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Abstract 

 We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to 
evaluate structural models of a complex based on sequence co-evolution and conservation 
involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing 
metrics for an interface to those obtained from randomly chosen residues. Since contacting 
residues are defined by the structural model, this obviates the need to account for indirect 
interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its 
focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI performance 
is evaluated through applications to experimentally determined complexes and to decoys from 
the CASP-CAPRI experiment. ZEPPI can be implemented on a proteome-wide scale as 
evidenced by calculations on millions of structural models of dimeric complexes in the E. coli and 
human interactomes found in the PrePPI database. A number of examples that illustrate how 
these tools can yield novel functional hypotheses are provided. 
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Introduction 

 

The past decade has seen continuing developments in the prediction of protein-protein 
interactions (PPIs). One can trace these advances to the use of amino acid coevolution to predict 
inter-residue contacts1,2. These methods have been used to predict protein structures3–5 and, 
more recently, to predict interaction partners and interfacial residues involved in PPIs6–9. The 
underlying premise is that functional interactions between two residues will result in their 
coevolution, which should be reflected in species-paired multiple sequence alignments (MSAs) of 
putative orthologues and detectable through mutual information (MI) based metrics between the 
two positions in the alignment. A complication is that the correlation between two residue positions 

i and j, i.e., two columns in the MSA, may result from an indirect coupling of i and j through their 
interaction with a third residue k. To solve this problem, methods such as Direct Coupling Analysis 
(DCA)3,10, sparse inverse covariance (PSICOV)11, EVcouplings6,8, and Gremlin4,7, have been 
developed. However, these methods rely on the availability of deep MSAs and thus have almost 
exclusively been applied to bacterial systems. In contrast, as we demonstrate below, ZEPPI can 
be applied on a genome-wide scale to eukaryotic proteomes with relatively shallow MSAs. 

AlphaFold-Multimer12 (AFM) has fundamentally changed the landscape of the prediction of 
structures of multi-protein complexes. There have been continuing improvements in AFM-based 
methods13,14 as is evident from the substantial progress in the recent CASP-CAPRI15,16 
experiment17. An underlying problem for MSA-based methods is that, for a heterodimeric pair, it 
is generally necessary to carry out a species-based matching of the two query sequences which 
limits application to eukaryotic organisms due to the relatively limited number of sequences 
available for a paired MSA. Recently, RoseTTAFold/AlphaFold, was used to screen 4.3 million 
potential yeast PPIs with alignments containing >200 sequences and proteins with < 1500 amino 
acids per pair18. This was enabled in part by the large number of fungal genomes available but, 
as the authors point out, by the extensive amount of structural information embedded in 
RoseTTAFold18. However, applying deep learning to predict whether and how two proteins 
interact for entire eukaryotic proteomes remains computationally challenging. 

Docking-based methods predict models of protein dimers based on the structures of the 
constituent monomers19–22 but have not been applied on a proteome-wide scale or to predict 
whether two proteins interact. Template-based modeling23 is an alternate approach where the 
structures of individual proteins are superimposed on structurally similar proteins that appear in a 
complex present in the PDB24. In a series of papers, we reported the PrePPI (Predicting Protein-
Protein Interactions) algorithm and database25–27 that rely on template-based modeling and, 
through a highly efficient scoring function, leverage structural information on a truly proteome-
wide scale. For example, PrePPI effectively screens the ~200 million possible pairwise 
combinations of  human proteins which, in practice, amounts to billions of possible interactions 
among full-length proteins and protein domains. Based on a false positive rate of <0.005, 1.3 
million high confidence predictions appear in the PrePPI online database with 370K 
corresponding to direct binary interactions 27. 

Here we use PrePPI predicted complexes in the E. coli and human proteomes to examine the 
extent to which simple evolution-based metrics are informative even in those cases for which the 
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multiple sequence alignment (MSA) depth is shallow. Once an interface is defined, we expect that 
MI calculations alone would be sufficient, even for eukaryotic proteins, as the deep MSAs required 
for DCA analysis would no longer be necessary. Our method, ZEPPI (for Z-score Evaluation of 
Protein-Protein Interfaces), uses paired MSAs to determine coevolutionary information across 
interfaces but also leverages sequence conservation which provides an additional signal as to 
the reliability of a predicted interface. An essential feature of ZEPPI is the comparison of 
evolutionary metrics derived from MSA positions corresponding to residues in predicted interfaces 
versus positions corresponding to randomly chosen residues. 

Our focus on interfacial residues leads to a significant speedup in the evaluation of dimeric 
complexes that allows us to apply ZEPPI on a proteome-wide scale.  Similarly, our finding that 
DCA is not needed for evaluating heterodimeric complexes effectively removes the need for deep 
species-paired MSAs. As shown below ZEPPI is extremely effective in distinguishing correct from 
incorrect protein-protein interfaces as indicated by tests on PDB structures and on a CASP-
CAPRI benchmark set15,28. Most notably there is a strong inverse correlation between ZEPPI 
scores and false positive rates (FPRs) for PrePPI predictions thus providing strong support for 
the reliability of ZEPPI’s efficacy and applicability to proteome-wide interactomes. We use a 
combined PrePPI/ZEPPI screen to identify  a large number of novel interactions that do not 
appear in any database. A number of examples are discussed below. 

 

Results 
 

 

Figure 1. Schematic of the ZEPPI algorithm. Two proteins, P1 and P2, form a complex with 
three interfacial contacts between residues a and d, b and e, and c and f (purple; left), respectively 
labeled as 1, 2, 3 in the right panel. Various evolutionary metrics (see text) are calculated from 
the corresponding columns in the paired alignment (purple; right).  “Fake interfacial contacts” are 
generated between randomly chosen surface residues outside the interface, shown by 1’, 2’ and 
3’ on the right panel. When the number of surface residues outside the interface does not exceed 
the number of interfacial residues, buried residues (m) are considered as well. The same metrics 
are calculated from the corresponding columns in the MSA (orange; right) for each of 100 
samples.  
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ZEPPI overview 
 
Figure 1 summarizes the ZEPPI algorithm. The procedure starts with a structural model of a 
complex between proteins P1 and P2 (left panel) and a paired MSA (right panel). Contacting 
interfacial residues are identified; in this case, P1-a contacts P2-d, P1-b contacts P2-e, and P1-c 
contacts P2-f.  A paired MSA is created and used to calculate the following metrics for each of 
the four interfacial contacts as described in Methods: mutual information (MI), conservation (Con), 
direct coupling (DCA), and average product corrected (APC)29 metric for each. The resulting 
values are then averaged over the interfacial contacts yielding 6 metrics. in addition, the highest 
single-contact score for each metric, denoted as “top”, is retained, resulting in a total of twelve 
metrics that characterize a predicted interface. Columns in the MSA corresponding to contacting 
interfacial residues are colored in purple. For example, the residues in columns P1-a and P2-d 
are almost completely conserved and would give a strong Con signal but a weak MI signal. 
Columns P1-b and P2-e show no obvious Con or MI signal but P1-c and P2-f show a clear MI 
signal. 
 
The next step is to carry out the same procedure for a set of randomly chosen surface residues 
that are not in the interface. These are denoted in orange and are treated as if they were interfacial 
so that, for example, the metrics calculated between columns P1-a and P2-d are replaced by 
those between P1-g and P2-j. Each contact in the real interface is replaced in this way by fake 
contacts as indicated in the figure. Note that when the number of surface residues outside the 
interface is less than the number of residues in the interface, buried residues, e.g. P1-m, are 
included in sampling. This occurs for < 10% of PPIs evaluated. A hundred fake interfaces with 
corresponding values for the twelve metrics are generated in this way. A Z-score for the predicted 
interface is then calculated for each of the metrics based on the values for the real interface as 
compared to the values obtained for the 100 fake interfaces. In practice, based on results for PDB 
complexes (see next section) DCA is only used for homodimers where it makes an important 
contribution and where the computational cost is small given the relatively small number of 
homodimers in a proteome. 
 
Testing ZEPPI on PDB complexes 
 
Dimeric PDB complexes were collected from the first bioassembly, as defined in the PDB structure 
file, for both bacterial and human complexes24.  We tested performance with both prokaryotic and 
eukaryotic proteomes which, overall, have very different MSA depths. As described in Methods, 
complexes were selected based on resolution, chain length and the requirement that the proteins 
in the complex are from the same species. In total, 279 bacterial heterodimers, 247 human 
heterodimers, 3976 bacterial homodimers, and 977 human homodimers, for a total of 5,479 dimer 
structures, were obtained. For each complex we calculated the 12 metrics. 
 
Figure S1 and S2 plot, for each of the twelve metrics, the fraction of PPIs with a Z-score above 
the threshold denoted along the x-axis. For example, in Figure S1A, at a Z-score of 2, the metric 
for average APC-corrected MI, <MIAPC>, by itself recovers 60% of bacterial heterodimers whereas 
integrating all metrics (Figure 2) recovers 80%. Overall, it is evident that, for heterodimers, the 



 5 

APC correction improves performance relative to raw (uncorrected) metrics for MI and DCA but 
not for Con (Figure S1, A and B). In contrast, for homodimers, the APC corrected Con metric is 
more effective than the corresponding raw metric (Figure S1, C and D). Further, choosing the top 
value for each metric is less effective than choosing the value averaged over the entire interface 
(dashed curves versus solid curves, Figures S1-S2). This is not unexpected since all contacts 
identified in PDB complexes are presumed to be correct and likely contribute to the total score. 
However, this is not necessarily the case with docked and predicted complexes as depicted 
below.  
 
Figure 2 contains similar plots to those reported in Figures S1 and S2 but, for a given metric, the 
higher value of raw versus APC-corrected metric is chosen for each complex. The ZEPPI curve 
(purple) is generated by choosing the metric with the highest score for each complex. For the 
remainder of the paper, the ZEPPI score for a given complex corresponds to the maximum value 
from among the complex’s 12 metrics. 
 

 

Figure 2. Percentage of PDB PPIs as a function of Z-score. Colors and line types in the legend 
indicate curves for different metrics each of which corresponds to the maximum of the raw and 
APC values for a given PPI. The mean and top metric of all interface contacts are denoted as <>, 
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and top, respectively. The ZEPPI score for a given PPI is the largest Z-score among all metrics  
and the curve for all PPIs is shown in purple. See Supplementary File 1. 

Figure 2 contains an evaluation of ZEPPI on PDB complexes. Of course, in all cases ZEPPI 
outperforms any individual metric since it “chooses” the best performing metric for each complex. 
For bacterial heterodimers (Figure 2A) MI is the best performing metric although DCA is slightly 
better at high Z-scores and Con performance is similar to both MI and DCA. In contrast, Con is 
clearly the most important metric for human heterodimers. We suggest that the difference 
between human and bacteria is the greater coevolutionary divergence underlying bacterial MSAs  
as opposed to eukaryotic MSAs. Of note, the overall ZEPPI performance is very similar for 
bacteria and human with, in both cases, about 65% of the complexes having a ZEPPI score > 4.  

For homodimers, the two coevolutionary metrics perform the best with DCA performing better 
than MI at high Z-values for bacteria while MI is, overall, the best performer for human. The 
improved performance of coevolution for homodimers is likely due to the fact that MSA sequence 
depth for homodimeric complexes is much larger (reflecting two copies of a single protein) than 
for heterodimers. It is interesting that in all cases, MI performance is comparable to or better than 
that of DCA, except for bacterial homodimers which are associated with the deepest MSAs. But 
even in that case the differences manifest only at high Z-scores. Most importantly, since DCA 
contributes very little for human complexes and, given its need for deep MSAs and the extra 
computer time required in its use, below we only use DCA for homodimers. Of note, Bitbol has 
reported that, using an iterative pairing algorithm, MI alone performs at least as well as DCA in 
the sequence-based identification of protein-protein interaction partners9.  

 

Figure 3. Effect of MSA depth on ZEPPI score for PDB dimers.  The ZEPPI score is plotted 
against MSA depth, NMSA, where each red dot and error bar correspond to the average and 
standard deviation of the ZEPPI score for the PPIs in a given bin of NMSA values. A histogram of 
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the numbers of PPIs in each bin is shown in green. Data are plotted on a log scale for NMSA and 
the number of PPIs. NMSA is the depth of the paired MSAs after checking the coverage of surface 
residues (see Methods and Supplementary File 1.).  

Effect of MSA depth – Figure 3 plots ZEPPI score (red dots) versus the sequence depth of the 
MSAs (NMSA). The histogram (green) displays the number of interfaces as a function of NMSA. On 
average, ZEPPI score is seen to increase with increasing MSA depth although there are examples 
where ZEPPI scores > 2 are obtained for very shallow MSA depths (NMSA < 10). Most of these 
result from significant sequence conservation of interfacial residues but there are cases where 
even MI yields a significant signal. Although these few cases may well be statistical anomalies, 
there are many high-scoring interfaces of relatively shallow depths with values of NMSA in the range 
of 10 to 100. Note that NMSA here is a raw number that does not include the low-weighting of 
redundant sequences. It is generally accepted that, for most applications, NMSA should be at least 
the sum of the number of residues in each protein7,30–32 and is typically taken to be greater than 
500 or 1000 for predictions of protein-protein interactions7,31. Our results highlight the success of 
ZEPPI in leveraging even shallow MSAs, made possible by the evaluation of interfacial residues 
in experimentally determined structures.  
 
Test on CAPRI benchmark decoys 
 
We tested the performance of ZEPPI in differentiating good versus poor models in a widely used 
decoy set, score_set28, which was derived from targets from the CASP-CAPRI experiment. The 
score_set contains docking models predicted by 47 different groups for proteins from bacteria, 
yeast, vertebrates and artificial design. We considered 13 widely studied targets which, overall,  
have 18,538 corresponding decoys: 10% represent docking predictions of acceptable, medium 
or high quality based on CAPRI-defined criteria. We combine these three categories and annotate 
the  group as “acceptable+”, whereas the remaining 90% are annotated as “incorrect.” Even 
though two of the targets, T53 and T54 contain designed proteins, they both have MSAs with 
NMSA values of 2110 and 198, respectively. Table S1 reports MSA depth for all targets along with 
the number of acceptable+ and incorrect decoys, and the area under the ROC curve (AUROC) 
for each target. In contrast to the results with PDB complexes, the top metrics contribute to the 
ZEPPI score to a greater extent likely because the interfaces for acceptable+ models have 
inaccuracies. It is clear from the table that shallow MSA depths (<100) can produce good 
AUROCs, particularly for T47 which has an AUROC of 0.93 and NMSA of only 24. 
 
Figure S3 plots the percentage of all models that have a given ZEPPI score in each of the four 
categories across targets. There is a clear distinction between acceptable+ and incorrect decoys 
with essentially 90% of the acceptable+ models having Z-scores > 2. Nevertheless, some 
incorrect decoys do have high Z-scores and some correct decoys have low Z-scores. For 
example, T40 (Table S1, AUROC = 0.66) is derived from a trimeric complex between a bovine 
protein and two copies of the same plant protein that bind in different locations. Only one interface 
is considered in the decoy set but the other forms a second interface complicating the sampling 
of non-interacting surface residues in creating fake interfaces. This issue that does not affect 
docking algorithm performance but compromises ZEPPI performance.  
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Table 1 compares ZEPPI performance across targets to that of other methods33–38, most of which 
are based on deep learning. The data for other methods was taken from Table S8 of Réau et al.34 
(see also Methods). ZEPPI, despite not involving training, is essentially tied as the top performer 
as measured by AUROC and is the best performer based on top 100 Success Rate. However, 
ZEPPI is outperformed by a number of other methods as measured by top 1 and top 5 Success 
Rates. Based on these criteria, iScore is the best performer. Of note, AUROC is affected by the 
distribution of false and true positives in a list of predictions while Success Rate depends on the 
number of good predictions at the top of the list. Success Rates are central to CASP-CAPRI 
rankings while ROC curve performance may be more important in asking whether a particular 
prediction is correct.  

 
Table 1. Performance of different scoring methods on CAPRI decoys. AUROC in this table 
is averaged over values for each of 13 targets. Success Rates of Top N indicates the number of 
targets where there are acceptable or better predictions in the Top N predictions. 
 

 
 
 
Evaluating PrePPI PPI models with ZEPPI 
 
In recent work we reported PrePPI calculations for the human and E. coli interactomes 
represented by models for the full-length sequences and constituent domains27. A structural 
modeling score, SM, was trained on the HINT high-quality literature-curated (HINT-HQ-LC) 
dataset for human PPIs. HINT-HQ-LC  datasets are designed to contain high confidence binary 
interactions39. ROC curves were reported for testing the PrePPI human and E. coli models on the 
human and E. coli HINT-HQ-LC datasets using 10-fold cross-validation. These yielded AUROC 
values of 0.83 and 0.88, respectively, thus, attesting to the overall high-quality of the predictions.   
 
Figure S4  displays violin plots for the range of ZEPPI scores for PrePPI predictions in different 
bins of false positive rates (FPR). For PrePPI predictions of higher confidence (lower FPR), the 
median ZEPPI score is larger. These results provide a strong consistency check in that better 
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structural models as defined by PrePPI produce stronger evolutionary signals as measured by 
ZEPPI. For bacterial heterodimers (Figure S4A), at FPR < 10-4, the percentage of predicted PPIs 
with a ZEPPI score > 2, 3, 4 is 94%, 81% and 67%, respectively. The comparable numbers for 
PDB structures (see discussion of Figure 2) are 95%, 85% and 71% suggesting that PrePPI’s 
highest confidence predictions have ZEPPI scores close to those of PDB structures. Performance 
deteriorates as FPR increases but there are still many good ZEPPI scores for higher FPR values.  
The distributions in Figure S4 demonstrate that high and low ZEPPI scores are obtained in all 
FPR bins suggesting ZEPPI score can be used as an additional evidence source for prioritizing 
PrePPI models. 
 
Table 2. Number of proteins, PPIs and novel predictions for different combinations of 
PrePPI FPRs and ZEPPI-scores for E coli. and Human. See Supplementary Files 2-4. 
 

 
 

 
The E. coli structural interactome 
Table 2A lists the number of E. coli PPIs (out of the 5.4 million for which a model can be built) and 
the number of proteins that comprise these interactions for different FPRs and ZEPPI scores. At 
FPR < 0.01 PrePPI predicts 71K PPIs involving 3.5K proteins, and these numbers are significantly 
decreased when more stringent PrePPI FPRs and ZEPPI scores are applied. 2.3K PPIs satisfy 
the highly restrictive criteria of FPR < 0.0001 and ZEPPI score > 4. 

 
Table 2A also lists the overlap of ZEPPI-filtered PrePPI predictions with PPIs annotated in 
experimental databases (DBs). Any PPI that appears in the listed databases (see Methods) is 
considered whether or not the interaction is likely to be direct or indirect so as to determine the 
number of truly novel PPIs that our methods predict. At the most stringent end of the scale (FPR 
< 0.0001, ZEPPI score > 4) 518 novel predictions are made. On the other hand, as an example, 
there are 21,000 novel predictions made for FPR < 0.05 and ZEPPI score > 4 suggesting that 



 10 

using ZEPPI may facilitate the discovery of meaningful predictions that might be missed based 
on PrePPI alone.  
 
The human structural interactome 
Table 2B presents results for the PrePPI-predicted human interactome that parallel those for E. 

coli (Table 2A). In contrast to PrePPI results reported recently, which are based on both structural 
and non-structural evidence, Table 2B reports data for SM only, i.e. domain-domain structure-
based predictions. A total of 1.3M PPIs are predicted with an FPR <0.01 which is an overly tolerant 
criterion. This number is reduced to only 130K for FPR <0.001 and only 12K for FPR <0.000127. 
ZEPPI provides an alternate filter; for example ZEPPI = 4 reduces the number of predictions to 
228K, 31K and 7K for FPR <0.01, 0.001 and 0.0001, respectively.  
 
As is the case for E. coli (Table 2A), most PrePPI predictions do not appear in any experimental 
database nor in STRING40 which includes many PPIs inferred from sequence relationships 
(collectively, “PPIs in DBs”). Although PrePPI provides structural models for many experimentally 
determined interactions, its value is also in hypothesis generation as many of its predictions are 
novel. At the highest confidence level (FPR <0.0001, ZEPPI>4), there are 2983 novel human PPI 
predictions.  ZEPPI can be used to discriminate predictions at different PrePPI confidence levels, 
as indicated in the following examples. 
 
Biological applications of ZEPPI/PrePPI 
 
Distinguishing among homologs:  An issue with PrePPI and other PPI prediction methods is that 
they encounter difficulties in predicting binding specificity when closely related homologs are 
involved. For example, based on a relatively small number of templates, there are many predicted  
interactions for the small GTPase K-Ras with GTPases, GAPs, GEFs, and other signaling 
proteins. Based on the X-ray complex for H-Ras/Grb1441 (PDB ID: 4k81), PrePPI makes 
predictions (FPR ≤ 0.005) for K-Ras interactions with Grb7, Grb11, and Grb14. However, ZEPPI 
is significant (Z = 3.5) for only KRAS-Grb742, the one for which there is evidence of an interaction 
(in DBs as defined above). This is a case where the structural models are too similar to be 
distinguished from one another but where there is a clear sequence signal that ZEPPI detects 
among interfacial residues. 
 
A possible role for K-Ras in synaptic signaling: As shown in Figure 4A, PrePPI predicts 
interactions among K-Ras, Sharpin (the Shank-interacting protein-like 1) and Shank1 (the SH3 
and multiple ankyrin repeat domains protein 1). Structural predictions are shown for 1) the Sharpin 
ubiquitin-like (UBL) domain and K-Ras (Figure 4B); 2) K-Ras and Sharpin ankyrin repeats (Figure 
4C); and 3) Sharpin PH domain and Shank1 FERM domain (Figure 4D). Sharpin has previously 
been shown to interact with Shank1 and both co-localize at synaptic sites in mature neurons43. 
Altogether, our predictions (Figure 4) and the related experimental evidence suggest a novel role 
for K-Ras in synaptic signaling. Indeed, a recent study44 found that mutant K-Ras increases 
synaptic transmission in inhibitory neurons, while it promotes the cell death of excitatory neurons.  
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Secreted peptide fragments in the pancreas: Chymotrypsin-like elastase family member 1 
(CELA1) is a secreted elastase with high pancreatic expression. Recent studies have implicated 
peptides produced from the amyloid precursor protein (APP) in metabolic diseases45,46. In 
particular, human pancreatic islet cells process APP  to release secreted fragments of APP 
(sAPP). The CELA1-APP model (Figure S5) suggests a pancreatic-specific mechanism for the 
production of sAPP.  
 

 
 
Figure 4. High-confidence PPIs in synaptic signaling. A) PrePPI and ZEPPI predict 
interactions among Sharpin (the Shank-interacting protein-like 1, colored in green), the small 
GTPase K-Ras (orange), and Shank1 (the SH3 and multiple ankyrin repeat domains protein 1, 
colored in blue). Solid lines between protein domains denote the domains involved in the PPIs 
which are depicted as backbone ribbons. In B-D), the darker colored ribbons represent the chains 
from the PDB PPI template and are defined below the query protein names: B) Sharpin-K-Ras; 
C) K-Ras-Shank1; and D) Sharpin-Shank1. In all but two cases (KRAS-6ba6:B and KRAS-
5o2t:A), the pairwise sequence identities between the queries and the respective template chains 
is less than 25%. 
 
Role of Cystatins in tumorigenesis: Cystatins are inhibitors of cysteine peptidases. In tumor 
development and cancer progression the balance between cystatins and cysteine peptidases may 
be disrupted47. Cathepsin F (CTSF) was observed to have an anti-tumor effect in lung 
adenocarcinoma (LUAD)48 whereas Cystatin-SN (CST1) promotes the epithelial-mesenchymal 
transition in LUAD cells49. The CST1-CTSF model (Figure S6) suggests that the mechanism of 
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action of CST1, which is highly expressed in LUAD49, may be to inhibit the anti-tumorigenic activity 
of CTSF.  
 

Discussion 
 
Here we have introduced ZEPPI, a novel method that uses species-paired MSAs as a basis for 
scoring predicted models of protein-protein interfaces. ZEPPI’s central feature involves the 
analysis of  evolutionary information involving only contacting residues in a 3D structural model. 
The relatively limited number of residues to be analyzed results in a major reduction in computer 
time required to evaluate a model. Moreover, ZEPPI extracts signals from shallow MSAs enabled 
in part by its reliance on sequence conservation as well as mutual information. Deep learning 
methods implicitly leverage both sources of information but since most analyze entire sequences 
they are more computationally intensive.  
 
In addition to validation on crystal structures, ZEPPI was tested on thirteen CASP-CAPRI targets 
and its performance was found to be comparable to or better than other interface evaluation 
approaches. We note that evolutionary information has been used for some time in the evaluation 
of docking models but generally in combination with other evidence sources, such as statistical 
propensities for surface residues to be in protein interfaces. ZEPPI differs from these approaches 
in its combined use of mutual information and conservation within interfaces and, especially, in 
its method of calculating Z-scores through the comparison of metrics for positions in the MSAs 
corresponding to interfacial residues versus positions in the MSAs corresponding to randomly 
chosen residues outside an interface. Our results on both PDB and CASP-CAPRI complexes 
demonstrate that ZEPPI provides a computationally efficient and highly effective measure of 
interface quality that can easily be combined with other sources of evidence. 
 
To demonstrate its computational efficiency, we have applied ZEPPI to 5.4 million E. coli PPI 
interfaces and to 6.2 million (FPR <0.05) human PPI interfaces predicted by PrePPI.  As 
suggested by the results in Table 2, filtering PrePPI predictions by ZEPPI scores has the potential 
to increase the reliability of high confidence predictions while identifying low confidence PrePPI 
predictions that are worthy of further consideration. An immediate application of ZEPPI is its 
integration into the PrePPI algorithm with the goal of combining evolutionary signals with a method 
based entirely on 3D structure. The integration should prove to be quite valuable, especially in 
applications to the human proteome and other eukaryotic organisms where available sequence 
information supports alignments of relatively shallow depth.  
 
The vignettes provided above indicate the ability of ZEPPI to aid in the discovery of novel and 
potentially important functional hypotheses. In this regard, ZEPPI/PrePPI can be viewed as a 
hypothesis generating method that could be followed up with slower structure prediction methods 
ranging from docking to AF-multimer to methods based on their combination as evidenced from 
the most recent CASP-CAPRI experiment17. Of course, alternatively, ZEPPI can be used 
independent of PrePPI to evaluate any predicted model of a complex. For example, it could be 
used to distinguish direct physical from indirect interactions in experimentally determined multi-
protein complexes. 
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The combination of PrePPI with ZEPPI suggests a general approach to the proteome-wide 
prediction of whether and how two proteins interact. ZEPPI can be used to score PrePPI models 
and thus provide an independent metric for their accuracy. In addition, if one is interested in 
evaluating specific PPIs, predicted for example by deep learning or docking-based methods, the 
post-prediction application of ZEPPI would appear to offer an efficient and accurate option. 
However, in genome-wide applications, we suggest using structure-based approaches to provide 
interactome-wide yes/no answers along with 3D models and then turning to increasingly accurate 
deep learning methods for a more limited set of interactions of particular interest.  
 
 

Methods 
 

Selecting bacterial and human PDB dimer structures  
Taxonomy and UniProtKB summary files for all PDB chains were downloaded from the Structure 
Integration with Function, Taxonomy and Sequence (SIFTS) project50. From the SIFTS PDB chain 
taxonomy file, PDB chains that correspond to only one taxonomy ID were selected and then 
filtered to bacterial and human PDB chains, respectively. The taxonomy list of bacteria was 
collected from searching both the UniProt proteome51 and the NCBI Taxonomy databases52. The 
union of the two searches provided 521,897 unique bacteria taxonomy IDs. 
 
From the SIFTS PDB chain UniProt file, PDB files with only two UniProt IDs for heterodimers and 
one UniProt ID for homodimers  with both chains longer than 30 amino acids are selected. PDBs 
that have any single chain mapped to ≥ 2 UniProt IDs are excluded to avoid fusion or chimera 
proteins. Structure resolution information is obtained through the PDB API service24. PDBs that 
are protein-only as the polymer entity type, and either from X-ray with resolution ≤ 4 Å or from EM 
with resolution ≤ 4.5 Å are selected. NMR structures are not used. Further, through reading the 
PDB file header, PDBs where the oligomer state of the first BioAssembly (BIOMOLECULE 
annotations) defined as “DIMERIC” by either the author or software with resolved sequence 
lengths longer than 30 amino acids are selected. Different PDB dimer structures for the same 
UniProt ID pairs are collapsed by keeping the structures with better structural resolution or longer 
chain-concatenated length (at least twice as long). Lastly, to remove closely related homologous 
protein pairs, we compared the pairwise sequence identities and removed sequence redundant 
structures where both protein sequences have 90% sequence identity with another structure. The 
detailed pipeline is provided in the supplemental information. 
 
Defining protein surface and protein-protein interface 
The accessible surface area (ASA) of residues for individual chains A and B, and their complex 
AB are obtained using our in-house program of surfv53. An interface is defined as long as the 
buried ASA is larger than zero. The interface between proteins A and B consists of contacting 
residues where the distance between any heavy atoms is less than 6.0 Å. All the residue indices 
from the PDB are updated after mapping the PDB sequences to their full UniProt sequences using 
hhalign of the hh-suite package54. 
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Generating random protein-protein interfaces 
The positions of interface residues on proteins A and B in the concatenated MSA are replaced, 
one by one, with positions for randomly chosen surface residues of the same protein as indicated 
in Figure 1. If one protein has more interface residues than surface residues that are not on the 
interface, the sampling pool goes to the entire protein sequence. To ensure statistical significance 
of the Z-score calculations, 100 random interfaces are generated for each protein-protein 
interface.  
 
Generating and pairing MSAs 
To avoid biased sequence sampling due to over-studied model species, we carried out homolog 
sequence search on 5,090 representative proteomes that were carefully curated and selected in 
EggNog 5.055. This database includes 4,445 prokaryotic reference genomes selected from 
original 25,038 bacteria genomes, and 477 eukaryotic genomes. Homologous sequences are 
searched using Jackhmmer (hmmer-3.2.1)56 with 5 iterations and the default E-value of 0.001. In 
the final outputted multiple sequence alignment, only the sequence with highest identity to the 
query is kept as the representative sequence for each species. 
 
The MSAs of two proteins, p1 and p2, are paired based on the shared common species. 
Sequence rows that cover less than 50% of surface residue positions of p1 or p2 are excluded 
from the paired MSA. MSA columns, either for interface residue or surface residue positions, that 
have more than 50% gaps are excluded.  
 
Calculating mutual information, conservation, DCA, and their APC-corrected terms 

For two positions (a, b) in the paired MSA, their mutual information (MI) is calculated through Eq. 
1, where x and y denote their amino acid type and the gap is treated as the 21st amino acid type 
or state. The p(x) and p(y) are the frequencies of a certain amino acid type and p(x, y) is the 
frequency of a pair of different amino acid types. The conservation score between two positions 
(a, b) is defined through the complement of their normalized joint entropy S(a, b) (Eq. 2). The 
direct coupling information is calculated through the mean field DCA method which is based on 
the maximum-entropy model3. The final direct coupling information is quantified using a similar 
definition as in the mutual information except p(dir)(x, y) involves only the isolated direct coupling 
strength of (a, b) from the DCA calculations (Eq. 3). 
 

The average product correction (APC) is applied to measurements as denoted throughout the 
text. Taking MI as an example, the APC term between position (a, b) (from p1 and p2, 
respectively) is calculated as the product of the average MI signal of position a with positions in 
p2, and position b with positions in p1, between interfacial residues on both proteins, then 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎, 𝑏𝑏) = 1 −  
𝑆𝑆(𝑎𝑎,𝑏𝑏)2∗𝑙𝑙𝑙𝑙𝑙𝑙21  (Eq. 2) 𝐷𝐷𝐷𝐷(𝑎𝑎, 𝑏𝑏) = −∑ ∑ 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑)(𝑥𝑥,𝑦𝑦)𝑙𝑙𝐶𝐶 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑)(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) 𝑝𝑝(𝑦𝑦)𝑥𝑥,𝑦𝑦∈{1..21}𝑥𝑥∈{1..21}  (Eq. 3) 

𝑀𝑀𝐷𝐷(𝑎𝑎, 𝑏𝑏) = −∑ ∑ 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑙𝑙𝐶𝐶 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥) 𝑝𝑝(𝑦𝑦)𝑦𝑦∈{1..21}𝑥𝑥∈{1..21}  (Eq. 1) 
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normalized by the average measurement of all protein to the other (Eq. 4). The APC-corrected MI 
is given by Eq. 5, and the same correction correspondingly applies to Con, and DCA scores.  

  

Calculating Z-scores of the interface 
For each interface contact of a given interface between protein p1 and p2 and the generated 100 
random interfaces, the following six measurements are calculated: mutual information, 
conservation, direct coupling information and their corresponding APC-corrected terms. Of all the 
interface contacts, we choose the top and the mean as the representative metric for each 
measurement, denoted as MItop and <MI>, for example. The Z-score of the 12 metrics are then 
calculated for the given interface versus the generated random interfaces. The larger Z-score of 
the raw metric versus its APC-corrected metric is taken as the Z-score for this metric. The 
maximum of all metrics is taken as the final ZEPPI score. 
 

Building the E. coli experimental PPI database 
The experimental database of E. coli PPIs is integrated from several major resources including 
Interactome3D57, HINT39, APID58, STRING40 and Ecocyc59, as well as previously known large-
scale E. coli PPI high-throughput screening with experimental methods such as APMS60 and 
Y2H61. Another well-known experimental database BioGrid62 is not included due to the lack of E. 

coli (NCBI Taxonomy ID: 83333) PPIs included. Before their integration, each database was pre-
processed by selecting only E. coli K12 proteins (proteome size: 4391) and sorting the uniport 
IDs for each pair of PPIs. During the integration, redundant PPIs were removed. Note that 
Interactome3D also includes homology-modeled PPIs and the STRING database has many 
inferred PPIs, which are not determined by direct physical interaction experiments but inferred by 
other methods such as gene-related methods or species PPI transfer. By excluding these two 
contributions, we also built a purely experimental PPI database of E. coli based on direct physical 
experiments. In all, there are 565,007 PPIs in the integrated experimental database set and 
45,634 PPIs in the physical experimental PPI dataset. 
 
In summary, the integrated experimental database set includes: all HINT binary and complex PPIs 
(updates of 2021/11), all APID PPIs (updates of 2021/11), all Interactome3D PPIs (updates of 
2021/11), all STRING PPIs (v11.5), the gold standard dataset used in Zhang and coworkers’ 
Threpp work63, the high throughput experimental PPI set from Threpp (Table S1), the EcoCyc 
PPIs downloaded Cong et al.64(Table S5), the Y2H PPI set from Rajagopala et al.61 
(Supplementary Table 2), the high-confidence and median-confidence APMS PPI set from Babu 
et al.60 (Supplementary Table 2). For the physical experimental PPI dataset, only physical links in 
the STRING database with experimental score >0 are included; only the PDB subset of 
Interactome3D is included; the other datasets remain the same as in the integrated experimental 
database.  
  

𝐴𝐴𝑃𝑃𝐶𝐶𝑀𝑀𝑀𝑀(𝑎𝑎, 𝑏𝑏) = 
<𝑀𝑀𝑀𝑀(𝑎𝑎, 𝑦𝑦 )>∗<𝑀𝑀𝑀𝑀(𝑏𝑏, 𝑥𝑥 )><𝑀𝑀𝑀𝑀(𝑥𝑥,𝑦𝑦)>   (Eq. 4) 𝑀𝑀𝐷𝐷𝐴𝐴𝑃𝑃𝐴𝐴(𝑎𝑎, 𝑏𝑏) = 𝑀𝑀𝐷𝐷(𝑎𝑎, 𝑏𝑏)− 𝐴𝐴𝑃𝑃𝐶𝐶𝑀𝑀𝑀𝑀(𝑎𝑎, 𝑏𝑏)  (Eq. 5) 
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Building the human experimental PPI database 
The integrated human experimental PPI database consists of the following resources: all HINT 
binary and complex PPIs, all Interactome3D PPIs, all APID PPIs, all STRING PPIs (v11.5), all 
BioGrid62 PPIs, all HURI43 PPIs, and the HC-2016 set from PrePPI26. In total, there are 6,068,248 
PPIs collected from the above-mentioned experimental databases with the large majority derived 
from STRING.  

 

Code and data availablitiy 

 

Code for ZEPPI method with tutorial examples is available at https://github.com/honig-lab/ZEPPI.  
 
The following Supplementary Files are available at FigShare:  

https://doi.org/10.6084/m9.figshare.c.6800502.v1:  

Supplementary File 1. ZEPPI results for  

1A: Bacterial PDB heterodimer complexes 

1B: Human PDB heterodimer complexes  

1C: Bacterial PDB homodimer complexes 

1D: Human PDB homodimer complexes 

Supplementary File 2. ZEPPI results for 

 2A: PrePPI-AF predictions for E. coli PPIs, at FPR ≤0.001 

 2B: PrePPI-AF predictions for human PPIs, at FPR ≤0.001 

Supplementary File 3. ZEPPI results for PrePPI-AF predictions for E. coli PPIs, at FPR ≤0.05. 

Supplementary File 4. ZEPPI results for PrePPI-AF predictions for human PPIs, at FPR ≤0.05. 
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Supplemental Information: 
 

 

 

SI Figure S1. Percentage of PDB PPIs as a function of Z-score for raw and APC-corrected 

metrics averaged over interface contacts. Colors and line type defined in the legend indicate 
curves for different metrics  



 22 

 

SI Figure S2. Percentage of PDB PPIs as a function of Z-score for the interface contact with 

the top value for a given metric. Colors and line type defined in the legend indicate curves for 
different metrics.  
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SI Figure S3. Percentage of CAPRI structures and decoys having a given ZEPPI score. 

Percentages are plotted along the y-axis for four classes of CAPRI models defined in the legend. 
The total number of models in each class is indicated in the text at the lower left. 
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SI Figure S4. Relationship between the ZEPPI score and FPR of PrePPI-predicted PPIs . 
FPR ranges are indicated below each set of color-coded violin charts, where the median ZEPPI 
scores are shown as a bar. 
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SI Figure S5. Interaction model for Amyloid-beta precursor protein, APP(294-341) (light 
gray), and Chymotrypsin-like elastase family member 1, CELA1(19-258) (light blue).  The 
template for modeling (PDB ID: 4bnr) is a complex of Trypsin inhibitor from Bos Taurus (dark 
gray) and Trypsin from Astacus leptodactylus (dark blue). PrePPI FPR < 0.0001, and ZEPPI 
score = 5.1. The pairwise sequence identities between queries and template chains are 26% 
and 33%, respectively. 
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SI Figure S6. Interaction model for Cystatin-SN, CST1(35-141) (light gray), and Cathepsin 
F, CTSF(244-484) (light blue).  The template for modeling (PDB ID: 1yvb) is a complex of 
Falcipain 2 from Plasmodium falciparum (dark gray) and Cystatin from Gallus gallus (dark blue). 
PrePPI FPR < 0.005, and ZEPPI score = 5.9. The pairwise sequence identities between queries 
and template chains are 19% and 32%, respectively.  
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SI Table S1. Properties and ZEPPI performance of each CAPRI target. 
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