Skip to main content
. 2023 Aug 30;15(8):e44415. doi: 10.7759/cureus.44415

Table 2. Model comparison.

AUC, area under the curve

  Model Accuracy c-statistics (AUC) Recall Precision F1 value Kappa Matthews Correlation Coefficient Training time
et Extra Trees Classifier 0.967 0.9944 0.9518 0.9307 0.939 0.9164 0.9185 0.546
rf Random Forest Classifier 0.9638 0.9922 0.946 0.9229 0.9329 0.9082 0.9096 0.532
xgboost Extreme Gradient Boosting 0.9575 0.9898 0.9224 0.9205 0.9193 0.8906 0.8925 0.212
lightgbm Light Gradient Boosting Machine 0.956 0.9911 0.9342 0.9074 0.9191 0.8889 0.8904 0.149
dt Decision Tree Classifier 0.9387 0.9213 0.8853 0.8847 0.8826 0.8412 0.8433 0.207
gbc Gradient Boosting Classifier 0.9387 0.9849 0.9099 0.8693 0.8868 0.8449 0.8474 0.294
lr Logistic Regression 0.8789 0.9383 0.7243 0.8044 0.7583 0.678 0.6825 0.601
ridge Ridge Classifier 0.8774 0 0.7243 0.8008 0.756 0.6747 0.6796 0.141
lda Linear Discriminant Analysis 0.8773 0.9422 0.736 0.7938 0.7598 0.6778 0.6817 0.177
svm SVM - Linear Kernel 0.8663 0 0.6761 0.8009 0.7251 0.6382 0.6483 0.104
ada Ada Boost Classifier 0.8663 0.9329 0.6651 0.8051 0.7247 0.6375 0.6452 0.274
knn K Neighbors Classifier 0.8649 0.9379 0.5772 0.8675 0.6877 0.6073 0.6307 0.259
dummy Dummy Classifier 0.7375 0.5 0 0 0 0 0 0.114
qda Quadratic Discriminant Analysis 0.5694 0.5852 0.5143 0.3733 0.3391 0.0825 0.1196 0.115
nb Naive Bayes 0.5233 0.9067 0.9941 0.3593 0.5268 0.227 0.3231 0.192