + u3, 1 + 1 x3 + u5, 1 + 1 x5 + u3, 1 + 1 x3 u5, 1 + 1 x5
ℱ2 = 1 + x1 + x1x4
ℱ3 = u2, 3 + 1 x2x5 + u2, 3 + 1 x2 + 1
ℱ4 = x3
ℱ5 = 1 + x4 .

(26)

Evaluating at y = 11110 yields
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ℱ1 = u3, 1, ℱ2 = 1, ℱ3 = u2, 3, ℱ4 = 1, ℱ5 = 0 .

Therefore, the desired fixed point is achieved if and only if u3, 1 = u2, 3 = 1. That is, the controls 

for u3, 1 and u2, 3 are active, such that we must delete both corresponding edges. Similarly, we 

can determine node control to achieve new fixed point y = 11110. Again, for simplicity, we 

limit ourselves to x1 knock-in, x3 knock-out and knock-in, and x4 knock-in. The updated node 

equations (Eq. 25) then become

ℱ1 = u1
+ + 1 1 + x3 + x5 + x3x5 + u1

+

ℱ2 = 1 + x1 + x1x4

ℱ3 = u3
− + u3

+ + 1 x2x5 + x2 + 1 + u3
+

ℱ4 = u4
+ + 1 x3 + u4

+

ℱ5 = 1 + x4 .

(27)

Evaluating at y = 11110 yields

ℱ1 = u1
+, ℱ2 = 1, ℱ3 = u3

+, ℱ4 = 1, ℱ5 = 0 .

Thus, the desired fixed point is achieved if and only if u1
+ = 1 and u3

+ = 1. Importantly, this 

means that the controls by themselves are insufficient but together they achieve the desired 

goal. One can easily see that requiring numerous controls in much larger systems may not be 

biological feasible, which is why alternate objectives can prove useful.

Suppose we determine that y = 01111 is in a diseased attractor which we want to destroy. 

We can then aim to block the transition from y to F(y) = 01110. We limit ourselves to 

considering edges from x3 x1, x5 x1, x3 x4, and x4 x5. The updated edge equations 

(Eq. 24) become

ℱ1 = 1 + u3, 1 + 1 x3 + u5, 1 + 1 x5 + u3, 1 + 1 x3 u5, 1 + 1 x5
ℱ2 = 1 + x1 + x1x4
ℱ3 = x2x5 + x2 + 1
ℱ4 = u3, 4 + 1 x3
ℱ5 = 1 + u4, 5 + 1 x4 .

(28)

Evaluating at y = 01111 yields

ℱ1 = u3, 1u5, 1, ℱ2 = 1, ℱ3 = 1, ℱ4 = u3, 4 + 1, ℱ5 = u4, 5 .

This means that Eq. 2 becomes

u3, 1u5, 1 + 1 u3, 4 u4, 5 + 1 = 0

giving three possible solutions: u3, 1 = u5, 1 = 1, u3, 4 = 0, or u4, 5 = 1. Notice that we again have 

a combinatorial solution in u3, 1, u5, 1 since they are insufficient individually but successful 

together, u3, 4 = 0 means that the control is inactive, and u4, 5 is a singleton control.

Plaugher and Murrugarra Page 24

Bull Math Biol. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lastly, consider the objective of region blocking. Suppose we want to avoid regions where 

x3 = 0, and we will limit ourselves to nodes x2 knock-out, x3 knock-in, and x4 knock-in. Then 

the updated node equations (Eq. 25) become

ℱ1 = 1 + x3 + x5 + x3x5

ℱ2 = u2
− + 1 1 + x1 + x1x4

ℱ3 = u3
+ + 1 x2x5 + x2 + 1 + u3

+

ℱ4 = u4
+ + 1 x3 + u4

+

ℱ5 = 1 + x4 .

(29)

Fig. 14. 
CK example (Plaugher 2022)

Next, we see that Eq. 3 yields
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0 = 1 + x3 + x5 + x3x5 + x1

0 = u2
− + 1 1 + x1 + x1x4 + x2

0 = u3
+ + 1 x2x5 + x2 + 1 + u3

+ + x3

0 = u4
+ + 1 x3 + u4

+ + x4
0 = 1 + x4 + x5
0 = x3

(30)

Using computation algebra tools to compute the Grobner basis of the ideal associated to the 

above equations, we encode the system of equations to achieve the ideal:

I = x1 + 1, u2
−, x2 + 1, u3

+, x3, u4
+ + 1, x4 + 1, x5 .

This means the original system has the same solutions as the following system.

x1 + 1 = 0 u2
− = 0 x2 + 1 = 0 u3

+ = 0
x3 = 0 u4

+ + 1 = 0 x4 + 1 = 0 x5 = 0

Recall that our goal is to block the region x3 = 0 by finding parameters that guarantee the 

above system has no solutions. Utilizing equations that only contain control parameters we 

have u2
− = 0, u3

+ = 0, and u4
+ + 1 = 0. Thus, if we allow either u2

− = 1,, u3
+ = 1 or u4

+ = 0, then our 

system will have no solution, as needed. Since x3 is limiting criteria and u4
+ is an inactive 

control, that leaves u2
− = 1 as the desired target. As one can see, the computational algebra 

method is quite versatile (Plaugher 2022).

7.2.2 Control Kernel—Consider the network in Fig. 14. Steady state analysis reveals 

two fixed points: 000100 and 111011. Suppose our control objective is x4 = 0, which is the 

second fixed point respectively. We first notice that there are no input nodes, which means 

we move on to distinguishing nodes. Then the CK method (correctly) indicates that x1 = 1
will direct the system into the desired fixed point. Admittedly, while the CK method is 

straight forward, the documentation for the software used to implement the search can be 

difficult to navigate (Plaugher 2022).
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Fig. 15. 
FVS example (Plaugher 2022)

7.2.3 Feedback Vertex Set—Figure 15 contains a simple example of identifying a 

FVS. The input node x1  is always in the control set, while the only other node required is 

one of those in the 3-cycle. As scene in the figure, Fig. 15a is the example wiring diagram 

and Fig. 15b–d show the three possible FVS’s. One can easily see that the strategy for FVS 
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is quite simple, yet, it can produce larger control sets than necessary. Further, we may not 

obtain all FVS’s if the system has many attractors (Plaugher 2022).

7.2.4 Stable Motifs—Consider the example network in Fig. 16a, with the following 

functions and negated functions.

f1 = x2 ∣ x3 ∼ f1 = ∼ x2 & ∼ x3
f2 = x1& ∼ x3 ∼ f2 = ∼ x1 ∣ x3
f3 = ∼ x1 ∣ ∼ x2 ∼ f3 = x1&x2

Using the aforementioned steps, the expanded graph obtained is Fig. 16b. Notice there are 

two stable motifs (circled in orange and green), which indicate a fixed point (110) and a 

partial fixed point (X01). To find the rest of partial fixed point, substitute known values into 

the original functions. Therefore,

f1 = x2 x3 = 0 1 = 1

Fig. 16. 
Stable motif example (Plaugher 2022)

which gives 101 as the second fixed point. Since the control sets are subsets of the stable 

motifs, we have x2 = 1, x3 = 0  or x1 = 1, x3 = 0  for fixed point 110, and x2 = 0  or x3 = 1
for fixed point 101 (Plaugher 2022).
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7.3 Simulating Target Efficacy

To determine the efficacy of controls, we compare uncontrolled simulations with the 

appropriate target control simulations. Thus, a good control will produce low disease levels 

and high health levels (Plaugher 2022). We can do so by utilizing a stochastic simulator 

based on SDDS (Murrugarra and Aguilar 2018; Plaugher and Murrugarra 2021; Plaugher 

et al. 2022; Plaugher 2022), which requires several inputs before it can begin. The number 

of input variables in each Boolean function is given by the vector nv. Next, we need the 

variables for each gene in the form of an m × n matrix called var F  where m is the maximum 

number of inputs, n is the number of genes, and information is stored column-wise. The 

number of variables will vary between functions. Since only the first nv(i) elements of the 

ith column are relevant, all remaining entries are set as ( − 1). Now we construct the truth 

table F  in compact form with size 2m × n. Again, the length of each column i will vary 

but only the first 2nv(i) entries are relevant. So all remaining entries are set as ( − 1). It is 

vitally important to maintain numerical ordering, which is why the columns of F  are in 

lexicographic binary arrays (Veliz-Cuba et al. 2022).

We must also establish propensities in the form of a 2 × n matrix c that contains values for 

pk and pk. The values chosen for propensities may perturb results, as we saw in Fig. 12. But 

for all intents and purposes, we typically use pk = pk = 0.9 (i.e. follow the function rules 90% 

of the time). Finally, we can run simulations using inputs: F , var F , nv, number of states 
(usually Boolean), c, n, number of steps, and number of random initializations. We have also 

implemented versions that allow for mutation induction and specified initial states. As a 

result, we achieve time-course trajectories, and we can use the Markov chain structure of 

SDDS to analyze features such as time to absorption, stationary distributions, and more.
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Fig. 17. 
Simple 3-cycle (Plaugher 2022)

Table 6

Variable tables for simple 3-cycle simulations in Fig. 17 (Plaugher 2022)

(a) nv
x2 x2 x3

1 1 1

(b) var F
x1 x2 x3

3 1 2

(c) F
x1 x2 x3

0 0 0

1 1 1

As an example, consider the simple 3-cycle in Fig. 17. This particular system has two 

fixed points ( 000  and 111 ) as well as two attractors ( 001, 100, 010  and 011, 101, 110 ). 
Simulations were conducted using the variables in Table 6, with 1000 random initializations, 

100 time steps (function updates), and injecting 1% noise. The overall state-space is shown 
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in Fig. 18. In Fig. 19a, the uncontrolled simulation shows the oscillatory nature of attractors. 

However, Fig. 19b, c show that inducing control on x1 is enough to drive the system to one 

fixed point or the other. Therefore, the SDDS simulator has the ability to show long-term 

trajectories and impact of controls over time.

7.4 Software

• Cumulative files for all control techniques and examples, as well as “how-to” 

documentation (Plaugher 2022)

– https://github.com/drplaugher/SMATA_pipeline

• CA: used to find fixed points, controls, and run simulations (Plaugher and 

Murrugarra 2021; Plaugher et al. 2022; Grayson and Stillman 2002)

– use the example files above

– see also, https://github.com/drplaugher/PCC_Mutations

• CK: used to find control kernels (Borriello and Daniels 2021)

– https://doi.org/10.5281/zenodo.5172898

• FVS: used to find FVSs (Mochizuki et al. 2013; Zañudo et al. 2017)

– https://github.com/jgtz/FVS_python3

• Modularity: used to find strongly connected components (modules) (Kadelka et 

al. 2022)

– use the example files above

• SM: used to find stable motifs and dynamic attractors (Zañudo and Albert 2015, 

2013)

– https://github.com/jgtz/StableMotifs

– https://github.com/jcrozum/pystablemotifs

7.5 Appendix Tables

See Tables 7 and 8.
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Fig. 18. 
Phase-space of simple 3-cycle. Here we show the state-space of the example from Fig. 17, 

using SDDS with transition probabilities, with nodes written in lexicographical ordering
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Fig. 19. 
Simulation examples for a simple 3-cycle with 1% noise (Plaugher 2022)

Table 7

Small T-LGL rules

Node Boolean rule

S1P (Not Ceramide)

FLIP (Not DISC)

Fas (Not S1P)

Ceramide Fas and (not S1P)

DISC Ceramide or (Fas and (not FLIP))
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Node Boolean rule

Apoptosis DISC

Table 8

Functions for large T-LGL model

Node Rule

CTLA4 TCR

TCR Stimuli and not CTLA4

PDGFR S1P or PDGF

FYN TCR or IL2RB

Cytoskeleton_signaling FYN

LCK CD45 or ((TCR or IL2RB) and not ZAP70)

ZAP70 LCK and not FYN

GRB2 IL2RB or ZAP70

PLCG1 GRB2 or PDGFR

KRAS (GRB2 or PLCG1) and not GAP

GAP (KRAS or (PDGFR and GAP)) and not (IL15 or IL2)

MEK KRAS

ERK MEK and PI3K

PI3K PDGFR or KRAS

NFKB (TPL2 or PI3K) or (FLIP and TRADD and IAP)

NFAT PI3K

RANTES NFKB

IL2 (NFKB or STAT3 or NFAT) and not TBET

IL2RBT ERK and TBET

IL2RB IL2RBT and (IL2 or IL15)

IL2RAT IL2 and (STAT3 or NFKB)

IL2RA (IL2 and IL2RAT) and not IL2RA

JAK (IL2RA or IL2RB or RANTES or IFNG) and not (SOCS or CD45)

SOCS JAK and not (IL2 or IL15)

STAT3 JAK

P27 STAT3

Proliferation STAT3 and not P27

TBET JAK or TBET

CREB ERK and IFNG

IFNGT TBET or STAT3 or NFAT

IFNG ((IL2 or IL15 or Stimuli) and IFNGT) and not (SMAD or P2)

P2 (IFNG or P2) and not Stimuli2

GZMB (CREB and IFNG) or TBET

TPL2 TAX or (PI3K and TNF)

TNF NFKB

TRADD TNF and not (IAP or A20)
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Node Rule

FasL STAT3 or NFKB or NFAT or ERK

FasT NFKB

Fas (FasT and FasL) and not sFas

sFas FasT and S1P

Ceramide Fas and not S1P

DISC FasT and ((Fas and IL2) or Ceramide or (Fas and not FLIP))

Caspase (((TRADD or GZMB) and BID) and not IAP) or DISC

FLIP (NFKB or (CREB and IFNG)) and not DISC

A20 NFKB

BID (Caspase or GZMB) and not (BclxL or MCL1)

IAP NFKB and not BID

BclxL (NFKB or STAT3) and not (BID or GZMB or DISC)

MCL1 (IL2RB and STAT3 and NFKB and PI3K) and not DISC

Apoptosis Caspase

GPCR S1P

SMAD GPCR

SPHK1 PDGFR

S1P SPHK1 and not Ceramide

PDGF 0

IL15 1

Stimuli 1

Stimuli2 0

CD45 0

TAX 0
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Fig. 1. 
Reduced T-LGL network. The figure shown here indicates the smaller (reduced) T-LGL 

model, where black barbed arrows indicate signal expression and while red bar arrows 

indicate suppression (Plaugher 2022) (Color figure online)
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Fig. 2. 
Reduced T-LGL network target overlaps. We highlight the overlapping control targets from 

Table 3 by overlaying them with the reduced T-LGL wiring diagram from Fig. 1, shown 

in two diagrams for clarity. a We show instances of CA edge (blue), CA node (green), 

and SM (grey). b We show instances of CK (black) and FVS (purple). Note that FVS has 

combinatorial controls with connecting arches, where others are strictly singleton (Color 

figure online)
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Fig. 3. 
CA diagram. Here, we show a toy model that emphasizes the difference between node and 

edge control. The key difference with edge control (b), is that all other communications are 

maintained. Whereas, node control removes every signal associated with the given target
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Fig. 4. 
Single-in-single-out removal. Here, we show how to remove FGFR from the network shown 

in (a) and still maintain downstream signaling shown in (b). See Eqs. (5)–(8) for functional 

maintenance
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Fig. 5. 
Single-in-multi-out removal. Here, we show how to remove MEK from the network shown 

in (a) and still maintain downstream signaling shown in (b). See Eqs. (9)–(14) for functional 

maintenance
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Fig. 6. 
Low connectivity removal. Here, we show how to remove cJUN from the network shown in 

(a) and still maintain downstream signaling shown in (b). See Eqs. (15)–(22) for functional 

maintenance
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Fig. 7. 
Modularity example (Plaugher 2022)
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Table 2

Large T-LGL target tables

Here we list the control targets for the larger T-LGL model, where control sets are separated by double horizontal bars such that (a) (CA Nodes) 
contains seven singleton controls, (b) (CA Edges) contains nine singleton controls, (c) (FVS) contains one set of 18 controls, and (d) (SM) contains 
three singleton controls, five triple control sets, and one quadruple control set (Plaugher 2022). Note that some of the larger sets contain elements 
which are unnecessary due to known singleton controls being a subset of the larger collection. For example, S1P and Ceramide work independently 
but are also included in larger sets. Further, the CK method did not produce exact results for the large model because of its size (Fig. 2).
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Table 3

Reduced T-LGL target tables

As before, we list the control targets for the small T-LGL model, where control sets are separated by double horizontal bars such that (a) contains 
two singleton controls, (b) contains three singleton controls, (c) contains one singleton, (d) contains four sets of dual controls, and (e) contains two 
singleton controls (Plaugher 2022)
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