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Abstract
Extracellular vesicles (EVs) are implicated in the pathogenesis of rheumatoid arthritis (RA) but little is known about the 
composition of specific small EV (sEV) subpopulations. This study aimed to characterize the CD63, CD81 and CD9 tetras-
panin profile in the membrane of single EVs in plasma from treatment naïve RA patients and assess potential discrepancies 
between methotrexate (MTX) responder groups. EVs isolated from plasma were characterized using transmission electron 
microscopy, and detection of surface markers (CD63, CD81 and CD9) on single EVs was performed on the ExoView plat-
form. All RA patients (N = 8) were newly diagnosed, treatment naïve, females, ACPA positive and former smokers. The 
controls (N = 5) were matched for age and gender. After three months of MTX treatment, responders (N = 4) were defined as 
those with ΔDAS28 > 1.2 and DAS28 ≤ 3.2 post-treatment. The isolated EVs were 50–200 nm in size. The RA patients had 
a higher proportion of both CD9 and CD81 single positive sEVs compared to healthy controls, while there was a decrease in 
CD81/CD9 double positive sEVs in patients. Stratification of RA patients into MTX responders and non-responders revealed 
a distinctly higher proportion of CD81 single positive sEVs in the responder group. The proportion of CD81/CD9 double 
positive sEVs (anti-CD9 captured) was lower in the non-responders, but increased upon 3 months of MTX treatment. Our 
exploratory study revealed distinct tetraspanin profiles in RA patients suggesting their implication in RA pathophysiology 
and MTX treatment response.
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MTX  Methotrexate
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ESR  Erythrocyte sedimentation rate
DAS28  28-Point disease activity score
HC  Healthy control
SEC  Size exclusion chromatography
TEM  Transmission electron microscopy
sEVs  Small extracellular vesicles

Background

The putative role of extracellular vesicles (EVs) in the 
pathogenesis, progression and treatment response of auto-
immune diseases has gained increased focus [1–3]. EVs are 
membrane-derived nanoparticles that carry proteins, lipids, 
DNA and RNA, and are released by cells into biological 
fluids and tissues for intercellular communication. EVs can 
act as inflammatory mediators [4, 5] e.g., by being involved 
in the formation and distribution of immune complexes [6], 
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T cell exhaustion [7] and cytokine-mediated signaling path-
ways [8].

Rheumatoid arthritis (RA) is an autoimmune disease 
that primarily manifests in synovial joints [9, 10], which 
can lead to irreversible damage if left untreated. The first 
line drug methotrexate (MTX) shows satisfactory response 
in 53–71% of patients [11]. Still, the large fraction of non-
responding patients is likely related to underlying biologi-
cal heterogeneity. Discovery of novel biomarkers might 
reduce trial-and-error time and enable personalized treat-
ment of RA patients.

EVs represent a promising source of biomarkers in RA, 
as increased amounts of EVs have been reported in blood 
from RA patients [12–15]. Furthermore, subpopulations 
of EVs have been associated with both disease develop-
ment and activity [14–18]. The majority of studies have 
used flow cytometry on platelet-poor plasma for bulk 
analysis of cluster of domain (CD) molecules on EVs 
(100–1000 nm). These studies have observed an increase 
in monocyte- (CD14 +), platelet- (CD41 + , CD61 +) 
[15, 17], endothelial cell- (CD146 +) [14], granulocyte- 
(CD66 +) [14], B cell- (CD19 +) [16] and T cell- (CD3 +) 
[18] derived EVs in RA compared to healthy controls. 
Changes in EV profiles after treatment with disease modi-
fying anti-rheumatic drugs are evident, as a decrease in 
TNFα+ EVs was observed after four months of etanercept 
treatment [19], and a decrease in EVs from monocytes 
(CD14 +), platelets (CD41 +), endothelial cells (CD62 +), 
T cells (CD3 +) and B cells (CD19 +) was seen after four 
weeks on MTX, sulphasalazine and prednisone [16].

However, in addition to surface markers providing 
information of the cellular origin of EVs, they can also 
be characterized by their membrane bound proteins of 
the tetraspanin superfamily, including CD63, CD81 and 
CD9. The functionally important tetraspanins have a broad 
tissue distribution and are, surprisingly, found in higher 
concentrations on EVs compared to the cell of origin [20, 
21]. Tetraspanins are involved in EV biogenesis, cargo 
selection, cell targeting, immune cell activation and cel-
lular uptake of EVs [21, 22]. The EVs interact with each 
other or cellular transmembrane and cytosolic proteins 
through membrane microdomains enriched in tetraspanins 
[21]. Disease-specific alterations in tetraspanin profiles of 
EVs have been reported in cancer [23, 24] and infectious 
diseases [25, 26], but to our knowledge have not yet been 
investigated in RA or other autoimmune diseases.

We hypothesized that certain EV subtypes, defined 
by their tetraspanin profile, might influence RA develop-
ment and possibly MTX treatment response. To assess 
this, we performed an explorative study to investigate tet-
raspanin profiles of single EVs (Fig. 1) from RA patients 
and healthy controls. The RA patients were also investi-
gated after ~ 3 months MTX treatment to assess potential 

alterations in EV tetraspanin profiles in response stratified 
patient groups.

Methods

Study participants

Eight patients diagnosed with RA according to the 2010 
RA classification criteria [27] were recruited from Diakon-
hjemmet Hospital (N = 3), Lillehammer Hospital for Rheu-
matic Diseases (N = 3), Martina Hansen’s Hospital (N = 1) 
and Hospital of Southern Norway Trust (N = 1) through the 
Norwegian Very Early Arthritis Clinic (NOR-VEAC) obser-
vational study (ISRCTN05526276). At the time of inclu-
sion RA patients were untreated and newly diagnosed, with 
MTX being prescribed. Two samples were collected from 
each patient; one prior to MTX treatment (pre-MTX) and 
one after approximately 3 months of MTX treatment (range: 
3.25 ± 0.75, post-MTX). Upon inclusion, RA patients were 
clinically examined and parameters including anti-citrulli-
nated peptide antibodies (ACPA) rheumatoid factor (RF), 
C-reactive protein (CRP), erythrocyte sedimentation rate 
(ESR), 28-point disease activity score (DAS28), smok-
ing-status and body mass index (BMI) were recorded. RA 
patients from the NOR-VEAC cohort were divided into two 
groups based on their response to MTX treatment according 
to the EULAR response criteria [28]. Patients exhibiting a 
reduction in DAS28 score ΔDAS28 > 1.2 with a value of 
DAS28 ≤ 3.2 post-treatment were classified as responders 
(R), while patients with ΔDAS28 > 0.6 and ≤ 1.2 with post-
treatment value ≤ 5.1 or ΔDAS28 ≤ 0.6 were classified as 
non-responders (NR).

The study also included age and gender matched healthy 
controls (N = 5, HC) recruited from the CFS/ME center at 
Oslo University Hospital. Information on BMI was avail-
able, however smoking status had not been recorded.

Sample collection and processing

Peripheral blood was collected in Vacuette  K2EDTA tubes 
and processed within 45 min. To remove cellular debris 
plasma samples were centrifuged at 1600–2200g for 
10–15 min at room temperature, depending on the biobank-
ing protocol of the recruiting hospital. Healthy control sam-
ples were additionally centrifuged at 15,000g for 15 min 
at 4 °C to eliminate large EVs and generate platelet-poor 
plasma. Samples were aliquoted and directly frozen, either at 
− 80 °C (N = 13) or at − 20 °C for one day then transferred 
to − 80 °C (N = 8).
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EV isolation

Blood plasma from the healthy controls was thawed at 
4 °C and 500 µl platelet-poor plasma was transferred to a 
qEV original 70 nm column (Izon Science, Oxford, UK) 
for EV isolation by size exclusion chromatography (SEC). 
To ensure similar processing as the control samples, RA 
samples were thawed and centrifuged at 15,000g for 15 min 
at 4 °C prior to SEC. For all samples, the EVs were eluted 
in 500 µl filtered PBS per fraction and EV enriched frac-
tions 7–9 were pooled, as according to the manufacturer’s 
recommendation. Freshly isolated EV aliquots were used for 
transmission electron microscopy (TEM), while EV aliquots 
used for ExoView analysis were stored at − 80 °C.

Transmission electron microscopy

TEM was performed at the Department of Pathology core 
facility, Oslo University Hospital. SEC isolated EVs were 
subjected to TEM analysis by placing a 100 mesh hexagonal 
formwar carbon-coated copper grid (Electron Microscopy 

Sciences, Hatfield, PA) on 2.5–5 µl drops of EV suspension 
for 5 min. Incubation was followed by five washing steps 
on drops of distilled  H2O before the grid was put on drops 
of 0.3% uranyl acetate in 2% methyl cellulose on ice for 
5 min. Grids were removed from the uranyl acetate/methyl 
cellulose in stainless steel loops, and filter paper was used 
to absorb excess solution. Grids were air dried and exam-
ined using a Tecnai  G2 Spirit TEM (FEI, Eindhoven, The 
Netherlands) equipped with a Morada digital camera using 
RADIUS imaging software.

ExoView analysis

SEC-isolated EV samples were shipped on dry ice to 
NanoView, Malvern, UK where ExoView analysis was 
performed utilizing the EV-TETRA-C chip. This method 
combines single particle interferometric reflectance imag-
ing sensing with antibody-based microchip capture and 
fluorescence detection to measure EV size and concentra-
tion, presence of EV tetraspanins and their colocalization 
profile. In short, the EV preparations were diluted according 

Fig. 1  Workflow of the ExoView analysis from EV isolation to sEV 
profiling. EVs were isolated from plasma by size exclusion chroma-
tography and subjected to ExoView analysis using the EV-TETRA-C 
chip. The lower panel shows potential tetraspanin profiles when cap-
turing sEVs with anti-CD81, which is transferrable to sEVs captured 

with anti-CD63 and anti-CD9 although with some adjustments. The 
Figure was partly generated using Servier Medical Art, provided by 
Servier, licensed under a Creative Commons Attribution 3.0 unported 
license. *SP-single positive, DP-double positive, TP-triple positive
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to the manufacturer's protocol and placed on microchips 
with separate wells coated with the capture probes; anti-
CD63, anti-CD81 and anti-CD9 as well as anti-mouse IgG 
as isotype control. The microchips were incubated over night 
before three subsequent washing steps and incubation with a 
cocktail of fluorescent antibodies against CD63, CD81 and 
CD9, allowing for colocalization analysis of the three tet-
raspanins on single EVs (Fig. 1). This was followed by two 
additional washing steps. The ExoView R100 reader and 
nScan 2.8.19 acquisition software (NanoView) were used for 
imaging and data acquisition. Data analysis was performed 
using NanoViewer 2.8.10 (NanoView) with thresholds set 
to 50–200 nm. All measurements were done in triplicate.

Statistics

Statistical analysis was performed using R version 4.2. All 
analyses included testing of normality by Shapiro–Wilk 
test prior to parametric or nonparametric analysis. Data fol-
lowing a normal distribution were submitted to ANOVA 
followed by Welch two sample t-test, to adjust for unequal 
variances, or Student’s t-test. Nonparametric tests included 

Kruskal–Wallis followed by Dunn’s test and Wilcoxon 
signed rank exact test. A p-value less than 0.05 was consid-
ered statistically significant.

Results

Characterization of EV populations in RA

The untreated, newly diagnosed RA patients included were 
all female and ACPA positive (Supplementary table 1). No 
significant differences (p > 0.1) were observed in age or BMI 
between RA patients and the gender matched healthy con-
trols (Table 1).

For both study phenotypes, the isolated plasma EVs 
ranged from 50 to 200 nm in diameter (outer limits of the 
ExoView analysis), with mean size 62 nm (± 17 nm) for 
RA patients and 57 nm (± 11 nm) for controls (Supplemen-
tary Fig. 1), characterizing them as small EVs (sEVs). This 
estimated size of the sEVs was confirmed by TEM analysis 
(Fig. 2).

We then assessed the presence of tetraspanins on the sEVs 
(Fig. 1) by capturing with either anti-CD63, anti-CD81 or 
anti-CD9 and measuring the number of fluorescent particles/
ml (Fig. 3a, b). The profiles of RA patients differed from 
healthy controls, with the highest concentration of particles 
being captured by anti-CD9 in RA, in contrast to anti-CD81 
in the healthy controls (Fig. 3c). Few sEVs appeared to carry 
CD63 in both phenotypes. Overall, the highest number of 
fluorescent particles captured by each antibody was observed 
in RA patients.

Next, we investigated the presence of two tetraspa-
nins simultaneously on each single sEV by colocalization 

Table 1  Summary of demographic and clinical characteristics of the 
study phenotypes

Pre-MTX RA 
patients
(N = 8)

Healthy 
controls
(N = 5)

Female [in%] 8 [100] 5 [100]
Age at recruitment (median 

[range])
64 [50–72] 52 [48–59]

BMI (median [range]) 27 [24–30] 23 [21–27]

Fig. 2  Characterization of SEC 
isolated plasma sEVs. Trans-
mission electron microscopy 
micrograph of pooled sEV 
preparations
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analysis which revealed distinct profiles between RA 
patients and controls for anti-CD81 and anti-CD9 captured 
sEVs (Fig. 3d), but not for anti-CD63. Significantly more 
sEVs only expressed CD9 (p = 0.04) or CD81 (p = 0.04) on 
their surface in RA patients compared to healthy controls. In 
contrast, CD81/CD9 double positive sEVs, captured by anti-
CD9, was significantly reduced in RA patients (p = 0.002). 
A similar trend was observed for anti-CD81 captured sEVs, 

but this difference did not reach statistical significance 
(p = 0.06).

Further analysis of sEVs carrying all the tested tetraspa-
nins revealed a reduced amount of triple positive sEVs in 
RA only for anti-CD9 captured sEVs (p = 0.03) (Supplemen-
tary Fig. 2). This adds to the observed lack of involvement 
of CD63 in RA as this difference probably is related to the 
previous findings of anti-CD9 captured sEVs.

Fig. 3  Single vesicle analysis of SEC isolated plasma sEVs. a Tetras-
panin fluorescent staining of sEVs captured by anti-CD63 (red), anti-
CD81 (green) and anti-CD9 (blue), b average ACP* distribution in 
RA patients and healthy controls for each tetraspanin capture probe, 
c number of fluorescent particles/ml captured by each capture probe, 
d phenotypic ACP analysis of CD9 single positive sEVs, CD81 single 

positive sEVs, anti-CD9 captured CD81/CD9 double positive sEVs 
and anti-CD81 captured CD81/CD9 double positive sEVs. For the 
analysis in d we compared the sample mean of the two study phe-
notypes using Welch’s two sample t-test for unequal variance. *ACP-
Average colocalization percent, NFP-number of fluorescent particles/
ml
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MTX treatment responders had distinct sEV profiles

Patient samples collected after approximately 3 months 
(3.25 ± 0.75 months) of MTX treatment were included in the 
analysis to investigate changes in the sEV population. Clini-
cally, half of the patients were responders (ΔDAS28 > 1.2 
and DAS28 ≤ 3.2 post-treatment) while the remaining 
patients were clear non-responders (Table 2, Supplementary 
table 1). We compared these two distinct responder groups 
to account for the limited sample size.

Listed in the table are the 28-point disease activ-
ity score (DAS28) at baseline and after MTX treatment 
3.25 ± 0.75 months, change in DAS28 (ΔDAS28), anti-
citrullinated peptide antibodies (ACPA), rheumatoid factor 
(RF) and smoking-status.

Stratification according to treatment response revealed 
that the difference detected in RA patients prior to treatment 
(Fig. 3c) could largely be attributed to the non-responders, 
as they displayed the highest concentration of CD9 captured 
sEVs (Fig. 4a). This overrepresentation of sEVs captured 
by CD9 was maintained after treatment. The responders, on 
the other hand, showed similar amounts of CD9 and CD81 
captured sEVs, as did the controls.

Assessment of sEVs only expressing one of the three tet-
raspanins revealed that responders had a significantly higher 
proportion of CD81 single positive sEVs than non-respond-
ers (p = 0.05) and healthy controls (p = 0.007) (Fig. 4b). The 
level of CD81 single positive sEVs was reduced after treat-
ment in the responders, while an opposite trend was seen in 
the non-responders.

When investigating sEVs posit ive for both 
CD81 and CD9, the highest proportion was seen in healthy 
controls and the lowest in non-responders pre-MTX 
(p = 0.04) when captured with anti-CD9 (Fig. 4b). This co-
expression was also reduced in the MTX responders before 
treatment compared to healthy controls (p = 0.04). Although 
the relative expression of these CD81/CD9 double positive 
sEVs was low in both groups post-treatment, they did not 
differ significantly from healthy controls. RA patients also 
had a lower relative expression of CD81/CD9 double posi-
tive anti-CD81 captured sEVs than healthy controls, but 

for this sEV population the differences were only signifi-
cant between the post-MTX groups and healthy controls 
(p = 0.04) (Fig. 4b).

We also assessed the change in CD81/CD9 double posi-
tive sEVs captured by anti-CD9 in the RA patients before 
and after MTX treatment (Fig. 4c). In both responders and 
non-responders, we saw an increased number of CD81/CD9 
double positive sEVs after MTX treatment for the majority 
of patients, but this was only significant among non-respond-
ers (p = 0.01) and not the responders (p = 0.6).

Discussion

In this study, we observed distinct distributions of CD9 and 
CD81 tetraspanins on sEVs, as the RA patients had more 
sEVs carrying only one of these markers, while healthy con-
trols to a larger extent had sEVs with both these membrane 
proteins. Furthermore, we observed a discrepancy between 
MTX responders and non-responders, with responders hav-
ing a unique high relative proportion of CD81 single positive 
sEVs.

To date, the well-established EV specific tetraspanins 
CD9, CD63 and CD81 have so far only been used in RA 
studies as qualitative control markers to demonstrate the 
bulk presence of EVs [29]. Hence, to our knowledge, this is 
the first study characterizing the tetraspanin profile of sin-
gle EVs in RA patients including possible changes in sEV 
profile associated with MTX treatment response. The main 
limitations of our study were the sample size influencing 
our statistical power and the lack of smoking status for the 
controls. However, our results motivate further single EV 
studies in RA, which is interesting given the leap in knowl-
edge of pathogenic cell types provided by recent single cell 
studies.

The low relative proportion of CD81/CD9 double posi-
tive sEVs (anti-CD9 captured) observed in RA patients, 
which was lowest in non-responders at baseline and signifi-
cantly increased after MTX treatment, indicates that MTX 
might influence the expression of this sEV subpopulation. 

Table 2  Clinical features 
of MTX responders and 
MTX non-responders

MTX 
responders
(N = 4)

MTX 
non-responders
(N = 4)

DAS28 at baseline (median [range]) 5.1 [4.3–6.7] 4.4 [4.2–5.1]
DAS28 post MTX treatment (median [range]) 2.7 [2.1–3.1] 4.5 [4.1–5.2]
ΔDAS28 (median [range]) 2.5 [1.5–4.2] -0.01 [-0.2–0.1]
ACPA positive [in %] 4 [100] 4 [100]
RF positive [in %] 3 [75] 3 [75]
Former smokers [in %] 4 [100] 4 [100]
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Fig. 4  Stratified colocalization and capture analysis of RA patients 
and healthy controls. a number of fluorescent particles/ml captured 
by each capture probe in the five groups, b  relative distribution of 
CD9 single positive sEVs, CD81 single positive sEVs, CD81/CD9 
double positive sEVs captured by either anti-CD9 or anti-CD81,  

c paired analysis of CD81/CD9 double positive (anti-CD9 captured) 
sEVs in non-responders and responders pre- and post-MTX. We com-
pared the sample mean of the groups using Welch’s two sample t-test 
for unequal variance. *ACP- average colocalization percent, NFP-
number of fluorescent particles/ml
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Although MTX suppresses inflammation, the exact func-
tions are largely unknown. A study on sEVs from a syno-
vial cancer cell line revealed that MTX modified the sEV 
proteome by increasing levels of immunosuppressive and 
anti-oxidant proteins, and that MTX suppressed several of 
the IL-1β-induced pro-inflammatory changes of the sEV 
proteome [30]. Together with our results, this suggests that 
MTX treatment affects the composition of sEV populations.

Interestingly, RA patients who responded well to MTX 
had a distinct, high prevalence of CD81 single positive sEVs 
at baseline compared to non-responders and controls. This 
indicates a potential role of CD81 single positive sEVs in the 
efficacy of MTX in RA patients. The ExoCarta database [31] 
recognizes close protein–protein interaction of CD81 with 
several other proteins identified in EVs including TSPAN4, 
KIT, ITGA4, CR2, IFITM1 and CD19 which are all also 
found in immune cells according to the Human Protein Atlas 
[32]. More is known about the proteins’ functions on a cel-
lular level than on EV level. Still, their function on cells 
might, to some extent, be transferrable to EVs. In B cells, 
CD81 directly interacts with CD19 and, together with CD21, 
they make up the B cell co-receptor complex. Upon B cell 
activation, CD81 appear to dissociate from CD19 in order to 
allow CD19 to interact with the B cell receptor [33]. B cells 
are known to be involved in RA pathogenesis and changes 
in B cell receptor activity, through the release of CD81 on 
EVs, may be implemented in RA.

In cells, CD81 and CD9 associate with A Disintegrin and 
Metalloprotease domain-containing protein 10 (ADAM10), 
among other proteins, by either forming separate complexes 
or by incorporation of ADAM10 into tetraspanin-enriched 
microdomains [34]. ADAM10 is involved in regulating 
antibody production and inflammatory responses. Cleav-
age of its substrates, e.g., TNF-α, CXCL16 and EGF, in 
synovial tissue leads to increased pro-inflammatory activ-
ity, which coincides with the increased expression of 
ADAM10 observed in synovial tissue of RA patients [35, 
36]. ADAM10 is also present in EVs, and further studies 
are needed to reveal whether interactions of these proteins 
also play a role at the EV level for RA inflammation and 
treatment response.

Our explorative study revealed RA and MTX treatment 
response specific tetraspanin profiles of plasma derived 
sEVs. Even though our sample size was limited, yet phe-
notypically homogenous, our novel and significant findings 
after assessing membrane proteins on single EVs were in 
line with biological data. Our findings warrant validation in 
larger cohorts, and future insights into the biological roles 
of tetraspanins on the EV membrane may elucidate their 
functions in RA.
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