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Abstract

Depth-resolved functional magnetic resonance imaging (fMRI) is an emerging field

growing in popularity given the potential of separating signals from different compu-

tational processes in cerebral cortex. Conventional acquisition schemes suffer from

low spatial and temporal resolutions. Line-scanning methods allow depth-resolved

fMRI by sacrificing spatial coverage to sample blood oxygenated level-dependent

(BOLD) responses at ultra-high temporal and spatial resolution. For neuroscience

applications, it is critical to be able to place the line accurately to (1) sample the right

neural population and (2) target that neural population with tailored stimuli or tasks.

To this end, we devised a multi-session framework where a target cortical location is

selected based on anatomical and functional properties. The line is then positioned

according to this information in a separate second session, and we tailor the experi-

ment to focus on the target location. Anatomically, the precision of the line place-

ment was confirmed by projecting a nominal representation of the acquired line back

onto the surface. Functional estimates of neural selectivities in the line, as quantified

by a visual population-receptive field model, resembled the target selectivities well

for most subjects. This functional precision was quantified in detail by estimating the

distance between the visual field location of the targeted vertex and the location in

visual cortex (V1) that most closely resembled the line-scanning estimates; this dis-

tance was on average �5.5 mm. Given the dimensions of the line, differences in

acquisition, session, and stimulus design, this validates that line-scanning can be used

to probe local neural sensitivities across sessions. In summary, we present an accu-

rate framework for line-scanning MRI; we believe such a framework is required to

harness the full potential of line-scanning and maximize its utility. Furthermore, this

approach bridges canonical fMRI experiments with electrophysiological experiments,

which in turn allows novel avenues for studying human physiology non-invasively.
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1 | INTRODUCTION

The cerebral cortex comprises separate layers implicated in different

processes and information flow. Imaging across cortical depth may

reveal unique information about the direction of information flow,

specifically whether processes are driven by ascending or descending

signals (Felleman & Van Essen, 1991; Hubel & Wiesel, 1972;

Rockland & Pandya, 1979). These signals are transmitted at time

spans down to the millisecond range (Moro et al., 2010; Schroeder

et al., 1998; Self et al., 2013), while typical functional magnetic reso-

nance imaging (fMRI) acquisitions sample in the order of multiple sec-

onds (Lindquist, 2008; Ogawa et al., 1993; Raimondo, Oliveira,

et al., 2021). To properly detect temporal features of the hemody-

namic signal propagation at the mesoscale (laminar) level, fast sam-

pling rates are much preferred (Chen et al., 2021; Lewis et al., 2016;

Petridou & Siero, 2019; Polimeni & Lewis, 2021; Silva &

Koretsky, 2002). Additionally, the architecture of the human cortex

requires high spatial resolution as well—with the cortex being 2 mm

thick on average (Fischl & Dale, 2000), and visual cortex being among

the thinnest cortical regions. To separate ascending from descending

signals without relying on interpolation, submillimeter resolution is

required (Dumoulin et al., 2018; Petridou & Siero, 2019). Ideally, we

would go beyond what is presently considered “laminar” resolution at

ultra-high field (�0.8 mm; Dumoulin et al., 2018; Huber et al., 2015,

2021; Oliveira et al., 2022, 2023; Raimondo, Oliveira, et al., 2021).

However, measurements at these resolutions are slow, and typically

have a repetition time larger than 2 s (Raimondo, Oliveira,

et al., 2021). To probe laminar properties non-invasively more precisely

in the human cortex, we can wield the power of line-scanning (Choi

et al., 2023; Raimondo, Knapen, et al., 2021; Yu et al., 2014). This

acquisition technique allows for sampling rates down to �100 ms and

a spatial resolution of 250 μm in the line direction (frequency-

encoding direction), at the cost of spatial coverage (Raimondo,

Knapen, et al., 2021; Raimondo, Priovoulos, et al., 2023).

In line-scanning (Raimondo, Knapen, et al., 2021; Raimondo,

Priovoulos, et al., 2023; Yu et al., 2014), a slice is excited and the sig-

nal outside the line of interest is suppressed through outer volume

suppression (OVS) pulses (Pfeuffer et al., 2002). The phase-encoding

gradient in the direction perpendicular to the line is omitted, and the

line signal is then acquired after every excitation pulse. This results in

an acquisition with a spatial resolution of 250 μm in the laminar direc-

tion with a sampling rate of �100 ms (Raimondo, Knapen,

et al., 2021). In previous work, we showed BOLD responses along cor-

tical depth in response to visual stimulation that were similar to 2D

gradient-echo echo planar imaging (GE-EPI) acquisitions (Raimondo,

Knapen, et al., 2021). This technique has striking similarities with lami-

nar electrophysiological measurements used in rodent/non-human

primate research, where information is sampled from a single probe

(Harris et al., 2016; Jun et al., 2017; Steinmetz et al., 2018). In that

sense, we can perform fMRI experiments in the same way: if we know

the target site of the line and its functional properties beforehand, we

can tailor our experiments very specifically to the area being imaged.

Line placement is critical for line-scanning. First, the line must be

placed perpendicular to the cortex to avoid loss of spatial resolution

in the cortical depth dimension. This ensures that only signals from a

particular layer are sampled by a given voxel in the line

(Balasubramanian et al., 2021, 2022). The first implementation of line-

scanning involved a rodent study (Yu et al., 2014). Due to the nature

of the mouse cortex, planning the line perpendicular is a rather

straightforward task. The cortex of humans has a much more intricate

folding architecture (Van Essen et al., 2019), complicating (automatic)

planning procedures. In earlier work (Raimondo, Heij, et al., 2023; Rai-

mondo, Knapen, et al., 2021; Raimondo, Priovoulos, et al., 2023), this

was done by manually placing the line as perpendicular as possible to

the cortical surface while maintaining a coronal slice orientation. As

the procedure is based purely on anatomy, it remains unclear whether

the functional task will activate the imaged area and how the signal is

sampled across depth. Second, line placement is critical to target the

exact functional region the experimenters want to probe, for example,

primary visual cortex (V1) or a specific region of V1 such as the corti-

cal representation of the blind spot (Tong & Engel, 2001). Ultimately,

line-scanning can also be extended to clinical research, such as the

lesion projection zone in V1 of macular degeneration patients where

the balance between ascending or descending signals is disrupted

(Baker et al., 2005; Masuda et al., 2008). The well-known functional

specialization of the brain and the variation of functional specializa-

tion domains between subjects, which can be in the order of ±1 cm

relative to anatomical landmarks (Dumoulin et al., 2000), also demand

accurate line placement on a per-subject basis.

Therefore, the present work aims to (1) identify a specific location

on the cortical surface, (2) place the line at this location perpendicular

to the cortical sheet, and (3) tailor our experiment to that specific loca-

tion on the cortical surface. We base the selection of the target and

placement of the line on functional (visual field coverage, signal-to-

noise) and structural (minimal curvature, avoiding veins) information

across multiple sessions. Visual field coverage was quantified using the

population-receptive field (pRF) method (Dumoulin & Wandell, 2008),

though the framework can be adapted for other purposes. We show

that we are able to position the line on a specific coordinate obtained

from a separate session. Anatomical variability such as session-

to-session registration and subject motion were limited to <0.4 mm and

�0.6 mm, respectively. The pRF estimates obtained with line-scanning

were similar to the target estimates for most subjects. This was quanti-

fied by taking the distance from the target location and the location

with most-similar estimates compared to the line-scanning estimates

across primary visual cortex, showing an average displacement of

�5.5 mm, a displacement expected based on the width of the line.

2 | MATERIALS AND METHODS

2.1 | Participants

Six participants (ages 27–46 years, 2 females) participated in this

study. All participants had normal or corrected-to normal visual acuity.

All participants were screened prior to the experiments to ensure MR

compatibility and provided written informed consent as approved by

the ethics committee of the VU University Amsterdam.
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2.2 | MRI acquisition and preprocessing

The workflow includes two separate scan sessions typically acquired

on different days (Figure 1). The first session is dedicated to the acqui-

sition of anatomical information and whole-brain pRF estimation. In

the second session, we perform our functional line-scanning experi-

ment, targeting a specific location on the cortical surface. Details of

Session 1 are described in Section 2.2.1. Section 2.2.2 describes the

method of deriving the target vertex and angulation of the line, and

Section 2.2.3 describes the line-scanning acquisition, experiment,

and analysis.

2.2.1 | Session 1—High-resolution anatomical scans
and pRF mapping

High-resolution anatomy and whole-brain BOLD fMRI acquisition

T1-weighted (T1w) and T2-weighted structural MRI data were

acquired using a Philips Achieva 7T scanner with a 32-channel Nova

Medical head coil, at a resolution of 0.7 mm isotropic (T1w:

FOV = 220 � 220 � 200 mm3, matrix = 352 � 352 � 263, TR/TE =

6.2 ms/3 ms, FA1/FA2 = 5�/7�, TRMP2RAGE/TI1/TI2 = 5500 ms/

800 ms/2700 ms, duration = 9 min 45 s; T2w: FOV = 245 � 245 �
184 mm3, matrix = 352 � 349 � 263, TR/TE = 3000/390 ms, TSE-

factor = 182, duration = 7 min). Functional MRI data were acquired

with a 1.7 mm isotropic T2*-weighted gradient-echo (GE-) 2D-EPI

sequence with 57 slices and 225 volumes (FOV = 216 � 216 mm2,

matrix = 128 � 125, TR/TE = 1500 ms/22 ms, FA = 53�), with a

duration of 330 s. Six dummy scans (9 s) were discarded to avoid

start-up magnetization transients. Foam padding was used to mini-

mize head movement. At the end of each functional run, a top-up scan

with opposite phase-encoding direction was recorded, in order to per-

form susceptibility distortion correction (Andersson et al., 2003).

pRF experiment

We used a bar-shaped stimulus with a checkerboard pattern vignetted

by a circular aperture (Aqil et al., 2021; Dumoulin & Wandell, 2008).

Four bar orientations (0�, 45�, 90�, and 135�) and two different

motion directions were used, giving a total of eight different bar tra-

versal configurations. The width of the bar subtended 1.25�. A period

of 15 s of mean luminance was presented every two bar passes. Par-

ticipants' engagement was ensured by presenting a small fixation dot

in the middle of the stimulus that changed color (red–green) at a semi-

random interval. Participants were instructed to report this change of

color via a button press.

Anatomical workflow

T1w and T1 map images (Marques et al., 2010) were estimated using

pymp2rage (de Hollander, 2018), and voxels containing only noise

were removed using a brain mask derived from the second inversion

image (INV2) using SPM12. The resulting T1w anatomical image was

processed following a pipeline designed to optimize laminar accuracy

(de Hollander et al., 2021; Figure S1).

First, a spatial-adaptive Non-Local Means (SANLM-) filter imple-

mented in CAT12 was applied to the T1w-images to filter noise while

maintaining edges (Manj�on et al., 2010). The denoised image was

F IGURE 1 Schematic representation of the selection and targeting framework for line-scanning. (1) In Session 1, we collect anatomical and
functional data using standard sequences. Next, we reconstructed the cortical surface from the anatomical data and reconstructed the pRF
properties from the functional data. Anatomical (curvature) and functional (pRF) properties were used to find a target vertex in primary visual
cortex (V1). (2) The coordinate of the vertex was used as spatial reference; the normal vector was used to achieve perpendicularity to the cortex
by calculating the angle between the normal vector and each cardinal axis (x, y, z). (3) Session 2 started with a brief, low-resolution anatomical
scan, which was exported from the scanner, and registered to the detailed anatomy from Session 1. (4) The resulting transformation was applied
to the coordinate and normal vector of the target vertex resulting in the coordinates and orientation for the line.

HEIJ ET AL. 5473

https://github.com/gjheij/pymp2rage
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://neuro-jena.github.io/cat/


segmented into cerebrospinal fluid (CSF), white matter (WM) and gray

matter (GM) using CAT12 and corrected for intensity non-uniformity

with N4BiasFieldCorrection (Tustison et al., 2010), distributed with

ANTs 2.3.3. A mask representing the sagittal sinus was created using

the T1w/T2w (if present) ratio and further refined by hand. The voxels

in the mask were set to zero in the denoised T1w image to limit the

necessity for manual intervention after surface reconstruction.

The final masked image was then used as input for the structural pre-

processing module of fMRIprep (Esteban et al., 2019), where the

image was skull-stripped with a Nipype implementation of the

antsBrainExtraction.sh workflow (Avants et al., 2008), using OASI-

S30ANTs as target template. Brain tissue segmentation of CSF, WM,

and GM was performed on the brain-extracted T1w using FSL's FAST

(Zhang et al., 2001). FreeSurfer 7.2 recon-all (Dale et al., 1999) was

used to obtain native cortical surface reconstructions for each

participant.

After surface reconstruction, segmentations derived from Free-

Surfer (Dale et al., 1999), CAT12, FAST (Zhang et al., 2001), Nighres'

MGDM (Bazin et al., 2014; Bogovic et al., 2013), and manual edits

were averaged and used as input for Nighres' CRUISE algorithm (Han

et al., 2004). Mislabeled voxels were manually annotated in ITK-Snap

(Yushkevich et al., 2006) and added to FreeSurfer's brainmask.mgz,

after which the entire preprocessing pipeline was run again. This pro-

cess was repeated until surface reconstruction was satisfactory

(Figure S1).

Functional workflow

After surface reconstruction, whole-brain functional MRI data were

preprocessed using fMRIPrep (see Supporting Information Methods

for boilerplate). Confound regressors were removed from the prepro-

cessed BOLD time courses using pybest. We then converted the data

to %change using the mean of the empty-screen periods in the pRF

experiment. Denoised, %changed BOLD time courses were averaged

across runs and used to estimate pRF parameters by means of a

Gaussian pRF (Dumoulin & Wandell, 2008; Figure S2), implemented in

prfpy. This model contains of three spatial parameters, x0, y0, and σ,

where (x0, y0) is the center and σ is the Gaussian spread (standard

deviation). For a given pRF model, a prediction of the pRF response is

obtained by taking the dot product between pRF and stimulus at each

timepoint and convolving this with the hemodynamic response func-

tion. The optimal pRF parameters were found by minimizing the resid-

ual sum of squares (SoS) with trust-contr optimization (Figure S2).

2.2.2 | Vertex selection

Vertex selection was implemented making use of surface processing

procedures from pycortex (Gao et al., 2015). From the pRF-

parameters obtained, we calculated the eccentricity of each vertex

and polar angle. As criteria, we used an eccentricity <3� of visual

angle, with high variance explained (depending on subject; range

0.35–0.7) and searched within V1 (as per the V1_exvivo.thresh label

from FreeSurfer) for the vertex with minimal curvature. This vertex is

associated with an RAS coordinate in FreeSurfer (TKR) space. This

coordinate was then transformed to scanner coordinates using Option

5 of https://surfer.nmr.mgh.harvard.edu/fswiki/CoordinateSystems.

To position the line perpendicular to the selected patch of cortex, we

aimed to place the line along the normal vector of the vertex (see

Section 2.2.3, “Line-planning procedure” for more details) at mid-

gray-matter depth.

2.2.3 | Session 2—Line-scanning

Line-scanning fMRI acquisition

The line-scanning functional acquisition used a modified multi-echo

2D gradient-echo sequence where the phase-encoding gradients are

removed and two OVS bands are used to suppress signals outside the

line (Raimondo, Heij, et al., 2023; Raimondo, Knapen, et al., 2021).

With this sequence, 94.3 ± 1.3% of undesired signal outside the

region of interest is suppressed (Raimondo, Knapen, et al., 2021, Rai-

mondo, Priovoulos, et al., 2023). A gap of 4 mm between the two

OVS bands was used, resulting in a nominal resolution for the line of

4 � 2.5 � 0.25 mm3; thus, 0.25 mm in the laminar direction. Other

parameters were: TR/TE1–5 = 105 ms/6 ms, 14 ms, 22 ms, 30 ms,

38 ms, readout bandwidth = 131.4 Hz/pixel, FA = 16� (Raimondo,

Priovoulos, et al., 2023). Data were acquired using two custom-built

high-density 16-channel surface coils arrays (total 32 channels) for

signal reception (Petridou et al., 2013; Priovoulos et al., 2021) and the

NOVA coil for transmission (Nova Medical, Wilmington, MA). The gra-

dient coil has a maximum amplitude of 40 mT/m and a 200 T/m/s

maximum slew rate.

For registration, a 4-min whole-brain T1w scan was acquired

using the two-channel transmit coil to receive (Nova Medical, Wil-

mington, MA), at a resolution of 1.5 mm isotropic (FOV = 245 �
245 � 184 mm3, matrix = 164 � 163 � 184, TR/TE = 6.2 ms/3 ms,

FA1/FA2 = 5�/7� , TRMP2RAGE/TI1/TI2 = 5500 ms/800 ms/2700 ms).

A partial field-of-view MP2RAGE scan (FOV = 245 � 245 �
184 mm3, matrix = 164 � 163 � 184, resolution = 1.5 � 1.5 �
2.0 mm3, TR/TE = 6.2 ms/1.97 ms, FA = 6�) was acquired with the

angulation and location of the line for anatomical reference. Two

short additional scans accompanied the line-scanning acquisition: for

the nominal line representation, a slice image with phase-encoding,

but without OVS bands was acquired. For line coil sensitivity maps

used when reconstructing line-scanning data, a slice image with phase

encoding and with OVS bands was acquired.

Line-planning procedure

Immediately upon completion of the low-resolution anatomical scan,

we exported the image and registered it to the first session using

rigid-body registration with antsRegistration (ANTs v2.3.1). The result-

ing transformation matrix was applied to the coordinate (using antsAp-

plyTransformsToPoints), allowing us to obtain the normal vector

following the procedure detailed in Section 2.2.2. The angle between

the normal vector and each of the three axes was calculated using the

rule of cosines (Figure 1). To translate these angles to the magnet
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(imaging gradients) coordinate frame of reference, we re-calculated

the angles relative to a coronal slice. If the angle with the left–right

axis was larger than 45�, we re-calculated the angles relative to a sag-

ittal slice. The final set of orientations/translations was then entered

in the MR-console for subsequent line-scanning at the targeted

location.

pRF experiment

During the line-scanning session, we performed a pRF-experiment tar-

geting the visual location of the target vertex' pRF (Figure 2). The visual

stimuli were generated using the Python Psychopy package

(Peirce, 2007) wrapped in exptools2. Stimuli were displayed on an MRI-

compatible screen located outside the bore (Cambridge Research Sys-

tems 32" LCD widescreen, 1920 � 1080 resolution, 120 Hz refresh

rate), viewed by the participants through front-silvered mirrors. Two bar

orientations (0� and 90�), two motion directions, and two bar thicknesses

(0.625� and 1.25�) were used, giving a total of eight different bar config-

urations (duration of �5 min); two iterations of an identical stimulus

movement sequence were performed per run, resulting in an acquisition

time of �9.5 minutes. Participants' engagement was ensured using the

same task as described in Section 2.2.1, pRF experiment.

Preprocessing and analysis

The reconstruction of the line-scanning data was performed offline

using MATLAB Gyrotools. We combined the multi-channel coil data

with a temporal signal-to-noise ratio (tSNR) and coil sensitivity-

weighted SoS weighted scheme per echo (Raimondo, Knapen,

et al., 2021, Raimondo, Priovoulos, et al., 2023). Prior to channel com-

bination, we applied a NORDIC-inspired denoising step (Vizioli et al.,

2021). Briefly, raw k-space data of each channel and echo was sub-

jected to singular value decomposition separately. The thresholding of

the diagonal matrix with the eigenvalues was evaluated at the elbow

of the scree plot of the eigenvalues versus components (Raimondo,

Priovoulos, et al., 2023). Multi-echo data were then combined with a

sum of squares operation (Raimondo, Priovoulos, et al., 2023).

Drifts were removed from the data using a discrete cosine trans-

form (DCT) filter (<0.01 Hz) and physiological noise was removed

using a custom implementation of aCompCor (Behzadi et al., 2007),

tailored to line-scanning data (Figure S3): tissue segmentations from

Nighres' CRUISE algorithm (Han et al., 2004) from the Session 1 ana-

tomical scan were transformed to the individual slices of each run

using antsApplyTransforms with MultiLabel interpolation. WM and CSF

voxels were selected by multiplying the slice with the nominal line

image. Time courses from these voxels were extracted and used as

input for principal component analysis (PCA). To avoid task-related

frequencies being regressed out, resulting time courses from the PCA

were high-pass filtered slightly below the respiratory frequency

(�0.18 Hz). These high-pass filtered time courses were used as nui-

sance regressors to clean the data from respiration/cardiac frequen-

cies (Behzadi et al., 2007; Figure S3). The cleaned time courses were

then converted to %change.

Because this experiment reflects relatively slow changes in visual

processes, the temporal resolution was not fully exploited. Hence, for

further noise reduction, we low-pass filtered the data with a Savitsky–

Golay filter (Savitzky & Golay, 1964) with a window length of 11 sam-

ples and a polynomial order of 3. To further boost SNR, we averaged

the two iterations of the experimental stimulus sequence from

each run.

3 | RESULTS

3.1 | Anatomical measures confirm accurate line-
planning

First, we used anatomical information to assess planning accuracy.

We created a binarized mask representing the nominal line by taking

the middle 16 voxels (indicative of the nominal 4 mm gap between

saturation pulses) in the phase encoding direction along the frequency

encoding direction. Of note, due to the imperfect nature of these

F IGURE 2 Overview of the experimental setup. From structural and functional properties, a target vertex was derived (a). This target vertex
represents a particular portion of the visual field (b). We then tuned the experimental design to target that specific location in visual space (c).
pRF, population receptive field.
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saturation slabs, there are contaminating signals coming from outside

the region-of-interest (Raimondo, Knapen, et al., 2021; Raimondo,

Priovoulos, et al., 2023). Because the full registration cascade from

target vertex to the line through the low-resolution image, partial

FOV image, and single slice is known, we can project the nominal line

image back onto the surface (Figure 3a,b). This showed that for all

subjects, the line was indeed placed on the target site as per the over-

lap of the line (white) and target vertex (red spot) (Figure 3c).

One potential source of variation is the registration accuracy

between anatomical images from the first and second session. For

each subject, we performed the registration 100 times, applied the

resulting matrices to the target coordinate, and calculated the

F IGURE 3 Assessment of line-placement accuracy using anatomical measures. The registration cascade from target vertex (a) to line-scanning
acquisition (b; outer right panel) is known after registering the anatomical image from Session 1 (high-res) to the anatomical image from Session
2 (low-res). Within Session 2, we acquired a partial field-of-view image (partial FOV), as well as the anatomical slice without OVS pulses (slice). From

this slice, we created an image representing the nominal line (line). For each subject, we projected this nominal line image back to the surface from
which the target vertex originated, showing sufficient overlap between the target vertex (red dot) and nominal line image (white patches) (c). The
patches represent the location at which the nominal line image intersects with GM and looks scattered due to unfolding of the cortex. (d) Variation
in registration outcomes after registration anatomies from Sessions 1 and 2, a hundred times for each subject. (e) Effect of subject motion by means
of manual alignment of the single slice images on positional stability of the target coordinate. (f) Curvature distributions within the gray patch
intersecting with the target location of (c). The curvature is measured as 1/r, where r is the radius of an inscribed circle. Since mean curvature is the
average of the two principal curvatures, it has the units of 1/mm (https://surfer.nmr.mgh.harvard.edu/fswiki/MeanCurvature).
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Euclidean distance to the original coordinate targeted in the second

session. Thus, for each subject, we obtained a distribution represent-

ing registration variation. This procedure showed that registration was

highly stable (<0.4 mm) for all subjects (Figure 3d). An additional

source of variation is subject motion. Because of the limited field-

of-view single slices offer, it is challenging to estimate this accurately.

Nevertheless, we manually aligned slices of each run to the first slice

right after the first anatomical scan. This procedure assumes motion is

limited after initial registration of the first and second session and the

acquisition of this slice. We applied each run-to-run transformation

matrix to the targeted coordinate with antsApplyTransformsToPoints

to obtain the coordinate in each run-specific slice. We then evaluated

the Euclidean distance between these coordinates and the initial tar-

get coordinate. This showed that motion induced an average displace-

ment of the target coordinate of �0.6 mm across runs (Figure 3e).

In the current line-planning implementation, the target coordinate

was selected by minimizing the curvature in a patch of cortex that sur-

vived the initial pRF-criteria. For each subject, we estimated the distri-

bution of curvature values present in the line (Figure 3f). This showed

that on average, the curvature was predominantly flat (0.04 ± 0.003

1/mm). For some subjects, the initial criteria (e.g., variance explained

and/or visual field position) moved the area within which to optimize

for curvature towards areas with more curvature. This necessarily

results in a loss of spatial specificity within the line; signals coming

from non-GM were mixed into the line. From manual segmentations,

we estimated that the voxels covering the cortical ribbon around the

target region consisted of 88.34 ± 1.07% GM, 8.22 ± 2.77% WM, and

3.44 ± 3.18% CSF (Figure S5). These estimations are likely conserva-

tive given the imperfect OVS bands.

3.2 | Functional measures confirm accurate line-
planning

We next assessed line localization based on functional properties.

First, we predicted the signal of the target vertex (Figure 4a, orange

curve) in response to the stimulus design during the line-scanning

experiment. To deal with potential differences in BOLD amplitudes

across sessions and sequences, we performed an additional GLM

between the prediction from the target vertex' pRF and line-scanning

data. This resulted in a strong overlap between this prediction and the

estimated prediction from fitting the line-scanning data (Figure 4a,

green curve). Despite this marked overlap, we observed slight varia-

tions in pRF size and location (Figure 4b). To estimate the out-

of-experiment variance explained (r2), we compared the r2 from the

target vertex prediction and the estimates from the line-scanning fits,

and benchmarked this against the null-model that predicts a signal

time course assuming a response that is not spatially selective, that is,

a block design reflecting activation whenever the stimulus is on the

screen, regardless of position (Figure 4c). The variance explained from

the null-model (block) was significantly lower than the target predic-

tion (t10 = �6.19, p < .001, Cohen's D = �3.57) and line prediction

(t10 = �10.67, p < .001, Cohen's D = �6.16), whereas the difference

between target and line prediction was significant but only for a one-

sided effect (t10 = 2.30, p < .044, Cohen's D = 1.33). Overall, pRF

estimates between target vertex and line-scanning estimates were

very similar (Figure 4a).

pRF estimates of location obtained with line-scanning were simi-

lar to the estimates of the target (Figure 5a,b) for both position and

pRF size. Variance explained for line-scanning averaged over runs was

comparable to that of single run whole-brain acquisitions (Figure 5c).

To assess the similarity between target pRF and line-scanning pRF,

we obtained the distance between the centers of the target pRF (tar-

get) and all vertices in V1 and picked out the vertex that was closest

to the line-scanning pRF (match). Reflecting V1's retinotopic organiza-

tion, we observed that the further away from the target we move

along the cortex, the more divergent the pRFs become (Figure 5d).

We then calculated the distance between this matching and target

vertex on the surface (Figure 5e,f; Figure S4). Given that the line is

defined by the gap between saturation slabs (�4 mm) and the thick-

ness of the slice (2.5 mm), the distance of the matching pRF to the tar-

get pRF should ideally be limited to the surface area of this

(a) (b) (c)

F IGURE 4 Predicted responses (a). In orange, the predicted time course obtained by passing the design matrix of the pRF paradigm during
the line-scanning experiment through the estimates of the target vertex. In green, the prediction given by the model estimates after fitting the
actual line-scanning data. (b) The corresponding predicted pRFs in visual space for the target vertex estimates (orange) and fitted estimates
(green). (c) Cross-validated variance explained (cvR2) across subjects for a design that is spatially invariant (block), the line-scanning design given
the target vertex estimates (target), and line-scanning estimates (line). *p < .05, ***p < .001. pRF, population receptive field.
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rectangular surface patch. For most subjects, we found that the pRFs

indeed fell within these dimensions (1.97–8.18 mm, Figure 5e).

For one of these subjects, we show a more detailed profile of

depth-dependent measures by modeling all voxels covering the ribbon

independently (Figure 6a). For this subject, the time courses of superfi-

cial and deep layers exhibited the classical pattern (Figure 6b), where

the magnitude of the superficial time courses was almost double the

magnitude of the deeper time course. The position estimates were

stable across cortical depth (Figure 6c), with a slight non-systematic

scatter around the average—similar to early electrophysiological

(Hubel & Wiesel, 1974) and fMRI (Fracasso et al., 2018) results. The

response magnitude (Figure 6d,e) and variance explained (Figure 6f)

scaled with cortical depth, an effect often reported in fMRI literature

due to ascending draining veins (de Hollander et al., 2021; Fracasso

et al., 2018; Koopmans et al., 2011; Lawrence et al., 2019; Polimeni

et al., 2010; Self et al., 2019; Siero et al., 2011; van der Zwaag

et al., 2018; van Dijk et al., 2020).

4 | DISCUSSION

Here, we present a framework for the neuroscientific implementation

of high spatiotemporal resolution line-scanning fMRI. This was done

by targeting a specific patch of cortex and tailoring the visual experi-

ment to the properties of this patch. In this work, we applied the

method in the context of pRFs; based on whole-brain pRF mapping, a

target vertex was selected. The pRF-mapping experiment for the line-

scanning was focused on its representation in visual space. The line

was placed on the associated coordinate and along the normal vector,

that is, perpendicular to the cortex, which limits mixing of signals com-

ing from different cortical depths. The accuracy of this framework

was quantified based on (1) anatomical and (2) functional measures.

To anatomically confirm the location, we projected the image

representing the nominal line back to the surface from which the tar-

get vertex originated. This showed good overlap between the line and

the target vertex, suggesting we indeed hit the intended coordinate.

Such an approach is subject to multiple sources of variation, such as

registration accuracy and subject motion. We found the registration

between Sessions 1 and 2 to be accurate within <0.4 mm, which could

be attributed to the selection of transformation and regularization

models within ANTs (Avants et al., 2008, 2011). Another source of

anatomical variability is subject motion; because of the limited field-

of-view of line-scanning, it is particularly prone to this type of variabil-

ity as spatial references are severely reduced (Balasubramanian

et al., 2021; Raimondo, Knapen, et al., 2021; Raimondo, Priovoulos,

et al., 2023). To limit problems regarding motion, the subject pool

mostly consisted of subjects who had extensive experience with MRI

(Balasubramanian et al., 2021). The usual foam padding to fixate the

head was used as well. Regardless, we assessed motion throughout

the session by using manual alignments of the single slices with

phase-encoding direction and without OVS bands, showing the target

coordinate shifted about 0.6 mm throughout the session.

F IGURE 5 Overview of functional confirmation metrics. (a) For all subjects, the target vertex averaged across runs (black) and individual runs
(gray) from the first session, and the estimated pRF of the second (line-scanning) averaged across runs, within-run iterations, and gray matter
voxels around target location. (b) Shows a normalized version of (a), in which line-scanning pRFs shifted relative to the target vertex' pRF, and
their sizes are divided by the target vertex' pRF size (standard devation [sd]). (c) Variance explained for the target vertex averaged across runs

(wb avg), individual runs (wb runs), and line-scanning data (line avg). (d) For each vertex in V1, we assessed the distance from the vertices' pRF to
the line-scanning pRF in visual space. pRFs closer to the line are represented by lighter colors, while pRFs farther away show up in darker colors.
We then assessed where in V1 the pRF from the whole-brain data (blue) matched best with the target vertex (red) in terms of Euclidean (e) and
geodesic (f) distance. pRF, population receptive field.
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The functional accuracy was assessed by estimating the distance

between the target vertex and the vertex whose whole-brain pRF

estimates matched the obtained line-scanning estimates best. In a

sense, this quantified the extent to which line-scanning can produce

similar estimates compared to whole-brain data. On average, the best-

matching vertex was 5.5 mm away from the target coordinate. Given

the dimensions of the line thickness (i.e., not its cortical depth resolu-

tion) and (imperfect) gap between saturation slabs, this result was well

within the expected bounds.

Though we scanned at a spatiotemporal resolution of 100 ms and

250 μm, the effective resolution will be lower due to several factors

impacting spatial and temporal resolution (Chen et al., 2019). First, the

amount of curvature in the line affects the effective spatial resolution

(Leprince et al., 2015; Shamir et al., 2019; Trampel et al., 2019). Our

approach optimizes for minimal curvature after including structural

and functional properties. The corollary of such an approach is that

curvature is not always exactly flat, causing signal coming from the

WM and CSF being mixed into the deeper and superficial layers,

respectively. In our dataset, CSF and WM contributions were 11%.

This comes, however, with the advantage that the method can be

applied to any subject, including patients. As previously described,

subject motion also poses challenges to line-scanning in both the spa-

tial and temporal domain (Godenschweger et al., 2016; Zaitsev

et al., 2015). In previous work, we have shown the effect of prospec-

tive motion correction (PMC) using different flavors of navigators

(Raimondo, Priovoulos, et al., 2023), highlighting the use of PMC in

MRI-naïve subjects using block paradigms. In such paradigms, the T1-

decay induced by the navigators can be clearly observed and sepa-

rated from task-signals. The full potential of line-scanning lies in its

ability to sample extremely fast. Therefore, event-related designs are

desired to evaluate response shapes to different stimuli (Dale, 1999;

Mumford et al., 2015). In such scenarios, it will be challenging to sepa-

rate task-related signals from navigator-induced signals. Another pos-

sibility for PMC involves the use of external hardware

(Godenschweger et al., 2016; Maclaren et al., 2012; Schulz

et al., 2012; Stucht et al., 2015). Finally, because of the high sampling

rate (�0.1 Hz), cardiac and respiratory frequencies are resolved (Chen

et al., 2019). This allows us to accurately characterize physiological

noise due to cardiac and breathing fluctuations and target these fre-

quencies for removal using aCompCor (Behzadi et al., 2007). In our

experience, this method is more effective (and stable) for line-

scanning data than using regressors from pulse-oximeter/respiration

belt recordings.

Several factors can contribute to differences in pRF estimates

(Dumoulin & Knapen, 2018; Dumoulin & Wandell, 2008). First, we

changed the aperture size from full-field (in Session 1) to localized

(a)

(c)

(d) (e) (f)

(b)

F IGURE 6 Single-subject depth-dependent outcomes. (a) Axial slice from T1-image with the imaged line in white shading. Independent voxels
covering the cortical ribbon are annotated in green and assigned a color ranging from red (superficial) to blue (deep). (b) Raw time courses (thin
lines) and model predictions (thick lines) for a superficial (red) and deep (blue) voxel. (c) Position estimates in the bottom right quadrant of the
visual field from voxels covering the cortical ribbon in color that scales from red (0% depth—superficial) to blue (100% depth—deep). Note that all
time courses were modeled independently. (d) Response profile of the first bar pass across depth (same color coding as c); inset shows the
magnitude. (e) Magnitude and (f) variance explained as a function of depth.
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around the pRF of the target. pRF estimates have been shown to shift

away from their preferred location when reducing the stimulus extent

(Kay et al., 2013; Prabhakaran et al., 2020). Second—and related to

the previous point—attentional modulation might occur by changing

the visual extent and aperture location; changing the aperture might

induce an involuntary shift of attention towards the border of the

stimulus (exogenous) that could result in pRF variations (Alvarez

et al., 2015; Klein et al., 2018; Prabhakaran et al., 2020; van Es

et al., 2019; Womelsdorf et al., 2006, 2008). Third, the pRFs were

estimated from different sequences and across different days. Though

pRF estimates are typically robust under identical conditions, inducing

scanner-related sources of variation may contribute (Alvarez

et al., 2015; Lage-Castellanos et al., 2020; Senden et al., 2014; van

Dijk et al., 2016). The spatial resolution of line-scanning in laminar

direction1 is much higher compared to the whole-brain acquisition,

which has two side effects affecting pRF estimates; (1) it alters the

neuronal population that is contributing to the response to a given

stimulus (Dumoulin & Knapen, 2018); and (2) at these resolutions, the

signal is more dominated by thermal noise (Bianciardi et al., 2009; Rai-

mondo, Priovoulos, et al., 2023; Triantafyllou et al., 2005). As pRF

estimation is a non-convex problem, the cost function presents

numerous local minima that compromise the convergence of optimi-

zation algorithms (Benson et al., 2018; Lage-Castellanos et al., 2020).

This problem is particularly relevant in noisy voxels, where one of the

local minima can be mistaken for the global minimum, and thus result

in compromised estimates of the pRF size in particular (Benson

et al., 2018; Lage-Castellanos et al., 2020). We tried to mitigate this

effect by temporally smoothing our data, which increase variance

explained measure and stabilizes model estimation, yet may inflate

pRF size estimates (Morgan & Schwarzkopf, 2020). In future applica-

tions of line-scanning, we will also exploit the temporal aspect. Given

all these factors, some spread in pRF estimates was expected and the

estimates are quite close.

In all, we have demonstrated the ability to target a specific loca-

tion in cortex allowing the functional properties of this location to be

probed. The implementation described in this work included two ses-

sions. The advantage of such an approach is that subjects (including

patients) can be selected, and lines planned, based on existing data-

sets and arbitrary functional properties probed in these experiments.

Theoretically, however, it is possible to conduct such experiments

within a single session. However, certain steps along the pipeline—

including surface reconstruction and pRF modeling—take a significant

amount of time. Several concessions could be made, typically at the

cost of accuracy. For instance, several software packages such as

BrainVoyager (Goebel et al., 2006), CAT12 (https://neuro-jena.github.

io/cat/), or FastSurfer (Henschel et al., 2020), are able to create sur-

faces quickly (15–60 mins). These packages might encode coordinates

differently, so the exercise becomes translating those coordinate

systems to the coordinate system of the scanner. Likewise,

approaches such as DeepRF (Thielen et al., 2019) or fast, real-time

pRF mapping (Bhat et al., 2021) can reconstruct pRFs based near real-

time. These approaches demand significant resources from the soft-

ware as well as skills from the experimenter. Currently, the most

robust implementation requires two sessions.

Though we used line-scanning in the context of pRFs, our

approach is general and can be extended to other modalities. For

instance, in the context of (cerebrovascular or neurodegenerative) dis-

ease; if a lesion map is available, the line could be placed such that it

targets exactly this lesion. Alternatively, if a given location within the

vasculature is compromised, a line could be placed right at the prob-

lematic area to probe microvascular flow patterns (Angleys

et al., 2015; Gutiérrez-Jiménez et al., 2018; Østergaard et al., 2013;

Rasmussen et al., 2015; Zwanenburg & van Osch, 2017). The line

could also be placed in different areas of the brain to aid in the

research into neurovascular coupling (Báez-Yáñez et al., 2020; Havli-

cek & Uluda�g, 2020). Returning to vision, one could apply this method

for figure-ground segregation (Poltoratski et al., 2019; Poltoratski &

Tong, 2020; Self et al., 2013) or Kanizsa illusion (Kanizsa, 1976; Kok

et al., 2016; Kok & de Lange, 2014) experiments to separate ascend-

ing/descending signals across depth by placing the stimulus of interest

directly on the location of the pRF in visual space. This drives fMRI

from conventional population-based experimentation to precision-

targeted experimentation, bridging the gap with electrophysiological

(rodent/non-human primate) research.

5 | CONCLUSION

This work provides a framework for the neuroscientific implementation

of line-scanning fMRI. For neuroscience applications, precise selection

and targeting of the cortical location is critical. We propose a method for

planning the line based on functional and anatomical properties. Though

we selected visual cortical locations, the same framework can select and

target other cortical locations. We also discuss how knowledge about

the cortical location can be used to design experiments optimal for that

cortical location. This strategy is inspired by animal neurophysiology

experiments, where extremely high spatiotemporal resolution measure-

ments are performed in a specific part of the cortex. Such an approach is

unique for fMRI research and could serve as a guide of what is possible

at the extreme end of the spatiotemporal spectrum.
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