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Abstract

Objective.—The motor hyperdirect pathway (HDP) is a key target in the treatment of 

Parkinson’s disease with deep brain stimulation (DBS). Biophysical models of HDP DBS have 

been used to explore the mechanisms of stimulation. Built upon finite element method (FEM) 

volume conductor solutions, such models are limited by a resolution mismatch, where the volume 

conductor is modeled at the macro scale, while the neural elements are at the micro scale. New 

techniques are needed to better integrate volume conductor models with neuron models.

Approach.—We simulated subthalamic DBS of the human HDP using finely meshed axon 

models to calculate surface charge deposition on insulting membranes of nonmyelinated axons. 

We converted the corresponding double layer extracellular problem to a single layer problem 

and applied the well-conditioned charge-based boundary element fast multipole method (BEM-

FMM) with unconstrained numerical spatial resolution. Commonly used simplified estimations of 

membrane depolarization were compared with more realistic solutions.

Main result.—Neither centerline potential nor estimates of axon recruitment were impacted by 

the estimation method used except at axon bifurcations and hemispherical terminations. Local 

estimates of axon polarization were often much higher at bifurcations and terminations than at any 

other place along the axon and terminal arbor. Local average estimates of terminal electric field are 

higher by 10–20%.

Significance.—Biophysical models of action potential initiation in the HDP suggest that axon 

terminations are often the lowest threshold elements for activation. The results of this study 
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reinforce that hypothesis and suggest that this phenomenon is even more pronounced than 

previously realized.
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1. Introduction

Multiscale modeling of deep brain stimulation (DBS) [1],[2],[3] is an active area of research. 

The motor hyperdirect pathway (HDP) [4], which directly connects the motor cortex to 

the subthalamic nucleus (STN), is considered a key target in the treatment of Parkinson’s 

disease symptoms with deep brain stimulation (DBS). Recently, biophysical models of the 

human HDP have been used to explore the therapeutic mechanisms of subthalamic DBS [1],

[5]. However, comparison of clinical and model-predicted thresholds for evoked potentials 

implies that model detail remain insufficient for precise prediction of pathway recruitment 

[6],[7],[8].

Oversimplified axonal anatomy and branching might explain much of the prediction error 

[8]. Heterogeneous charge deposition and voltage-gated channel distribution on variegated 

membrane surfaces, such as at bifurcations and terminals, may partly explain lingering 

errors in predictions of axon recruitment in response to extracellular electric fields. 

Built upon finite element method (FEM) volume conductor solutions, models of DBS 

pathway recruitment are often limited by a resolution mismatch which ignores local charge 

deposition on neuronal membranes. Further, FEM models, which can accurately estimate 

charge deposition on anatomically realistic axons at the micron-scale, are computationally 

expensive [9],[10]. Lastly, the spatial derivative of the external macroscopic electric field is 

frequently used as an estimator of neuronal recruitment (activating function), ignoring the 

effect of unique neuronal geometry on membrane polarization (cf., for example, [11],[12]).

However, accurate high-resolution implementation of membrane surface charges might alter 

estimates of neuronal recruitment, particularly where axons bifurcate and terminate [13],

[14],[3]. This could be especially true for the HDP, which emits an axon collateral that 

terminates in the STN with multiple bifurcations [15],[16],[17]. From quasi-electrostatic 

theory, both terminations and bifurcations are natural targets for strong charge accumulation 

and thus for the strong electric current induction within axons.

Estimation of induced charges on complex neuronal membrane surfaces presents a 

challenging numerical problem which classic finite element methods struggle to solve 

[9],[10]. A layer of electric dipoles, known as the double layer, forms across the thin 

membranes. Modeling this phenomenon accurately in three dimensions and at multiple 

scales is a challenging task. However, when dealing with an insulating membrane at the end 

of initial polarization [23],[29],[21],[22], it is feasible to describe the extracellular solution 

using an equivalent single layer of charges. This allows for the direct application of the 
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recently developed charge-based boundary element fast multipole method (BEM-FMM) 

formulation [18],[19],[20], which possesses inherent capabilities for multiscale modeling 

due to an unconstrained spatial numerical resolution. BEM-FMM enables micron-scale 

numerical solution of extracellular fields for axon models which are up to 100 mm (~20 

mm in this study) long and 1 μm thin with multiple bifurcations and terminations in an 

external electric field induced by active DBS contacts. Accurate mesh models of HDP axon 

membrane surfaces can be composed of several millions of triangular facets, each with the 

size of 0.2 μm or so. This leads to a scale ratio of 20 mm/0.2 μm or 100,000:1, which is 

inappropriate for traditional finite element method solvers.

In the present study, modeling was used to compare the recruitment solutions with and 

without membranes, respectively, i.e., in an otherwise homogeneous volume conductor. To 

quantify the differences in the neuronal recruitment, we computed all three quantities – 

extracellular potential, electric field, and activating function [32],[33],[34] – at the axonal 

centerline after averaging over its gross-section. Special attention was paid to the effect of 

bifurcation and termination on estimates of membrane depolarization. The results of this 

study include data obtained from the first 60 axons of HDP as referenced in [1], with 40 

axons being retained for analysis. Additionally, data for various axonal diameters have also 

been included in the study.

The sensitivity of axon terminals to electric fields and the role of terminal membrane 

potential have been recognized for decades [24],[25],[26],[27],[28],[3] with a number of 

important conclusions about higher (up to four times) susceptibility to polarization for 

different stimulation modalities. The effect of bifurcations was investigated too [3]. The 

primary insight of the present study is that traditional volume conductor methods used 

in these references might still somewhat underestimate the electric field and severely 

underestimate the activating function at neuronal bifurcations as well as terminations and 

may, therefore, lead to underestimations of axon recruitment in models of subthalamic DBS.

2. Materials and Methods

2.1. Creating 2-manifold membrane surfaces for axons collaterals from a graph

Initially, every axon is represented by an arbitrary graph of simply interconnected spatial 

nodes. The graph includes (i) nodes in 3D; (ii) edges or segments with 2 points each; 

(iii) axon radii for every edge and; (iv) any other labeled edge properties. An example 

of nodes and edges of a graph is shown in Fig. 1a. As a first processing step, the graph 

is automatically refined by edge split to have the edge length less than or equal to, let’s 

say, the anticipated axonal diameter. This operation illustrated in Fig. 1b is necessary for 

a good-quality mesh. Next, all contiguous oriented paths of the nodes - graph centerlines 

(different colors, 6 in Fig. 1c) – are automatically identified. Every such path has two 

termination nodes. Every termination node is either a physical termination, or a bifurcation, 

trifurcation, etc. node. After that, a tubular open triangular surface mesh is automatically 

created for every path using the method of a moving cross-section (or extrusion along a 

curved 3D path) shown in Fig. 2a and applicable to any cross-sectional shape.
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The open tubular meshes are automatically joined together via special junction meshes (Fig. 

2b). The junction mesh is based on the nodes of termination rings for every tubular mesh 

entering the given fork. It is a convex-hull mesh but without caps. The termination rings 

are chosen in such a way that the resulting junction mesh is manifold. This is done by 

selecting either the last ring, or the second last ring, etc. for every tube. An illustration of 

a complete watertight 2-manifold graph mesh for a graph from Fig. 1a is given in Fig. 3. 

The termination cap (Fig. 3c) can be either flat or hemispherical (used in this study). The 

corresponding mesh generator is available online.

2.2. Constructing models for HDP axons and DBS lead

The HDP graph topology adapted from Ref. [1] follows Fig. 4a. The STN volume is 

omitted to better visualize the collaterals. Fig. 4a displays 60 axons of cortical pyramidal 

motor neurons that have an axon collateral which terminates in the STN. They were chosen 

from ~8,000 arborized motor axons of Ref. [1]. Every such axon will have exactly two 

bifurcations shown in Fig. 4b. There, we follow Hack’s (or classic) stream (or level) order 

also depicted in Fig. 4b. There, the root axon (red) has Hack’s level 1; the next-level axon 

(green) has Hack’s level 2, the last-level axon (blue) has Hack’s level 3. We consider only 

non-myelinated axons in this study.

Fig. 5 displays assembly of 60 axonal membrane meshes all at once with some intermediate 

zooming steps a) through g). The overall zoom from Fig. 5a to Fig. 5g is 4,000:1. Following 

data of [35],[36], three sets of axonal diameters were investigated: i) 2μm (level 1), 2μm 

(level 2), 2μm (level 3); ii) 2μm (level 1), 1μm (level 2), 1μm (level 3) and; iii) 1μm (level 1), 

1μm (level 2), 1μm (level 3). It should be noted that non-myelinated axons are even thinner 

than the myelinated ones. The membrane mesh for every axon contains ~0,7 million facets 

(~2.8 million after refinement). A Medtronic 3387 DBS lead was constructed following 

dimensions of Ref. [38] – cf. Fig. 4b. Outermost contacts 0 and 3 were driven with the 

current of ± 1 mA (the cathode contact 0 is on the bottom), which corresponds to a bipolar 

electrode excitation. We were looking for an instantaneous idealized-amplitude electric-field 

field estimation. This means that no cumulative charge deposition due to pulse width or 

capacitive charging have been considered.

2.3. Axon model at the end of initial polarization [21]

Consider a simplified axonal model in the form of a thin membrane with surface capacitance 

Cm, enclosing an intracellular volume with intracellular resistivity ri (being significantly 

smaller than an extracellular resistivity), and with a typical dimension dc (the axonal 

radius). When a primary electric field is applied, the membrane capacitance will be locally 

charged (or discharged). This very fast charging process – called initial polarization [21],

[22] – proceeds with the cellular time constant τc = dcri Cm. Estimating dc 1 μm as well 

as ri 100 Ωcm, Cm 1μF /cm2 [30],[9] confirms that τc < 1 μs [21]. During the fast initial 

polarization, the ionic currents are still very small and can be neglected compared to the 

capacitive currents [21],[22],[23],[29]. Our main interest lies in obtaining a “steady-state” 

solution at the end of the initial polarization. A detailed asymptotic analysis of the coupled 

membrane equations [21] at the end of the initial polarization states that
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i. the membrane itself becomes non-conducting (insulating) since the capacitive 

membrane current density, im = Cm ∂φm/ ∂t (φm is the transmembrane potential), 

approaches zero while the ionic current density is still negligibly small and;

ii. the conducting intracellular space becomes strictly equipotential, φinside = const, 
with a constant resting potential [21] since no electric current within a closed 

cell volume isolated by the nonconducting membrane can exist in a conservative 

(curl-free) field.

Thus, the axon (cell) model becomes a non-conducting charged membrane separating the 

intra- and extracellular conducting spaces, respectively. This is a steady-state DC conduction 

model.

2.4. Steady-state solution at the end of initial polarization

The steady-state DC conduction model is applied here, which possesses three main features 

[21]:

i. the solution for the extracellular potential φe only uses the boundary condition 

of zero transverse current at the (outer) membrane surface. It is decoupled from 

the intracellular solution. Such a solution coincides with the potential ϕe for a 

completely non-conducting axon (cell). This fact follows from the uniqueness of 

the solution for the exterior Neumann problem;

ii. the solution for the intracellular potential φi is trivial, meaning that φi = const;

iii. the solution for the transmembrane potential is φm = φi − ϕe.

At first glance, an alternative approach is to keep the intracellular space conducting, 

assign a very small yet finite membrane thickness corresponding to its surface capacitance 

Cm, and then solve the coupled problem. This “direct” thin-membrane solution is very 

difficult numerically since it is characterized by both a double-layer (dipolar) charge density 

and a single-layer (monopolar) charge density deposited on the membrane. However, it 

is equivalent to the simpler solution described above which only needs the single-layer 

charge density. Appendix A illustrates this fact via two complete analytical thin-membrane 

solutions: for a sphere and a cylinder, respectively. In both cases, the extracellular potential 

and the deposited double-layer charge density pshell are automatically obtained from the 

simpler solution as φe = ϕe and pshell = ε0ϕe.

2.5. Value of steady-state solution at the end of initial polarization

First, the extracellular solution with the insulating membrane serves as an initial condition to 

the problem governing the subsequent neuronal activation – evolution of membrane potential 

– that proceeds with a much larger membrane time constant [21]. When the physiological 

state of the cell changes, the transmembrane currents are indeed no longer zero.

Second, an accurate bi-domain modeling indicates that currents flowing across the cell 

membrane have only a small effect on the usually large extracellular space [21],[9]. 

Therefore, the extracellular solution with the insulating membrane may also serve as an 
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approximate solution for the extracellular potential, field, and activating function during the 

entire time course.

2.6. Computing steady-state solution at the end of initial polarization via BEM-FMM

The recently developed charge-based boundary element fast multipole method (BEM-FMM) 

[18],[19],[20] enables us to solve the extracellular problem shown in Fig. 5 either for an 

individual axon or for all axons simultaneously. We use the model of non-conducting axons 

with the single-layer charge density, which is equivalent to the model of the insulating 

membrane for the extracellular solution. In contrast to FEM, BEM-FMM could be ideal 

for this kind of problem since it does not require meshing the large extracellular space 

(including the DBS lead and the axon(s)) at micrometer scale. It operates with the induced 

charge density residing at the membranes and solves a well-conditioned Fredholm equation 

of the second kind. The detailed formulation can be found in Supplement to Ref. [18]. For 

a single axon with 1 million facets, BEM-FMM reaches a relative residual of 10−12 in ~30 

sec using a 2.6 GHz multicore machine. Solution accuracy is controlled by mesh refinement. 

The corresponding computer code (MATLAB) is available online.

2.7. Computing “effective” potentials and fields at axon centerlines

The 1D cable equation (cf. [31],[32],[33],[34]) uses the potential or the corresponding 

activating function, f z = d2ϕe/dz2 = − dEz/dz [32],[33],[34], of the collinear extracellular 

field on the axonal centerline z when the axon itself is not physically existent. However, a 

3D extracellular solution schematically shown in Fig. 6 predicts significant field variations 

across the axonal perimeter. To derive a comparable metric from the 3D solution and obtain 

an “effective” collinear field Ez on the centerline, some averaging over the cross-section 

must be made as illustrated in Fig. 6. The simplest way to do this is again to obtain 

the collinear electric field at the axonal centerline from the extracellular solution with the 

entirely non-conducting interior.

2.8. Segmentation resolution of f z
For non-myelinated axons, the segmentation resolution of f z  can be made arbitrarily fine 

while for myelinated fibers, the segmentation resolution is naturally given by the nodes of 

Ranvier [32]. For modeling purposes, we considered a fine numerical resolution on the order 

of 1 μm. However, for practical purposes, we also obtained averaged values f z  over an 

interval of 1 mm i.e., reduce the segmentation resolution to 1 mm. This averaging allowed us 

to derive meaningful quantitative estimates for otherwise microscopic spiking effects at the 

terminations and bifurcations.

3. Results

3.1. Behavior of potential, centerline field, and activating function along axonal 
centerlines

All results below are given for the extracellular resistivity re = 400 Ωcm (conductivity of 0.25 

S/m) and for the outermost contacts 0 and 3 of the Medtronic 3387 DBS lead in Fig. 4 

driven with the current of ± 1 mA. Electrode 0 (bottom) is a cathode. Typical field behavior 
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is illustrated in Fig. 7 with axonal thicknesses of 2 μm, 1, μm, and 1 μm for Hack’s levels 

1, 2, and 3 (cf. Fig. 4b). The data for dEz/dz were downsampled using a spline interpolation 

and then sampled back to reduce a high-frequency noise. No averaging or filtering of any 

other kind has been made.

First row of Fig. 7 shows the extracellular electric potential ϕe (V), second row – the 

collinear (averaged) electric field Ez (V/mm), third row –the field derivative dEz/dz along the 

path or the (negative) activating function (V/mm2) for axon #1. Three columns correspond 

to the three continuous combined centerline paths from Fig. 4b,c. The red color indicates 

computations for the homogeneous space; the blue color – computations with the membrane. 

The last row is the bar plot for the activating function averaged over a 1 mm centerline 

interval as described in Section 2.8. The grey strips indicate the bifurcation nodes; the 

termination nodes are located at both ends of the respective curves.

3.2. Behavior of extracellular potential and tangential extracellular field at the membrane 
surface

Fig. 8 Illustrates maps of the extracellular potential and the extracellular field at the 

membrane surface of axon #1. There, the computations for a 2 μm thick axon were projected 

to the corresponding tubular surface with a much larger diameter of 200 μm; this is done 

for visualization purposes only. Fig. 8a shows the extracellular electric potential (or the 

transmembrane potential to within an additive constant) at the end of initial polarization for 

axon #1 while Fig. 8b shows the magnitude of extracellular tangential electric field.

3.3. Quantitative estimates

Table 1 reports average relative percent differences for electric potential, longitudinal 

electric field, and the line derivative of the longitudinal field (activating function) 

distributions along the three combined axonal centerlines, with and without the membranes 

(in a completely homogeneous geometry), for the 60-axon bundle in Fig. 4a. Only 40 

axons which have exactly three continuous combined centerline paths illustrated in Fig. 4b,c 

were finally retained. Relative signed (membrane solution vs. the homogeneous solution) Ez

differences at the terminations were computed at the center of the hemispherical closing cap. 

The corresponding standard deviations are shown by subscripts.

Similar results for axons with thicknesses of 1 μm, 1, μm, and 1 μm as well as 2 μm, 2, μm, 

and 2 μm, respectively, corresponding to Hack’s levels 1, 2, and 3 and are given in Table B1 

of Appendix B.

4. Discussion

4.1 Perturbations of centerline electric potential are negligibly small

It follows from Fig. 7 as well as from Table 1 (and Table B1 of Appendix B) that explicitly 

modeling the effect of membrane surfaces led to vanishingly small relative differences for 

the centerline electric potential with respect to the solution for the homogeneous space. This 

fact is valid for all combined paths, irrespective of how close they are to the DBS electrodes. 

Therefore, these variations could likely be neglected when the potential values are fed into 
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NEURON models [39]. Further reinforcing this observation, Fig. 8a demonstrates that the 

extracellular potential remains consistent across neural cross-sections with a high degree of 

accuracy.

4.2 Perturbations of centerline electric field are negligibly small except for local 
variations at terminations

It follows from Table 1 (and Table 1B of Appendix B) that that the average relative 

variations in the one-dimensional collinear electric field along the centerlines caused by 

nonconducting membranes are also quite small as compared to the homogeneous case. 

However, local relative Ez  values at the centers of the termination hemispherical caps 

are higher by 10–20% on average. In certain instances where the axonal centerline aligns 

parallel to the DBS field, there is an approximate 50% increase. A similar tendency was 

observed when the electric field was averaged over a terminating centerline path of 3 

diameters in length. Fig. 8b also shows that the extracellular tangential electric field at the 

membrane surface can be very different from the (averaged) collinear centerline field.

4.3 Perturbations of activation function are quite small except for extremely large spikes 
at bifurcations and terminations

It is seen in Fig. 7 that the variations in the one-dimensional activating function along 

the centerlines caused by nonconducting membranes are also quite small as compared to 

the homogeneous case everywhere except bifurcations and terminations. Similarly, these 

variations could likely be neglected everywhere except bifurcations and terminations.

On the other hand, variations of the one-dimensional activating function close to both the 

bifurcation and the termination nodes may be very large as Fig. 7 shows. They are very 

local and only span several axonal diameters. These variations are due to the strong induced 

membrane surface charges whose coaxial fields do not cancel out at the axonal centerline 

as is expected, for example, for straight infinite non-conducting cylinders in a homogeneous 

space.

The local variations of the activating function close to the bifurcations and terminations 

are so huge that they very substantially (by up to 100%) distort an integral measure of the 

activating function over the entire axonal branch path – its L2 norm. This is shown in Table 

1 and Table B1 of Appendix B. Such a behavior is typical for a mathematical delta function 

that has an infinite peak at one point. The definition implies that the delta function value is 

zero everywhere except at the point, but its integral over the entire real line containing this 

point is equal to one [43].

4.4 Effect of arbor diameter

By comparing Table 1 and Table B1 of Appendix B one can see that the effect of the 

axonal diameter does not have a well-defined influence on the results. The obtained error 

and deviation estimates are approximately of the same order.
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4.5 Implication for the solution of cable equation

The delta-function like behavior of the terminal/bifurcation corrections may result in a 

development of a lumped circuit model in the form of a current clamp or a voltage clamp 

that can be used in the cable equation (e.g., NEURON models) [39]. The strength of 

the source will be a function of the angle(s) between the arbor direction(s) and the field 

direction at the termination(bifurcation). Yet another alternative solution might be to modify 

the terminal values of the extracellular electric potential V e sampled with the resolution of 

approximately 1 mm. To comply with the terminal values of the activating function from 

Fig. 7, the equality f z = ϕe, n + 1 − 2ϕe, n + ϕe, n − 1 /dz2 could be applied while redefining the 

last value, ϕe, n + 1, accordingly, using dz = 1 mm.

4.6 Constraints and limitations of the study

The present study is limited in the following ways:

i. the effect of myelin, although this simplification is likely reasonable for the task 

of estimating surface potential under the assumption of initial polarization since 

we aren’t modeling actively conducting axons;

ii. a potentially significant effect of rapidly varying non-circular axonal cross-

sections which is frequently simplified away in histology-based or non-invasive 

primate neuroimaging;

iii. the approximation of initial polarization and is that of the insulating membrane.

The latter approximation implies that the extracellular currents have little effect on the 

extracellular solution. Alternative approaches and the corresponding modifications of f z
for the transverse electric field can be found in Refs. [40],[41],[42],[9].

While the axonal models from Bingham & McIntyre, 2022 [1] used in this study are closely 

modeled after 3D histological tracings from Coude et al., 2018 [44], which indicate little 

to no tapering and comparable parent/child diameters across bifurcations, the true parent/

child diameter ratios remain unknown. The impact of parent/child diameter ratios on charge 

deposition and membrane polarization remains a question of interest for future studies.

4.7 Software availability

The manuscript is supplemented with (i) a standalone MATLAB code which generates 

a manifold mesh containing terminations and bifurcations for a generic axonal graph, as 

described in Sections 2.1 and 2.2 and; (ii) a standalone MATLAB code implementing 

the BEM-FMM for the computation of extracellular fields and centerline fields. The 

default example demonstrates the generation of the mesh and computations for axon #1, 

accommodating various axonal radii [45].

5. Conclusion

For HDP axonal arbors subject to DBS activation, the effect of explicitly modeling 

membrane surfaces and the resulting charge deposition suggests that voltage hyperintensities 

emerge at axon terminations and bifurcations. At these micron-scale structures, the 
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activating function may be very large, behaving similar to the mathematical delta function, 

and the centerline electric field may increase too. This insight may offer a way to describe 

the effect of physical bifurcations and terminations of the arbor as distinct point processes. 

Further work is required to understand the role of bifurcations and terminals on axon 

recruitment and to develop robust approaches to simulating this behavior.

Appendix A: Analytical Solutions for Thin Spherical and Cylindrical Shells 

with a Conducting Medium Inside Immersed in a Conducting Fluid – 

Formation of Double and Single Charge Layers

This Appendix provides an illustration of the main features of the steady state extracellular 

solution, as described in the Materials and Methods section. Two examples are provided: 

analytical solutions for a thin spherical and cylindrical non-conducting shell in a uniform 

external electric field. The shell, representing a simplified model of a cell/axon, consists 

of a conducting homogeneous cytoplasm internally, a non-conducting membrane with a 

thickness of Δ (where εΔ represents the membrane capacitance per unit area, with ε denoting 

the dielectric permittivity), and a homogeneous extracellular space.

A general analytical steady-state conduction solution for a spherical shell in an external field 

was obtained by J. C. Maxwell [1]. The description of the steady-state (at the end of initial 

polarization) and transient transmembrane voltages induced on spherical cells was derived 

by H. P. Schwan more than six decades ago [2] (see also see Refs. [3],[4]). This Appendix 

provides a simplified derivation for thin non-conducting shells explaining the formation of 

single and double layers of charges at the thin membrane shell in a steady state.

The thin-membrane solution given below is characterized by a double-layer (dipolar) charge 

density and a single-layer (monopolar) charge density deposited on the membrane. The 

presence of both layers is necessary to assure the condition of the equipotential intracellular 

space (no electric field inside). This condition is valid for an arbitrary applied extracellular 

field since no electric current within a closed cell volume isolated by the nonconducting 

membrane can exist in a conservative (curl-free) field. The zero electric field inside the shell 

can be achieved thanks to both a discontinuity of its normal component across the single 

layer [5] as well as a discontinuity of its tangential component across the double layer [5].

Next, we are placing emphasis on the equivalence between the complete insulting 

membrane-based extracellular solution and a simpler extracellular solution for the entire 

non-conducting cell (e.g., the non-conducting sphere or the cylinder). The latter solution 

only requires a single layer of charge. However, this simple extracellular solution for the 

non-conducting cell still allows us to find the most critical parameter – the transmembrane 

potential – since a constant resting intracellular potential can be postulated. It also allows us 

to find the dipolar charge density in the leading order.

Multiple helpful analytical solutions for simple cell geometries can be found in [6],[7],[8],

[9],[10],[11] including those . The double layer theory is given, for example, in Ref. [5]. 

The solution given below is a mathematical abstraction; for a more detailed biophysical 
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analysis of the membrane composition and operation please refer to [2],[12],[13],[4] and 

other sources.

A1. Solution for three separate domains

An analytical solution can be readily obtained for a spherical shell of outer radius R and 

inner radius R1 having shell conductivity, σs, and placed in a uniform primary electric field, 

Epri. The extracellular medium possesses a constant conductivity σe while the intracellular 

medium possesses a constant conductivity σi as shown in Fig. A1. The primary or incident 

field is given by Ez
pri = E0 = const or Er

pri = E0 cos θ and the primary potential is given by 

φpri = − E0rcos θ when the spherical coordinate system with the elevation angle of zero at 

zenith is used (Fig. A1).

Fig. A1. 
Two-layer conducting sphere in an external electric field. The sum of the primary and the 

secondary field in the intracellular space is zero.
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A solution for a secondary or induced scalar electric potential φs and a secondary electric 

field Es due to the induced surface charges (cf. Fig. A1) can be obtained via three 

expansions each of which satisfies Laplace equation in three dimensions,

φinside
S = ar cos θ, φoutside

s = b
r2cos θ, φshell

S = cr cos θ + d
r2cos θ

Er, inside
s = − a cos θ, Er, outside

s = 2 b
r3cos θ, Er, shell

s = − c cos θ + 2 d
r3cos θ

(1)

We are using notations φinside/outside
S  instead of standard φi/e

S  to better distinguish between 

multiple dual formulae. The four unknown constants a, b, c, d are found from four boundary 

conditions for the total electric potential φpri + φs (the potential continuity) and the total 

electric field Epri + Es (continuity of the normal current density across the boundaries). 

Since the potential φpri is already continuous, one obtains

φinside
S = φshell

S at r = R1,
φoutside

S = φshell
S at r = R,

σi E0 cos θ − ∂φinside
S

∂r = σs E0 cos θ − ∂φsℎell
S

∂r at r = R1,

σs E0 cos θ − ∂φshell
s / ∂r = σe E0 cos θ − ∂ϕoutside

s / ∂r at r = R

(2)

We now assume that σs = 0. From 3rd Eq. (2), we immediately obtain that a = E0 so that 

the field of the induced charges cancels the primary field inside the shell and the total field 

inside the shell is exactly zero. This is to be expected since no current can flow within a 

closed volume in a conservative (curl-free) field. The interior or intracellular volume thus 

becomes equipotential (at a resting potential). After substituting Eqs. (1), the boundary 

conditions given by Eqs. (2) yield

aR1 = cR1 + d/R1
2

b/R2 = cR + d/R2
a = E0

b = − 0.5R3E0

(3)

One can see that the final solution will not depend on the conductivities or their ratio. The 

first two equations (3) yield a system of two equations in the following form:

E0R1 = cR1 + d/R1
2

− 0.5E0R = cR + d/R2 (4)

and the remaining constants are found as

c = − 0.5E0 − d
R3 = − E0

1
2R3 + R1

3

R3 − R1
3

, d = + 3
2E0

R3R1
3

R3 − R1
3

(5)
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Now assume that R1 = R − Δ and that Δ
R ≪ 1 is a small parameter (the thin-shell condition). 

One can employ several binomial series expansions to obtain a closed-form result. To the 

leading and the second order of approximation, one has

R1
3 = R3 1 − 3Δ

R ; R3

R3 − R1
3

= 1
3

R
Δ + 1

3

c = − 1
2E0

R
Δ + 1

2E0

d = + 1
2E0

R4

Δ − E0R3

(6)

Thus, the electric field within the non-conducting thin shell is very high and it approaches 

infinity when the shell thickness Δ approaches zero.

A2. Potential, field, and charge density at the outer boundary of the shell

Using Eqs. (3) and (6), the extracellular potential, the extracellular field just outside, and 

the charge density ρ r  at the outer boundary of the shell are obtained from Eqs. (1) in the 

following form (to compute the charge density we would also need the electric field Er,shell R
just inside the outer boundary of the shell):

φoutside(R) = φpri + φoutside
s = − 3

2E0Rcos θ (exact result)
Er, outside(R) = Er

pri + Er, outside
s = 0 (exact result)

Er, shell R = − ccos θ + 2 d
R3cos θ = + 3

2E0
R
Δcos θ − 5

2E0 cos θ

ρouter(R) = σs − σe

σe
ε0Er, shell(R) = − 3

2ε0E0
R
Δcos θ + 5

2ε0E0 cos θ

(7)

where ε0 is the permittivity of vacuum. The charge density is obtained following Eq. (12) of 

[14] (cf. also [15], Eq. (5)).

A3. Potential and charge density at the inner boundary of the shell

Similarly, the intracellular potential and the charge density ρ r  (cf. 15, Eq. (5)) at the inner 

boundary of the shell are obtained in the following form (to compute the charge density we 

would also need the electric field Er, shell R1  just outside the inner boundary of the shell):

φinside R1 = φpri + φinside
S = 0 (exact result, valid to within a constant)

Er, shell R1 = − c cos θ + 2 d
R1

3 cos θ = + 3
2E0

R
Δcos θ + 1

2E0 cos θ

ρinner R1 = σi − σs

σi
ε0Er, shell R1 = + 3

2ε0E0
R
Δcos θ + 1

2ε0E0 cos θ
(8)

to the leading and the second order of approximation. The charge density is again obtained 

following Eq. (12) of [14] (cf. also [15], Eq. (5)).
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A4. Transmembrane potential

A combination of Eqs. (7) and (8) for the extracellular and intracellular potentials, 

respectively, also allows us to find the transmembrane potential (defined to within a 

constant), φm = φinside
S − φoutside = + 3

2E0R cos θ, This is the exact (not asymptotic) result and 

the original (steady-state) Schwan’s equation [2].

A5. Double and single layers formed across the thin shell and 

transmembrane potential

Together, both charge densities ρouter(R) and ρinner R1 , which are “almost” equal to each other 

in magnitude but have the opposite signs when Δ 0, R R1, form a double layer – a layer 

of electric dipoles – with the surface dipole moment density per unit area, pshell, given by

pshell ≡ Δ ρouter − ρinner

2 = − 3
2ε0E0R cos θ + 2ε0E0Δ cos θ (9a)

as well as a single layer with the surface charge density given by

ρshell ≡ ρouter + ρinner = + 3E0 cos θ (9b)

The net charge on the membrane is zero.

A6. Solution for non-conducting sphere with a single layer of charges

In this case, only constants a, b in Eqs. (1) are retained for the secondary or induced electric 

potential ϕs and,

ϕinside
S = ar cos θ, ϕoutside

S = b
r2cos θ

Er, inside
s = − a cos θ, Er, outside

s = 2 b
r3cos θ

(10)

From the boundary conditions, one has

a = − 0.5E0, b = − 0.5R3E0 (11)

The extracellular potential ϕ, the extracellular field just outside, and the charge density 

ρnoncond r  at the boundary of the nonconducting sphere are obtained in the following form:
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ϕoutside = φpri + ϕoutside
s = − 3

2E0R cos θ
Er, outside = Er

pri + Er, outside
s = 0

Er, inside = 3
2E0 cos θ

ρnoncond = σi − σe

σe
ε0Er, inside = − 3

2ε0E0 cos θ

(12)

The solutions for the extracellular potential and the extracellular electric field from Eqs 

(12) indeed coincide with the extracellular thin-shell solutions from Eqs. (7). Hence, the 

equivalence of the two solutions is demonstrated.

A7. Expression of transmembrane potential and double layer density 

using the solution for non-conducting sphere (cell)

It follows from Eqs. (7), (8), (12) that, to the leading order of magnitude, the transmembrane 

potential φm and the actual double layer density pshell of the thin-shell solution can be directly 

expressed through the extracellular potential ϕ of the simplified solution for the entirely 

non-conducting sphere (cell) in the form:

φm = φinside − φoutside = const − ϕoutside
pshell = ε0ϕoutside

(13)

Eqs. (13) is valid for any geometry, not necessarily spherical. This is because the 

equivalence of the two extracellular solutions follows from the uniqueness of a solution 

for the exterior Neumann problem with the zero normal field just outside the nonconducting 

membrane of any shape.

A8. Solution for the cylindrical shell in a transverse field

The same Fig. A1 can be reused to represent a cross-section of the cylindrical shell. The 

primary or incident field is again given by Ez
pri = E0 = const or Er

pri = E0 cos θ and the primary 

potential is given by φpri = − E0rcos θ when the cylindrical coordinate system with the polar 

angle of zero at the positive direction of the z-axis is used (Fig. A1).By analogy with Eqs. 

(1), a solution for the secondary or induced scalar electric potential φS and the secondary 

electric field Es due to the induced surface charges (cf. Fig. A1) can be again obtained via 

three expansions each of which now satisfies Laplace equation in two dimensions,

φinside
S = ar cos θ, φoutside

S = b
r cos θ, φshell

S = cr cos θ + d
r cos θ

Er, inside
s = − a cos θ, Er, outside

s = b
r2cos θ, Er, shell

s = − c cos θ + d
r2cos θ

(14)

The four unknown constants a, b, c, d are found from four boundary conditions Eqs. (2) 

for the total electric potential φpri + φs (the potential continuity) and the total electric field 

Makaroff et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2024 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Epri + Es. We again assume that σs = 0. From 3rd Eq. (2), we immediately obtain that a = E0

so that the field of the induced charges cancels the primary field inside the shell and the total 

field inside the shell is exactly zero. This is to be expected since no current can flow within 

a closed volume in a conservative (curl free) field. The interior or intracellular volume thus 

becomes equipotential (at a resting potential). After substituting Eqs. (14), the boundary 

conditions given by Eqs. (2) yield

aR1 = cR1 + d/R1
b/R = cR + d/R
a = E0

b = − R2E0

(15)

The final solution will not depend on the conductivities or their ratio. The first two equations 

(15) yield a system of two equations in the following form:

E0R1 = cR1 + d/R1
− E0R = cR + d/R (16)

and the remaining constants are found as

c = − E0
R2 + R1

2

R2 − R1
2
, d = 2E0

R2R1
2

R2 − R1
2 (17)

Assuming that R1 = R − Δ and that Δ
R ≪ 1 is a small parameter (the thin-shell condition), one 

can employ several binomial series expansions to obtain a closed-form result. To the leading 

and the second order of approximation, one has

R1
2 = R2 1 − 2Δ

R ; R2

R2 − R1
2

= 1
2

R
Δ + 1

4

c = − E0
R
Δ + 1

2E0

d = + E0
R3

Δ − 3
2E0R2

(18)

Thus, the electric field within the non-conducting thin shell is very high and it approaches 

infinity when the shell thickness approaches zero.

A9. Potential, field, and charge density at the outer boundary of the shell

Using Eqs. (15) and (18), the extracellular potential, the extracellular field just outside, and 

the charge density ρ r  (cf. [15], Eq. (5)) at the outer boundary of the shell are obtained 

from Eqs. (14) in the following form (to compute the charge density we would also need the 

electric field Er, shell(R) just inside the outer boundary of the shell):

Makaroff et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2024 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



φoutside(R) = φpri + φoutside
s = − 2E0R cos θ (exact result)

Er, outside(R) = Er
pri + Er, outside

s = 0 (exact result)
Er, shell R = − c cos θ + d

R2cos θ = + 2E0
R
Δcos θ − 2E0cos θ

ρouter(R) = σs − σe

σe
ε0Er, shell(R) = − 2ε0E0

R
Δcos θ + 2ε0E0cos θ

(19)

where ε0 is the permittivity of vacuum. The charge density is again obtained following Eq. 

(12) of [14] (cf. also [15], Eq. (5)).

A10. Potential and charge density at the inner boundary of the shell

The intracellular potential and the charge density ρ r  at the inner boundary of the shell 

are obtained in the following form (to compute the charge density we would also need the 

electric field Er, shell R1  just outside the inner boundary of the shell):

φinside R1 = φpri + φinside
S = 0 (exact result, valid to within a constant)

Er, shell R1 = − c cos θ + d
R1

2 cos θ = + 2E0
R
Δcos θ

ρinner R1 = σi − σs

σi
ε0Er, shell R1 = + 2ε0E0

R
Δcos θ

(20)

to the leading and the second order of approximation (the terms of the second order cancel 

out).

A11. Transmembrane potential

A combination of Eqs.(19) and (20) for the extracellular and intracellular potentials, 

respectively, also allows us to find the transmembrane potential (defined to within a 

constant), φm = φinside
S − φoutside = + 2E0R cos θ. This is the exact (not asymptotic) result.

A12. Double and single layers formed across the thin shell and 

transmembrane potential

Together, both charge densities ρouter(R) and ρinner R1 , which are “almost” equal to each other 

in magnitude but have the opposite signs when Δ 0, R R1, form a double layer – a layer 

of electric dipoles – with the surface dipole moment density per unit area, pshell, given by

pshell ≡ Δ ρouter − ρinner

2 = − 2ε0E0R cos θ + ε0E0Δ cos θ (21a)

as well as a single layer with the surface charge density given by

ρshell ≡ ρouter + ρinner = + 2ε0E0cos θ (21b)

The net charge of the membrane is zero.
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A13. Solution for non-conducting cylinder with a single layer of charges

In this case, only constants a, b in Eqs. (14) are retained for the secondary or induced 

electric potential ϕs and,

ϕinside
S = ar cos θ, ϕoutside

S = b
r cos θ

Er, inside
s = − a cos θ, Er, outside

s = 2 b
r2cos θ

(22)

From the boundary conditions, one has

a = − E0, b = − R2E0 (23)

The extracellular potential ϕ, the extracellular field just outside, and the charge density 

ρnoncond r  (cf. [15], Eq. (5)) at the boundary of the nonconducting cylinder are obtained in the 

following form:

ϕoutside = φpri + ϕoutside
s = − 2E0R cos θ

Er, outside = Er
pri + Er, outside

s = 0
Er, inside = 2E0cos θ
ρnoncond = σi − σe

σe
ε0Er, inside = − 2ε0E0cos θ

(24)

The solutions for the extracellular potential and the extracellular electric field from Eqs (24) 

coincide with the extracellular thin-shell solutions from Eqs. (19). Hence, the equivalence of 

the two solutions is demonstrated again.

A14. Expression of transmembrane potential and double layer density 

using the solution for non-conducting cylinder (cell)

It follows from Eqs. (19), (20), (24) that, to the leading order of magnitude, the 

transmembrane potential φm and the actual double layer density pshell of the thin-shell solution 

can be directly expressed through the extracellular potential ϕ of the simplified solution for 

the entirely non-conducting cylinder (cell) in the form:

φm = φinside − φoutside = const − ϕoutside
pshell = ε0ϕoutside

(25)

Eqs. (25) is valid for any geometry, not necessarily spherical. This is because the 

equivalence of the two extracellular solutions follows from the uniqueness of a solution 

for the exterior Neumann problem with the zero normal field just outside the nonconducting 

membrane of any shape.
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Appendix B: Results for thicknesses of 1 μm, 1, μm, and 1 μm as well as 2 

μm, 2, μm, and 2 μm corresponding to Hack’s levels 1, 2, and 3

Table B1.

The same centerline results as in Table 1 of the main text, but for different axonal diameter 

combinations.

Testing case Combined path #1 Combined path #2 Combined path #3

Axons diam. Hack’s level 1 – 1 μm Hack’s level 2 – 1 μm Hack’s level 3 – 1 μm

Rel. potential ϕe diff. (L2 norm) 0.005%0.001% 0.003%0.001% 0.003%0.001%

Rel. Ez diff. (L2 norm) 0.2%0.1% 0.3%0.3% 0.4%0.3%

Rel. dEz/dz diff. (L2 norm) 41%30% 54%47% 69%74%

Rel. Ez  diff. at start termination +3%1% +3%1% +3%1%

Rel. Ez  diff. at end termination +3%1% +21%0.5% +7%30%

Axons diam. Hack’s level 1 – 2 μm Hack’s level 2 – 2 μm Hack’s level 3 – 2 μm 

Rel. potential ϕe diff. (L2 norm) 0.005%0.001% 0.003%0.001% 0.003%0.001%

Rel. Ez diff. (L2 norm) 0.2%0.2% 0.5%.0.3% 0.6%0.4%

Rel. dEz/dz diff. (L2 norm) 98%62% 92%70% 99%110%

Rel. Ez  diff. at start termination +13%1.5% +13%1.5 +13%1.5

Rel. Ez  diff. at end termination +13%0.6% +19%8% +6%35%
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Fig. 1. 
a) Initial graph – a set of nodes, segments or edges, and segment properties (e.g., a radius). 

b) Graph refined by edge split following segmental properties. c) Contiguous oriented paths 

of the nodes - graph centerlines (different colors, 6 here). Every path has two termination 

nodes. Every termination node is either a physical termination, or a bifurcation, trifurcation, 

etc. node.
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Fig. 2. 
a) Method of a moving cross-section (or extrusion along a curved 3D path) used to create 

a tubular surface mesh. The key is a directional plane shown in yellow in a) that is formed 

for every two adjacent segments. This plane is used to add the new cross-section. b) Convex-

hull mesh formed from three adjacent cross-sections of a bifurcation fork. The cross-sections 

are selected by checking the condition of no unused(inner) nodes. Facets belonging to the 

cross-sections have been subtracted.
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Fig. 3. 
a) Illustration of a complete watertight 2-manifold graph mesh for a graph from Fig. 

1. b) Junction (trifurcation) topology. c) Termination topology (can be either flat or 

hemispherical).
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Fig. 4. 
a) Initial HDP graphs with 60 axons. b) Axon #1 with two bifurcation points and three 

centerline paths. Hack’s level 1 is red; Hack’s level 2 is green; Hack’s level 3 is blue. c) 

Three continuous combined centerline paths for evaluating the potential, the field, and the 

field derivative along the path for a typical axon (axon #1). Start and end terminals (for 

Table 1 and Table B1) are shown.
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Fig. 5. 
Assembly of 60 axonal meshes all at once with intermediate zooming steps a) through f). 

The overall zoom from a) to f) is 4,000:1. Average triangle sizes for a 1 μm thick axon in f) 

are approaching 0.2 μm after mesh refinement via barycentric triangle subdivision.
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Fig. 6. 
Schematic of computing averaged Ez (blue color) of the extracellular field at the axonal 

centerline. Non-uniform extracellular tangential electric field for a certain cross-section 

is shown in red. Extracellular transverse electric field Et is zero (for more discussion on 

transverse fields refer to [40],[41],[42]). The averaged Ez is obtained as a collinear field at 

the centerline computed from the decoupled extracellular problem.
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Fig. 7. 
First row – electric potential (V); second row – collinear electric field (V/mm); third row – 

collinear field derivative along the path or (negative) activating function (V/mm2) for axon 

#1. Three columns correspond to the three continuous combined centerline paths from Fig. 

4b,c. Red color – computations for the homogeneous space; blue color – computations with 

the membrane. The last row is the bar plot for the activating function averaged over a 1 mm 

centerline interval. Grey strips indicate bifurcation nodes; termination nodes are located at 

both ends of the curves.
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Fig. 8. 
Computations for a 2 μm thick axon #1 were projected onto the corresponding tubular 

surface with a much larger diameter of 200 μm for visualization purposes only. Electrode 

0 (bottom) is a cathode, electrode 3 (top) is an anode at 1 mA of the net current. 

a) Extracellular electric potential at the end of initial polarization for axon #1. The 

transmembrane potential is this value minus the axon resting potential. The transmembrane 

potential is simultaneously the double layer dipole density to within a multiplicative constant 

– the dielectric permittivity. b) Magnitude of extracellular electric field at the end of initial 

polarization for axon #1.
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Table 1.

Average relative difference percentages (between solutions for insulating membrane vs. homogeneous space) 

for electric potential, longitudinal electric field, and line derivative of the longitudinal field (the activating 

function) distributions along axon centerlines for the 60-axon bundle in Fig. 4a. Only 40 axons, which have 

exactly three continuous combined centerline paths illustrated in Fig. 4b,c, were retained. Relative signed Ez

differences at the terminations were computed at the center of the hemispherical closing cap. The 

corresponding standard deviations are shown by superscripts.

Testing case Combined path #1 Combined path #2 Combined path #3

Axons diam. Hack’s level 1 – 2 μm Hack’s level 2 – 1 μm Hack’s level 3 – 1 μm

Rel. potential ϕe diff. (L2 norm) 0.005%0.001% 0.003%0.001% 0.003%0.001%

Rel. Ez diff. (L2 norm) 0.2%0.1% 0.5%.0.2% 0.5%0.4%

Rel. dEz/dz diff. (L2 norm) 112%63% 106%80% 87%92%

Rel. Ez  diff. at start termination +16.1%.0.2% +16.4%0.5% +16.4%0.5%

Rel. Ez  diff. at end termination +16.1%0.2% +16.0%0.3% +14.9%0.3%

The same results for the refined axonal meshes (1:4 barycentric triangle subdivision)

Rel. potential ϕe diff. (L2 norm) 0.005%0.001% 0.003%0.001% 0.003%0.001%

Rel. Ez diff. (L2 norm) 0.2%0.1% 0.5%0.2% 0.5%0.4%

Rel. dEz/dz diff. (L2 norm) 112%63% 106%81% 85%90%

Rel. Ez  diff. at start termination +16.1%.0.1% +16.4%0.3% +16.4%0.8%

Rel. Ez  diff. at end termination +16.1%0.3% +16.0%0.3% +15.0%0.7%
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