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Abstract
Introduction
Misdiagnosis of pediatric and adolescent migraine is a significant problem. The first artificial intelligence
(AI)-based pediatric migraine diagnosis model was made utilizing a database of questionnaires obtained
from a previous epidemiological study, the Itoigawa Benizuwaigani Study.

Methods
The AI-based headache diagnosis model was created based on the internal validation based on a
retrospective investigation of 909 patients (636 training dataset for model development and 273 test dataset
for internal validation) aged six to 17 years diagnosed based on the International Classification of Headache
Disorders 3rd edition. The diagnostic performance of the AI model was evaluated.

Results
The dataset included 234/909 (25.7%) pediatric or adolescent patients with migraine. The mean age was 11.3
(standard deviation 3.17) years. The model’s accuracy, sensitivity (recall), specificity, precision, and F-values
for the test dataset were 94.5%, 88.7%, 96.5%, 90.0%, and 89.4%, respectively.

Conclusions
The AI model exhibited high diagnostic performance for pediatric and adolescent migraine. It holds great
potential as a powerful tool for diagnosing these conditions, especially when secondary headaches are ruled
out. Nonetheless, further data collection and external validation are necessary to enhance the model’s
performance and ensure its applicability in real-world settings.

Categories: Neurology, Pain Management, Health Policy
Keywords: telemedicine, smartphone application, pediatric migraine, machine learning, coronavirus disease 2019
(covid-19)

Introduction
Facts about headache treatment practice
Headache is one of the common neurological diseases. Migraine is a public health problem [1-10], and they
are described in the International Classification of Headache Disorders 3rd edition (ICHD-3). The prevalence
of migraine is not low at 0.9-9.5% [8,9,11-18]. The recognition of migraine’s economic and social impacts on
productivity is becoming more apparent [17,19]. Currently, there is widespread utilization of novel migraine
drugs like calcitonin gene-related peptide (CGRP)-related drugs, such as galcanezumab, fremanezumab,
erenumab, and serotonin 1F receptor agonists like lasmiditan. While awareness of migraine among patients
and healthcare providers is gradually improving and new drugs are being introduced, there is still an unmet
medical need for migraine care: 89.8% had never used preventative medicine for headaches, and 36.5%
expressed hesitancy in consulting doctors. Both individuals experiencing less frequent and more frequent
headache attacks reported significant disability and interictal burden, and impacts on productivity [20] and
quality of life [9,21]. Presumably, most headache and migraine sufferers manage their pain using over-the-
counter (OTC) medicines [22,23]. Moreover, when individuals with headaches seek medical consultation,
doctors often rely solely on neuroimaging to rule out organic or urgent conditions, resulting in inadequate
diagnosis and treatment for detailed primary headaches. Even in cases of diagnosing primary headaches,
clinicians often lack the necessary understanding of suitable treatments, leading to patient dissatisfaction
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[22,24]. Improper utilization of OTC medications and inadequate medical resources for headache
management can contribute to the development of chronic migraine and medication-overuse headache
(MOH) [25,26]. Namely, appropriate preventative drugs can be used [27-30], but migraine patients do not
consult doctors, resulting in the aggravation of migraine. This significant public health issue about migraine
could be averted by promoting headache awareness and the appropriate use of acute and preventative
medication. Especially in addition to educating the public, it is essential to be able to properly diagnose
migraine [10,21].

Migraine among children and adolescents
Indeed, migraine is a significant concern among children and adolescents as well. Numerous school-based
surveys with a narrow focus on specific age groups have been conducted to assess the prevalence of migraine
among children and adolescents [31-45]. According to recent school-based studies worldwide, the
prevalence of migraine among children and adolescents ranges from 1.7% to 11.0% [22]. In Japan, the
prevalence of migraine among elementary and junior high school students was 3.5%-11.3% [12,16,46,47].
Those among Japanese high school students were 15.6% [48]. They may miss school or have difficulty with
their studies [12]. Also, MOH can develop in children and adolescents [12,39-43,45,49,50]. Just like adults,
children and adolescents also require accurate diagnosis and appropriate treatment for migraine. This
includes the use of prophylactic medications and acute care medications as needed to manage their
migraine episodes effectively. Proper medical attention and care are crucial in ensuring the well-being of
children suffering from migraines [22]. The diagnosis of migraine should be the first step in order to initiate
treatment properly.

Diagnosing migraines in children poses challenges due to the intricacies of gathering their medical history.
Conducting a clinical interview incorporating relevant questions, eliciting comprehensive responses, and
encouraging children to maintain a headache diary can be demanding [51,52]. Furthermore, during the
developmental phase, it is plausible for migraines and tension-type headache (TTH) to co-occur in pediatric
patients. There is a potential for these headache types to alternate or transition from one to the other over
time during the follow-up period [53]. Alternative methods, such as drawing pictures, are being investigated
as potential diagnostic tools for headaches in children who may have difficulty verbally expressing their
symptoms [51,52]. Still, they are difficult for non-specialists in headache, such as general pediatricians,
school teachers, school nurses, and parents, to tackle diagnosing pediatric migraine.

Artificial intelligence and migraine diagnosis
Automated headache diagnosis systems employing artificial intelligence (AI) are becoming increasingly
prevalent. These systems offer the potential to address misdiagnosis by non-specialists, as they save time
during a medical interview while simultaneously enhancing diagnostic accuracy [10,24,54-60]. There is still a
shortage of headache specialists and inappropriate treatment of migraine headaches by physicians with no
knowledge of headaches. With headache diagnosis AI, even non-specialists can correctly diagnose migraine
in a short time with less burden. Patients would then be better able to enjoy the correct treatment. However,
there have been no pediatric and adolescent migraine diagnosis models using AI.

This study tested the hypothesis that migraine can be diagnosed by objective measures alone. By creating
this AI model, even a layperson can determine whether the child has migraine or not based on objective
findings alone, due to the challenges associated with expressing symptoms through language by pediatric
and adolescent patients. This way, more children who have not yet seen a doctor will see a medical
professional when they realize they have migraines, allowing for early detection and early treatment. With
this in mind, the primary objective was to create an AI-based pediatric migraine diagnosis model that relies
on items easily comprehensible to individuals around children. To this end, AI was developed and its
diagnostic accuracy, such as sensitivity and specificity, was verified.

Materials And Methods
Study design
The AI diagnosis model was developed through a retrospective analysis of 909 questionnaire sheets from
children with headaches. Among these, 636 sheets were utilized for training the model, and 273 were used as
a test dataset to evaluate its performance. The 907 of the 909 questionnaire sheets were collected as part of
a school-based online epidemiological study on children’s and adolescents’ headaches conducted in the year
2022 [12]. The questionnaire sheet consisted of the following 15 items: age, biological sex, family history of
headache, past history of, apart from headache, motion sickness, light-headedness, photophobia,
phonophobia, dizziness, disease duration of headache, how many days per month headache occurs in these
three months or no headaches, characteristics as 1) unilateral location, 2) pulsating quality, 3) moderate or
severe pain intensity, 4) aggravation by or causing avoidance of routine physical activity, 5) nausea and/or
vomiting, 6) abdominal pain, 7) photophobia, 8) phonophobia, and 9) osmophobia, the headache duration,
what acute medication you use, how many days per month you use the acute medication, use of prophylactic
medication for headache, and what prophylactic medication you use. We also asked about the disturbance to
daily life as an experience of absence from school, being patient during activity, early leaving, depression,
difficulty attending class, difficulty in after-school activities, and consulting doctors. We then asked whether
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the coronavirus disease 2019 (COVID-19) pandemic increased or decreased the headache frequency and its
reason as a free description. We finally asked migraine respondents about 25 potential triggers for headache:
fatigue, weather change, rainy day, hot day, lack of sleep, after getting up, staying home, cloudy day, stress,
windy day, menstruation, smartphones or video games, exercise, excess of sleep, holiday, after school,
snowy day, allergy and hay fever, sunny day, sports, wearing a mask, going to school, fighting or argument,
hunger, and after eating. This predetermined list of triggers included behavioral, dietary, environmental,
and hormonal factors [61]. The questionnaire sheets asked as nominal variables except for age. The
questionnaire sheets were made for the epidemiological survey named Itoigawa Benizuwaigani Study [12],
and made by two headache specialists and three neurologists. Amid the COVID-19 pandemic, schools in
Itoigawa city sometimes had to close. Since 2021, each student received a tablet for remote learning. The
Niigata Prefectural Board of Education initiated this interactive approach in 2019. From April to August
2022, an online survey was conducted five times with reminders, involving 14 elementary, four junior high,
and three high schools. Students and a parent jointly completed the questionnaire on their tablets or
devices. All public school students in Itoigawa city were included, provided they responded to all items.
Those declining participation were excluded. Blank submissions were not accepted to ensure data validity.

The migraine and non-migraine headache diagnosis was based on ICHD-3 criteria, without seeing the
patients by doctors. The rest of the two adolescent or pediatric patients’ questionnaire sheets of the 909
sheets were collected in the headache outpatient of the Japanese Red Cross Suwa Hospital from April to July,
2023. Although the headache outpatient is basically for adults, children and adolescents sometimes visit the
headache outpatient, and we examined the two patients during this period. Using the questionnaire and
medical examination, three skilled neurologists diagnosed whether the two patients had migraine based on
the ICHD-3, after sufficient discussion.

The AI diagnosis model was constructed using the questionnaire datasets of 636 patients, which underwent
preprocessing, hyperparameter tuning, and cross-validation. Subsequently, its performance was evaluated
using the test dataset of 273 patients. It’s important to note that the model’s development was solely based
on the 636 training dataset, and the 273 test dataset was not used during the model’s production to avoid
any bias in its evaluation (Figure 1).

FIGURE 1: Study design
An AI diagnosis model was developed based on a retrospective investigation of 909 headache patients diagnosed
based on the ICHD-3. The data of the 909 patients were randomly divided into 636 training and 273 test datasets.
The AI diagnosis model was developed using the training dataset with preprocessing, hyperparameter tuning, and
10-fold CV. Then its performance was tested using the test dataset.

AI, artificial intelligence; CV, cross-validation; ICHD-3, International Classification of Headache Disorders, 3rd
edition

Developing an AI diagnosis model
The 909 questionnaire sheets originally included these items; age, biological sex, family history of
headache, past history of, apart from headache, motion sickness, lightheadedness, photophobia, tinnitus or
phonophobia, dizziness, disease duration of headache, how many days per month headache occurs in these
three months or no headaches, characteristics as 1) unilateral location, 2) pulsating quality, 3) moderate or
severe pain intensity, 4) aggravation by or causing avoidance of routine physical activity, 5) nausea and/or
vomiting, 6) abdominal pain, 7) photophobia, 8) phonophobia, 9) osmophobia, and 10) vertigo, the headache
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duration, what acute medication you use, how many days per month you use the acute medication, use of
prophylactic medication for headache, and what prophylactic medication you use. The questionnaire sheets
also asked about disturbances to daily life as an experience of absence from school, being patient during
activity, early leaving (resting in the nurse’s office), depression, difficulty attending class, difficulty in after-
school activities, and consulting doctors.

Of these items in the questionnaire sheets, the AI-based model used 17 objective items and predicted
migraine or non-migraine headache diagnosis. These 17 items were determined to be objectively
understandable by parents, teachers, and others, even if the pediatric patient cannot express their
headache’s characteristics verbally; age, biological sex, family history of headache, past history of, apart
from headache, motion sickness, lightheadedness, photophobia, tinnitus or phonophobia, dizziness or
vertigo, headache characteristics as aggravation by or causing avoidance of routine physical activity, nausea
and/or vomiting, abdominal pain (stomachache), photophobia, phonophobia, and osmophobia, the number
of days missed from school, the experience of missing school and resting in the nurse’s office.

PyCaret (https://pycaret.readthedocs.io/en/latest/index.html) was used to create the AI-based diagnosis
model because it easily performs preprocessing, comparison of algorithms, and hyperparameter tuning. The
general process was the same as in previous reports [10,60]. After putting 909 patients’ dataset into the
PyCaret on Python notebook, PyCaret randomly divided 909 patients into training data of 636 patients and
test data of 273 patients (7:3 ratio) by “get_data” and “setup” commands. The model production is only
based on the 636 training dataset, and the performance was tested using the 273 dataset. For preprocessing,
z-normalization for numerical variables was performed. Using the 636 training dataset, PyCaret made
several predictive models with 10-fold internal cross-validation. The algorithm with the largest c-statistics
(area under the curve of the receiver operating characteristic curve; AUC of ROC) was chosen after model
comparison by the “compare_models” command among 14 AI models, including boosting method. The c-
statistics were the averages of the 10-fold cross-validation. Hyperparameter tuning was then performed to
maximize AUC by “create_model,” “tune_model,” and “finalize_model” commands after choosing one of the
best models described above. Randomized search cross-validation was applied during hyperparameter tuning
with 10 iterations. Finally, the 273 test dataset, which was still untouched, was predicted using the final
tuned model. The accuracy, sensitivity (recall), specificity, precision, F-value, and c-statistics were used to
evaluate the model’s performance. SHapley Additive exPlanations (SHAP) values [62] were used to
understand why the AI outputs the patients’ diagnosis (https://shap.readthedocs.io/en/latest/#).

No external validation was performed at this time. However, for future external validation, a calibration
curve was created for the model and performed calibration [63] by refitting based on logistic regression. The
calibration was performed with “sklearn.calibration.CalibratedClassifierCV” commands for PyCaret.

The accuracy, sensitivity (recall), specificity, precision, F-values, and c-statistics were used to evaluate the
model’s performance. The F-value is a harmonic mean of recall and precision. The F-value is used as an
overall indicator of the trade-off relationship between recall and precision. Kappa index [64] and Matthews
correlation coefficient [65] were also calculated.

Statistical analysis
Variables with normal distribution are expressed as mean (standard deviation), while those with a non-
normal distribution are expressed as median (interquartile range). Mann-Whitney U test and Fisher exact
test were used for statistical comparison. The evaluation indices of the AI model were assessed using the
migraine diagnoses based on the ICHD-3 criteria as the reference standard (ground truth). SPSS 28.0.0 (IBM
Corp., Armonk, NY, USA), scikit-learn 1.2.2, SHAP 0.42.1, Python 3.9.0, PyCaret 3.0.0, and Matplotlib 3.5.1
were used.

Ethical aspects
Itoigawa General Hospital Ethics Committee approved this study (approval number 2021-22). There were no
names or other personally identifying information in the 907 questionnaire sheets obtained from the online
anonymous survey. For the two Suwa Red Cross Hospital patients, informed consent for this study was
obtained in writing. In this study, personal information was not identified, and anonymized information was
used. All procedures were carried out following the Helsinki Declaration. This study design followed the
Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
statement [66] and the guideline on developing and reporting machine learning predictive models in
biomedical research [67].

Results
Patient characteristics
Table 1 summarizes the diagnoses for the 636 patients in the training dataset and the 273 patients in the test
dataset.
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 Training data Test data

Number of cases 636 273

Mean age (standard deviation) 11.26 (3.17) 11.35 (3.16)

Biological sex (%Female) 39.9% 40.0%

Class 1; Migraine 167 (26.3%) 71 (26.0%)

Class 2; Non-migraine headache 469 (73.7%) 202 (74.0%)

TABLE 1: Patient characteristics

Approximately 26% of the pediatric patients were diagnosed with migraine, while the remaining patients
had non-migraine headaches, as per the criteria of the ICHD-3. The mean age of the patients was around 11
years, and approximately 40% of them were female. No statistically significant differences were observed in
the baseline characteristics between the training and test datasets.

Developing an AI diagnosis model and its performance
Using the 636-training dataset, PyCaret revealed that the Extremely Randomized Trees [68] had the largest
c-statistics of 0.9944 among the several algorithms (Table 2). Hyperparameter tuning was performed to
optimize AUC; the learning results and hyperparameter tuning results are shown in Tables 3, 4.

 Model Accuracy
c-statistics
(AUC)

Recall Precision
F1
value

Kappa
Matthews Correlation
Coefficient

Training
time

et Extra Trees Classifier 0.967 0.9944 0.9518 0.9307 0.939 0.9164 0.9185 0.546

rf Random Forest Classifier 0.9638 0.9922 0.946 0.9229 0.9329 0.9082 0.9096 0.532

xgboost Extreme Gradient Boosting 0.9575 0.9898 0.9224 0.9205 0.9193 0.8906 0.8925 0.212

lightgbm
Light Gradient Boosting
Machine

0.956 0.9911 0.9342 0.9074 0.9191 0.8889 0.8904 0.149

dt Decision Tree Classifier 0.9387 0.9213 0.8853 0.8847 0.8826 0.8412 0.8433 0.207

gbc
Gradient Boosting
Classifier

0.9387 0.9849 0.9099 0.8693 0.8868 0.8449 0.8474 0.294

lr Logistic Regression 0.8789 0.9383 0.7243 0.8044 0.7583 0.678 0.6825 0.601

ridge Ridge Classifier 0.8774 0 0.7243 0.8008 0.756 0.6747 0.6796 0.141

lda
Linear Discriminant
Analysis

0.8773 0.9422 0.736 0.7938 0.7598 0.6778 0.6817 0.177

svm SVM - Linear Kernel 0.8663 0 0.6761 0.8009 0.7251 0.6382 0.6483 0.104

ada Ada Boost Classifier 0.8663 0.9329 0.6651 0.8051 0.7247 0.6375 0.6452 0.274

knn K Neighbors Classifier 0.8649 0.9379 0.5772 0.8675 0.6877 0.6073 0.6307 0.259

dummy Dummy Classifier 0.7375 0.5 0 0 0 0 0 0.114

qda
Quadratic Discriminant
Analysis

0.5694 0.5852 0.5143 0.3733 0.3391 0.0825 0.1196 0.115

nb Naive Bayes 0.5233 0.9067 0.9941 0.3593 0.5268 0.227 0.3231 0.192

TABLE 2: Model comparison
AUC, area under the curve
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Fold Accuracy AUC Recall Prec. F1 Kappa MCC

0 0.9062 0.9837 0.8235 0.8235 0.8235 0.7597 0.7597

1 0.9375 0.9787 0.8235 0.9333 0.875 0.8336 0.8365

2 0.8906 0.97 0.7059 0.8571 0.7742 0.7029 0.7087

3 0.9062 0.9675 0.7647 0.8667 0.8125 0.7503 0.7529

4 0.875 0.9299 0.8235 0.7368 0.7778 0.6912 0.6933

5 0.8438 0.9574 0.5882 0.7692 0.6667 0.567 0.5757

6 0.8413 0.9066 0.7647 0.6842 0.7222 0.6116 0.6134

7 0.9048 0.9707 0.75 0.8571 0.8 0.7379 0.7407

8 0.8413 0.9668 0.5 0.8 0.6154 0.522 0.5449

9 0.8571 0.9774 0.5 0.8889 0.64 0.5594 0.5955

Mean 0.8804 0.9609 0.7044 0.8217 0.7507 0.6736 0.6821

Std 0.032 0.023 0.1221 0.0713 0.0817 0.0977 0.0903

TABLE 3: Learning results
AUC, area under the curve; MCC, Matthews correlation coefficient

bootstrap FALSE

ccp_alpha 0

class_weight None

criterion gini

max_depth None

max_features sqrt

max_leaf_nodes None

max_samples None

min_impurity_decrease 0

min_samples_leaf 1

min_samples_split 2

min_weight_fraction_leaf 0

n_estimators 100

n_jobs -1

oob_score FALSE

random_state 0

verbose 0

warm_start FALSE

TABLE 4: Hyperparameters of the model
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The confusion matrix (Table 5) and error plot (Figure 2A) indicate the performance of the AI model for the
273-test dataset.

  Prediction by AI Performance index

  
Class 1;
Migraine

Class 2; Non-migraine
headache

Total
Sensitivity
(Recall)

Precision Specificity
F-
value

Ground truth based
on ICHD-3

Class 1; Migraine 63 8 71 88.7% 90.0% 96.5% 89.4%

 
Class 2; Non-migraine
headache

7 195 202 96.5% 96.1% 88.7% 96.3%

 Total 70 203 273     

TABLE 5: Confusion matrix for the test dataset
Accuracy 94.5%, Kappa index was 0.857 (95%CI 0.770-0.912), Matthews Correlation Coefficient 0.857.

AI, artificial intelligence; ICHD-3, International Classification of Headache Disorders, 3rd edition

 

FIGURE 2: AI model’s performance
The performance of the AI model for the test data is illustrated in A. The ROC curve for each class and its AUC are
shown in B. The learning curve and calibration curve are shown in C and D, respectively.

AI, artificial intelligence; AUC, area under the curve; ROC, receiver operating characteristic

According to Table 2, the accuracy, sensitivity (recall), specificity, precision, and F-value for migraine were,
respectively, 94.5%, 88.7%, 96.5%, 90.0%, and 89.4%. Figure 2B displays the ROC for migraine diagnosis
along with its AUC, which was 0.99. The closer the AUC is to one day, the higher the discrimination
performance, so a value of 0.99 is very high. Figures 2C and 2D, respectively, demonstrate the learning and
calibration curves. In the learning curve, the cross-validation score became higher as the test data increased
to 500 cases. On the other hand, it could have plateaued with further increase in sample size. Therefore, it is
possible that a sample size of about 500 cases was sufficient for this modeling (Figure 2C). Even after
calibration, the calibration curves were not well matched on the diagonal. This meant that the numbers
output by the AI did not necessarily match the diagnostic probabilities. Caution should be exercised in
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interpreting the output numbers themselves (Figure 2D).

Figure 3A displays the SHAP values. Phonophobia, nausea, photophobia during headache, the experience of
missing school, headache aggravation by physical activity, osmophobia, dizziness during headache, female
sex, age, the experience of resting in nurse’s office, number of days missed from school, stomachache during
headache, history of tinnitus, motion sickness, family history of headache, history of lightheadedness, and
dizziness/vertigo were important in that order. Figures 3B-3D show the reason plot for each sample based on
the SHAP values. In some cases, the SHAP value was large, and the diagnostic reason could be identified,
while in others, the SHAP value was small, and the diagnostic reason was difficult to identify (Figure 3C).
There were some cases that were similar to each other (Figure 3D).

FIGURE 3: SHAP values
The SHAP values are listed in order as A. The reason plot is shown in B (sample number order), C (SHAP value
order), and D (order by similarity).

SHAP, SHapley Additive exPlanations

Fifteen patients were misdiagnosed. The reasons for the AI’s errors included questionnaires in which
migraine was diagnosed based only on variables not used in this training, such as unilateral or pulsating,
and questionnaires that had migraine characteristics but were secondary to headaches due to the common
cold or trauma.

Discussion
The AI-based headache diagnosis model was developed using the questionnaire dataset of 909 patients (636
training and 273 test datasets). The overall diagnostic performance using the test dataset was evaluated, and
the diagnostic performance for migraine was high. This is the first study to report and discuss the
effectiveness of an AI-based pediatric and adolescent migraine diagnostic model.

The burden of pediatric migraine
Pediatric and adolescent migraine is not simply related to disruption of schoolwork or absence from school
due to migraine [69]. Pediatric and adolescent migraine and school refusal are closely related issues that can
significantly influence social and intellectual development. Regular school attendance can be compromised
when migraines become chronic or frequent, leading to difficulties in participating in educational activities.

It is estimated that about 2% of elementary, junior high, and high school students in Japan refuse to go to
school [70,71]. School refusal, also known as school avoidance or school phobia, refers to a child’s consistent
reluctance to attend school or the display of severe distress when faced with the idea of going to school.
Unlike being driven by laziness or lack of motivation, this behavior is rooted in the genuine physical and
psychological pain caused by migraines. Consequently, school refusal can profoundly impact a child’s
academic performance and overall well-being, warranting careful attention and intervention to address both
the migraines and the resulting school-related challenges [72]. Pediatric migraines may lead to school
refusal, which, in turn, can negatively affect a child’s learning and social development. Frequent absences
from school can result in academic challenges, increased workload backlogs, and reduced opportunities for
social interactions with peers. Additionally, being unable to participate in daily school activities due to
migraine attacks may make the child feel isolated and result in lower self-esteem. The child may also
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perceive themselves as different from their friends, further exacerbating feelings of loneliness. Addressing
pediatric migraines and their impact on school attendance is crucial to supporting a child’s overall well-
being and academic progress. Early diagnosis and appropriate management of migraines, coupled with
providing understanding and support in the school environment, can significantly reduce the likelihood of
school refusal and mitigate its negative consequences on the child’s life [70,71].

Migraine is not necessarily the only condition associated with school refusal [73]. However, it is necessary to
pick up migraine children as much as possible and connect them appropriately to medical facilities,
including headache specialists, in order to guide the patients to appropriate multidisciplinary collaborative
treatment [74]. In pursuit of this objective, the AI-based diagnostic tool, which relies solely on objective
items, promises to enable early detection and treatment of pediatric migraine cases. This could be a
significant step forward in identifying and providing timely care for children who may be experiencing
migraines.

Importance of early diagnosis of migraine
The notion that migraine is a progressive disease is being proposed [75,76]. It is estimated that episodic
migraine progresses to chronic migraine at a rate of 2.5% per year and may be underestimated due to the
arbitrary 15-day period according to the migraine criteria [77]. Key clinical features of migraine progression
include increases in the number and intensity of attacks, autonomic disturbance, and allodynia, leading to
chronic migraine over time [78]. Pathophysiologically, changes in hypothalamic activity, as one of the
hypothesized generators of migraine [79], and diminished brainstem inhibitory process [80] have been
estimated as the main progression mechanisms. The factors related to migraine progression are the high
frequency of migraine attacks, medication overuse, comorbid pain syndromes, and obesity [75]. About 30%
of chronic migraine is refractory to both preventive and acute treatment [22]. Although CGRP-related drugs
have been reported to be effective in chronic migraine [81-85], their response rate is not comparable to that
of episodic migraine.

Considering that migraine is a progressive disease and that migraine in childhood can continue into
adulthood [86], the AI may be useful for early diagnosis of migraine without misdiagnosis.

Pediatric migraine diagnosis
Characteristics of migraine may differ between adults and children/adolescents. In children, migraine
episodes usually extend beyond one hour and are associated with general neurovegetative symptoms,
phonophobia, and often temporary neurological issues known as aura. Children commonly experience
bilateral discomfort that is allodynic and accompanied by cranial autonomic signs, such as lacrimal
discharge and rhinorrhea [87].

Early diagnosis and early intervention of migraine in childhood are important, given that migraine can be a
progressive condition [77,79,88] and can interfere with schoolwork and school life [12]. The primary method
for diagnosing primary headaches is the ICHD-3 criteria. However, when applied to the pediatric population,
these criteria have shown certain limitations. Consequently, the ICHD-3 acknowledges specific
characteristics of migraine in children, such as the relatively short duration of pain and whether it occurs
unilaterally or bilaterally. Despite these considerations, there is only a moderate level of agreement between
self-reported migraine attacks and those derived from the ICHD-3 criteria in adolescents and young children.
This suggests that neither approach is flawless and may encompass overlapping features of the migraine
condition [89].

Diagnosing migraine in pediatric patients can be challenging as they might have difficulty fully expressing
their headache experiences verbally. Even with the ICHD-3 criteria, identifying migraine in children remains
problematic, leading to potential underdiagnosis. The model was based on the questionnaire sheets
diagnosed by ICHD-3 criteria. However, it demonstrates the ability to diagnose migraine using solely
objective information accurately. By disseminating this model to non-specialists, such as families, schools,
health departments, and general hospitals, appropriate referral of patients to headache specialists without
overlooking any cases will be ensured. This could significantly improve the detection and management of
pediatric migraines, ultimately benefiting young patients and their overall well-being.

Previous reports on AI-based diagnostic models
There is still no AI to diagnose migraine in children and adolescents. However, numerous models for
diagnosing adult headaches using AI have been reported [59]. These diagnostic models should be assessed in
the training and test datasets to prevent overfitting [67]. However, only seven models [10,54-58,60] have
met this requirement, and they are summarized in Table 6.
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Author Year Output by the model Methods Variables

Training

sample

number

Test

sample

number

Validation

sample

number

%Migraine Accuracy
Sensitivity

(recall)
Specificity Precision F-value

Yin�[55] 2015 2 class; Migraine or TTH

Case-based

reasoning + Genetic

algorithm

81 676 222
Not

performed
76.10% 93.00% 97.02% 79.20% 93.14% 95.04%

Walters

�[54]
2016

2 class; Migraine or Other headache

disorders
Logistic regression 4 887 942

Not

performed
9.40% 92% 94% 92% 64% 93%

Vandewiele

�[56]
2018 3 class; Migraine, TTH, TACs Decision tree

Not

described
849 - 32

Not

described
98% 98% 98%

Not

described

Not

described

Kwon�[57] 2020

5 class; Migraine, TTH, TACs,

Thunderclap headache, Epicranial

headache

eXtreme Gradient

Boosting,
75 1286 876

Not

performed
68.49% 58.60%† 58.70%† 85.64%† 65.28%† 58.64%†

Cowan

�[58]
2022

2 class; Migraine or Other headache

disorders
Decision tree 135 - - 212 62% 92% 89% 97% 98% 93%

Katsuki�

�[10]
2022

5 class; Migraine or MOH, TTH, TACs,

Other primary headaches, Secondary

headaches

Light gradient

boosting machine
17 2800 1200 50 60.00% 90.00% 68.57% 95.00% 96.43% 88.08%

Katsuki�

�[60]�
2023

5 class; Migraine or MOH, TTH, TACs,

Other primary headaches, Secondary

headaches

Gradient boosting

classifier
22 4240 1818

Not

performed.
79.7% 93.7%† 40.6%† 48.5%† 88.7%† 43.5%†

This study 2023
2 class; Migraine or Other headache

disorders

Extremely

randomized trees
14 636 273

Not

performed.
26.3% 94.5% 88.7% 96.5% 90.0% 89.4%

TABLE 6: Previous reports on AI diagnosis for headache disorders
Abbreviations: AI, artificial intelligence; LGBM, light gradient boosting machine; TACs, trigeminal autonomic cephalalgias; TTH, tension-type headache;
MOH, medication-overuse headache. †, calculated in macro-average.

The model in this study exhibits similar performance levels as those reported in previous studies and
demonstrates high accuracy in diagnosing migraine. However, given the variability of migraine prevalence
among different cohorts, further investigation into AI diagnosis is necessary. Integrating radiomics data,
along with descriptive information from medical questionnaires and examinations, holds the potential for
enhancing diagnostic accuracy and uncovering novel medical insights [90]. While the model currently relies
solely on questionnaire sheets, the inclusion of additional data from radiomics, clinical symptoms, and
laboratory tests could be explored in future iterations to further improve its capabilities.

Smartphone applications and AI diagnosis
In recent times, the prevalence of smartphone applications for tracking headaches, so-called headache
diaries, has significantly increased. These apps offer valuable contributions to headache diagnosis and
prediction [91,92]. Headache diaries through smartphone applications are utilized as recording tools in
pediatric headache research [93]. On the other hand, using smartphones is considered one of the most
common triggers of migraine attacks in children [12]. Other possible negative effects on health using
smartphones are also reported as text neck syndrome [94] and digital eye strain [95]. However, if these
digital devices installed the AI diagnosis model, users could self-diagnose their migraine or parents and
teachers could notice their children’s migraine, promoting access to appropriate information [19] and
treatment options [58]. Additionally, as online medical care becomes more prevalent [96], by integrating a
headache diary and diagnostic AI into a smartphone app, it becomes feasible to efficiently manage, assess,
and treat headaches in a centralized manner. This innovative approach using a smartphone offers the
potential for streamlined headache care, providing users with a comprehensive tool for monitoring, analysis,
and personalized treatment right at their fingertips. In addition, smartphone applications can collect
substantial real-world data that can be valuable for future research studies. By merging these applications
with the AI model, the development of more accurate diagnostic models for the future becomes possible. It is
crucial, however, to consider and address any potential detrimental impacts on children resulting from the
use of smartphones in this context.

Limitations
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This study has certain limitations that need to be addressed. The primary concern is the lack of
generalizability. The dataset used for this study consists mainly of questionnaire sheets collected online in a
rural Japanese city. It remains uncertain whether general clinics (such as general practitioners, family
doctors, or general pediatrics) conducting initial headache examinations and clinical practice can achieve
similar diagnostic performance when utilizing this AI in different settings, such as schools, homes, and
school infirmaries where the presence of children’s headaches is first noticed. To establish the
generalizability of the AI model, further confirmation of its diagnostic performance is required in a separate
cohort study conducted in diverse contexts, including actual clinical settings in homes, schools, and general
clinics. Additionally, it is essential to validate the model’s performance in other countries with varying
headache prevalence rates, headache medical resources, and clinical environments.

Secondly, due to the development of this model mainly from questionnaire sheets without in-person
consultation, information was lacking on specific drug use, comorbidities, or dietary habits, which can be
potential headache-inducing factors. Moreover, data on neurological symptoms, vital signs, and other
medical history were not collected. Therefore, using only the questionnaire sheets for migraine or non-
migraine headache diagnoses does not allow us to ascertain their complete compatibility with clinical
diagnosis by doctors. Additionally, the validity of ICHD-3 as a diagnostic tool for pediatric migraines has
been a subject of discussion [97]. In clinical settings, a face-to-face consultation is obviously necessary to
diagnose pediatric migraine.

Lastly, to reduce the risk of misdiagnosing potentially life-threatening conditions, a diagnostic tool must
exhibit good specificity for secondary headaches. An ideal approach would involve developing an AI-based
diagnostic tool that takes into account the patient’s medical history, neurological findings, and the results
of radiological and laboratory tests to effectively rule out secondary headaches.

Conclusions
This study involved the development of an AI-based diagnosis model specifically designed for pediatric and
adolescent migraine using data from 909 patients. The model exhibited high diagnostic performance for
identifying migraine cases accurately. The accuracy, sensitivity (recall), specificity, precision, and F-value
for migraine were, respectively, 94.5%, 88.7%, 96.5%, 90.0%, and 89.4%. The ROC for migraine diagnosis,
along with its AUC, was 0.99. This AI-based diagnostic tool shows promise in addressing the challenges of
underdiagnosis and undertreatment of pediatric and adolescent migraine cases by non-headache specialists.
However, it is essential to acknowledge certain limitations of the model, primarily due to its reliance on data
obtained from questionnaire sheets. Consequently, there remains a possibility of misdiagnosis. To ensure
the model’s reliability in clinical settings, further data collection and validation efforts are necessary. These
steps will help enhance the model’s accuracy and usability, ultimately improving the care and management
of pediatric and adolescent migraine patients.
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