Skip to main content
. 2023 Sep 18;14:1106625. doi: 10.3389/fendo.2023.1106625

Table 2.

Main findings of the included studies.

Author Type of data AI/ML intervention Best model AUC Sens Spec PPV NPV Diag. Acc.
1 Nazarudin, et al. (27) Imaging 2 automated segmentation models: combination of Otsu’s thresholding and the Chan - Vese method, Otsu’s thresholding. Chan-Vese + Otsu’s segmentation analysis NR NR NR NR NR Remarkable increase in accuracy
2 Bharati, et al. (28) Clinical, and imaging data Gradient boosting, RF, LR, and LR Hybrid RFLR 0.93 NR NR NR NR 0.91
3 Cahyono, et al. (29) Imaging Convolutional Neural Network CNN NR NR NR NR NR
4 Castro, et al. (30) Electronic medical records Algorithm using Natural language processing and codified data Algorithm using Natural language processing and codified data NR NR NR 0.68 NR NR
5 RoyChoudhury, et al. (31) Metabolomics PLS-DA Statistical analysis with PLS-DA 0.8 NR NR NR NR NR
6 Rodriguez, et al. (32) Virtually generated clinical data Bayesian network Bayesian network NR NR NR NR NR NR
7 Purnama, et al. (33) Imaging Neural Network - LVQ method, K-NN and SVM SVM NR NR NR NR NR 0.83
8 Prapty, et al. (34) Clinical data KNN, SVM, Naive Classifier, RF RF NR NR NR NR NR 0.94
9 Chauhan, et al. (35) Clinical data KNN, Naïve Bayes Classifier, SVM, Decision tree classifier, LR Decision Tree Classifier NR 0.41 0.94 NR NR 0.81
10 Lawrence, et al. (36) Imaging LDC, KNN, SVM LDC NR 0.91 0.95 NR NR 0.93
11 Mehrotra, et al. (23) Clinical data Multivariate logistic regression, Bayesian Classifier Bayesian classifier NR 0.93 0.94 0.81 NR 0.94
12 Matharoo-Ball, et al. (37) Proteomics Artificial Neural Network Artificial Neural Network NR NR NR NR NR 1
13 Lehtinen, et al. (38) Clinical data TPFFN and SOM TPFFN NR NR NR NR NR efficiency of 97%
14 Kumar, et al., 2014 REFID 101 (39) Imaging PNN, SVM, RBF PNN NR NR NR NR NR 0.98
15 Madhumitha, et al. (40) Imaging SVM, K-NN, LR Proposed Method (SVM + K-NN + LR) NR NR NR NR NR 0.98
16 Ho, et al. (41) Genetics SVM, RF, GMM SVM with 5 and 3-fold cross validation 1 1 1 NR NR 1
17 Gopalakrishnan, et al. (42) Imaging SVM. SVM NR NR NR NR NR 0.94
18 Dong, et al. (43) Clinical data Orthogonal PLS-DA Orthogonal PLS-DA 0.96 NR NR NR NR NR
19 Deshpande, et al. (44) Clinical and imaging SVM SVM NR NR NR NR NR 0.95
20 Denny, et al. (45) Clinical data and imaging LR, KNN, CART, RFC, NB, SVM RFC NR 0.74 0.98 NR NR 0.89
21 Deng, et al. (46) Imaging Watershed + Object growing algorithm, Level set method, boundary vector field methiod, fuzzy support vector machine classifier Watershed + Object growing algorithm NR NR NR NR NR NR
22 Dapas, et al. (47) Genome wide association SVM, RF, GMM NR NR NR NR NR NR NR
23 Che, et al. (48) Genetics Unsupervised hierarchical clustering analysis Unsupervised hierarchical clustering analysis NR NR NR NR NR NR
24 Cheng, et al. (49) Imaging Gradient boosted trees, Rules based classifier Rules-based classifier NA 0.97 0.98 0.95 0.99 0.98
25 Zhang, et al. (50) Clinical data K-NN, RF, XGB, Stacking classification model K-NN with follicular fluid NR 0.87 0.90 NR NR 0.88
26 Xie, et al. (51) Genetics Random Forest, Artificial Neural Network Artificial Neural Network 0.73 0.73 0.75 NR NR NR
27 Thakre, et al. (52) Clinical data RF, SVM, LR, Gaussian Naïve Bayes, K-NN RFC 0.89 0.97 0.8 0.89 0.94 0.91
28 Vikas, et al. (53) Clinical data Frequent item set mining, Apriori algorithm NR NR NR NR NR NR NR
29 Setiawati, et al. (54) Imaging LR, SVM, Backpropagation Neural Network Backpropagation Neural Network NR NR NR NR NR NR
30 Rihana, et al. (55) Imaging SVM SVM NR 0.88 0.95 NR NR 0.9
31 Deng, et al. (56) Imaging Clustering analysis, Manual image reading Clustering analysis 0.84 NR NR NR NR 0.84

Studies presented by lead author and year of publication with corresponding main findings. Shorthand denoted as: No Response (NR), K-Nearest Neighbor (K-NN), learning vector quantization (LVQ), logistic regression (LR), not reported (NR), support vector machine (SVM), partial least squares discriminant analysis (PLS-DA), topology-preserving feed-forward network (TPFFN), extreme gradient boosting (XGB), self-organizing map (SOM). Classification and Regression Trees (CART), Random Forest (RF), Random Forest Classifier (RFC), Naïve Bayes Classifier (NB), Gaussian mixed model (GMM), Linear Discriminant Classifier (LDC), Convolutional Neural Network (CNN), Random Forest and Logistic Regression (RFLR)