Table 2. Model comparison.
Model | Accuracy | c-statistics (AUC) | Recall | Precision | F1 value | Kappa | Matthews Correlation Coefficient | Training time | |
et | Extra Trees Classifier | 0.967 | 0.9944 | 0.9518 | 0.9307 | 0.939 | 0.9164 | 0.9185 | 0.546 |
rf | Random Forest Classifier | 0.9638 | 0.9922 | 0.946 | 0.9229 | 0.9329 | 0.9082 | 0.9096 | 0.532 |
xgboost | Extreme Gradient Boosting | 0.9575 | 0.9898 | 0.9224 | 0.9205 | 0.9193 | 0.8906 | 0.8925 | 0.212 |
lightgbm | Light Gradient Boosting Machine | 0.956 | 0.9911 | 0.9342 | 0.9074 | 0.9191 | 0.8889 | 0.8904 | 0.149 |
dt | Decision Tree Classifier | 0.9387 | 0.9213 | 0.8853 | 0.8847 | 0.8826 | 0.8412 | 0.8433 | 0.207 |
gbc | Gradient Boosting Classifier | 0.9387 | 0.9849 | 0.9099 | 0.8693 | 0.8868 | 0.8449 | 0.8474 | 0.294 |
lr | Logistic Regression | 0.8789 | 0.9383 | 0.7243 | 0.8044 | 0.7583 | 0.678 | 0.6825 | 0.601 |
ridge | Ridge Classifier | 0.8774 | 0 | 0.7243 | 0.8008 | 0.756 | 0.6747 | 0.6796 | 0.141 |
lda | Linear Discriminant Analysis | 0.8773 | 0.9422 | 0.736 | 0.7938 | 0.7598 | 0.6778 | 0.6817 | 0.177 |
svm | SVM - Linear Kernel | 0.8663 | 0 | 0.6761 | 0.8009 | 0.7251 | 0.6382 | 0.6483 | 0.104 |
ada | Ada Boost Classifier | 0.8663 | 0.9329 | 0.6651 | 0.8051 | 0.7247 | 0.6375 | 0.6452 | 0.274 |
knn | K Neighbors Classifier | 0.8649 | 0.9379 | 0.5772 | 0.8675 | 0.6877 | 0.6073 | 0.6307 | 0.259 |
dummy | Dummy Classifier | 0.7375 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.114 |
qda | Quadratic Discriminant Analysis | 0.5694 | 0.5852 | 0.5143 | 0.3733 | 0.3391 | 0.0825 | 0.1196 | 0.115 |
nb | Naive Bayes | 0.5233 | 0.9067 | 0.9941 | 0.3593 | 0.5268 | 0.227 | 0.3231 | 0.192 |