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Abstract

In this review, we outline recent advancements in small molecule drug design from a structural 

perspective. We compare protein structure prediction methods and explore the role of the ligand 

binding pocket in structure-based drug design. We examine various structural features used to 

optimize drug candidates, including functional groups, stereochemistry, and molecular weight. 

Computational tools such as molecular docking and virtual screening are discussed for predicting 

and optimizing drug candidate structures. We present examples of drug candidates designed based 

on their molecular structure and discuss future directions in the field. By effectively integrating 

structural information with other valuable data sources, we can improve the drug discovery 

process, leading to the identification of novel therapeutics with improved efficacy, specificity, and 

safety profiles.
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Introduction

The field of small molecule drug design is a dynamic and rapidly evolving discipline, with 

advancements in computational tools and methodologies significantly enhancing our ability 

to design and optimize small molecule drug candidates. This review provides a unique and 

comprehensive perspective on the current state-of-the-art small molecule drug design, with 
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a particular focus on the role of molecular structure in determining the pharmacological 

properties of small molecule drugs. While the value of small molecule development is well 

known, our review highlights the novel approaches and insights that have emerged in recent 

years.

We delve into the importance of accurate three-dimensional (3D) protein structure prediction 

in small molecule drug discovery, comparing two distinct prediction methods: homology 

modeling and de novo modeling. We also highlight the critical role of the ligand binding 

pocket in the structure-based design of small molecule drugs. Furthermore, we explore the 

various structural features and properties that are commonly employed in the design and 

optimization of small molecule drug candidates, such as functional groups, stereochemistry, 

and molecular weight. We also discuss the computational tools and methods used to predict 

and optimize these structural properties, including molecular docking and structure-based 

virtual screening. In addition, we present recent examples of small molecule drug candidates 

that were designed based on their molecular structure, discussing their chemical structure, 

mechanism of action, and pharmacological properties. We also touch upon emerging 

trends and future directions in small molecule drug design, such as the advent of new 

computational tools, the identification of emerging targets, and the exploration of novel 

therapeutic applications.

This review is distinct in its approach to small molecule drug design, emphasizing 

the integration of structural information with other tools and data sources to achieve 

more efficient and effective small molecule drug discovery and development. In essence, 

this review offers a fresh perspective on small molecule drug design, underscoring 

the importance of molecular structure in drug development and highlighting the latest 

advancements and future directions in this exciting field.

Prediction of 3D protein structures in small molecule drug discovery

The determination of protein structure can be achieved through various methods such as 

X-ray diffraction of protein crystals, cryo-electron microscopy, nuclear magnetic resonance 

(NMR), and prediction techniques. The accurate prediction of 3D protein structures has 

become a pivotal aspect in the realm of drug design, garnering significant attention in 

recent years.1 Understanding the 3D structure of a protein is of paramount importance 

in elucidating the mechanisms underlying drug binding and facilitating the design of 

compounds with enhanced specificity and potency. Notably, the field of drug discovery 

has undergone a revolution due to remarkable advancements in computational techniques, 

facilitating the prediction of protein structures with exceptional precision.

One of the most widely used computational methods for predicting protein structures is 

homology modeling.2 Homology modeling, also known as comparative modeling, utilizes 

the known structures of related proteins to predict the structure of the target protein.3 

This method assumes that evolutionarily related proteins have similar structures and that 

the structure of a protein is more conserved than its sequence.4 The process of homology 

modeling involves several steps including template selection, sequence alignment, model 
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building, and model refinement.4 Each of these steps is essential for generating an accurate 

3D model of a protein from its amino acid sequence (Figure 1).

1. Template selection: The first step is to select an appropriate template structure 

from the protein structure database. The template structure should have a high 

degree of homology with the target protein sequence, and should have a similar 

function or fold. Several methods, such as FASTA and BLAST, are used to 

identify homologous sequences in the protein structure database.5

2. Sequence alignment: The second step is to align the target protein sequence 

with the selected template structure. The alignment should be optimized to 

ensure that the conserved regions between the target and template structures are 

aligned correctly. Several algorithms, such as ClustalW and MUSCLE, are used 

to perform sequence alignment.6

3. Model building: In this step, a 3D model of the target protein is generated 

based on the aligned target and template sequences. The model is built by 

superimposing the target sequence onto the template structure and adjusting 

the side chains to fit the target sequence. Several software programs, such as 

MODELLER and SWISS-MODEL, are used for model building.7

4. Model refinement: Once the initial model is generated, it is refined to improve its 

accuracy. This step involves optimizing the side-chain orientations, minimizing 

the energy of the structure, and performing structural validation to ensure that the 

model is biologically plausible. Several software programs, such as CHARMM 

and GROMACS, are used for model refinement.8,9

Another method is de novo protein structure prediction (Figure 1), which involves predicting 

the structure of a protein from scratch without relying on known structures.10 This method 

is based on physical principles, such as energy minimization and free energy calculations, to 

predict the structure of a protein.11,12 De novo protein structure prediction is the algorithmic 

process of predicting the tertiary structure of a protein from its primary sequence of amino 

acids, without the use of templates from previously solved structures.13 The process involves 

several steps including fragment assembly, model building, and model refinement.14 This 

process can be guided by knowledge-based energy functions or machine learning (ML) 

algorithms.14,15

The first step in de novo protein structure prediction is fragment assembly. This involves 

breaking down the protein sequence into smaller fragments and predicting the relative 

orientations of these fragments in 3D space. Fragments can be assembled using either 

physics-based methods or statistical methods. Physics-based methods calculate the energy 

of the system to determine the optimal fragment orientation, whereas statistical methods 

use the likelihood of a particular fragment assembly based on known structures.16,17 Once 

fragments are assembled, the next step is model building, where a complete 3D model 

is constructed by joining the fragments together in a way that satisfies spatial constraints 

such as steric clashes and bond angles. The model building process can be guided by a 

knowledge-based energy function, which provides a score for the quality of the model, or by 

ML algorithms that learn from previous successful predictions.14,18 The final step in de novo 
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protein structure prediction is model refinement, which involves optimizing the 3D model to 

improve its accuracy and overall quality. This can be achieved through molecular dynamics 

(MD) simulations, energy minimization algorithms, or ML methods.19,20

Homology modeling is generally more accurate than de novo protein structure prediction, as 

it relies on the availability of related protein structures.2 Homology modeling is considered 

to be the most accurate method for protein structure prediction, and is often used in drug 

design for screening of large libraries.2 Homology models contain sufficient information 

about the spatial arrangement of important residues in the protein, and accurate predictions 

can be obtained if the template and query sequences have high sequence similarity.21 

However, homology modeling has limitations, especially for proteins with only remote 

homologs or for proteins with no known structural homologs.22 Accurate template-query 

alignment and template selection are still very challenging for these proteins, and it can 

be difficult to obtain accurate models. In such cases, de novo modeling can be useful as 

it does not rely on the availability of related protein structures.20 De novo modeling can 

also be used in cases where the available templates do not provide a good match for the 

query sequence or where the available templates have low sequence identity to the query.20 

De novo modeling involves predicting the protein structure from scratch, and it can be 

challenging due to the complexity of the protein folding problem. However, recent advances 

in deep learning-based prediction have shown that more accurate models can be generated 

by extending deep learning-based prediction to inter-residue orientations in addition to 

distances, and the development of a constrained optimization by Rosetta.12

In conclusion, accurate protein structure prediction is crucial for designing small molecule 

drug candidates that bind specifically to the target protein, without causing off-target 

effects.23 The use of computational methods such as homology modeling and de novo 
structure prediction has enabled the prediction of protein structures with high accuracy, 

which has revolutionized the field of drug discovery. The ability to predict protein structures 

accurately has also led to the development of new drugs targeting proteins that were 

previously considered ‘undruggable’.24

The crucial role of ligand binding pocket in the structure-based design of 

small molecule drugs

The ligand binding pocket plays a crucial role in the structure-based design of small 

molecule drugs. This design approach starts with the assumption that a drug molecule 

exerts its biological activity through specific binding to a macromolecular target receptor, 

typically a protein. The binding pocket refers to a cavity or depression on the surface of 

the target protein where the ligand binds and interacts with the protein. The structural and 

chemical complementarity between the ligand and the receptor within the binding pocket is 

a prerequisite for strong and selective binding. By fitting precisely into the binding pocket, 

the ligand modulates the function of the protein, potentially leading to therapeutic effects. 

Therefore, understanding and characterizing the binding pocket is crucial for designing 

small molecule drugs.
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One of the primary goals in structure-based drug design is to identify ligands that can 

bind with high affinity and specificity to the target protein’s binding pocket. This process 

involves several steps including target selection, molecular docking, and virtual screening. 

Molecular docking simulations use computational methods to predict the binding modes 

and binding affinities of small molecules within the binding pocket of the target protein. 

These simulations help identify potential drug candidates and optimize their interactions 

with the binding pocket. Advancements in structural biology techniques, such as X-ray 

crystallography and cryo-electron microscopy, have facilitated the determination of protein–

ligand complex structures, providing valuable insights into the binding interactions.25 These 

structural insights allow medicinal chemists to design and optimize small molecules that can 

more effectively fit and interact with the binding pocket. Additionally, the druggability of 

the binding pocket is a crucial consideration in small molecule drug design. The druggability 

refers to the likelihood of successfully developing a drug that can bind to and modulate the 

target protein’s function. Factors such as the size, shape, and physicochemical properties 

of the binding pocket influence its druggability.25 Computational methods, including MD 

simulations and virtual screening, can aid in assessing the druggability of the binding pocket 

and guiding the design of small molecules with optimal properties for binding.

There are several key points highlighting the importance of the ligand binding pocket in 

structure-based drug design.

i. Specificity and affinity: The ligand binding pocket provides a 3D environment 

that accommodates the ligand with high specificity and affinity. The shape, 

electrostatic properties, and chemical composition of the pocket determine the 

ligand’s interactions and binding strength with the protein.

ii. Rational ligand design: Knowledge of the ligand binding pocket’s structure 

allows for rational ligand design. By studying the pocket’s characteristics, such 

as its size, shape, and residues lining the pocket, researchers can design small 

molecules that fit optimally within the pocket and interact favorably with the 

surrounding protein residues.

iii. Structure-based optimization: The ligand binding pocket serves as a target for 

structure-based optimization. By analyzing the interactions between the ligand 

and the pocket, medicinal chemists can modify the ligand’s chemical structure 

to improve its binding affinity, selectivity, and pharmacological properties. This 

optimization process can involve modifications such as introducing functional 

groups, adjusting molecular properties, or exploring different scaffolds.

iv. Drug selectivity and off-target effects: Understanding the ligand binding pocket’s 

characteristics is crucial for achieving drug selectivity. By designing ligands 

that fit precisely into the binding pocket of the target protein, researchers can 

increase the specificity of the drug and reduce off-target effects. This specificity 

is essential for minimizing potential side effects and improving therapeutic 

outcomes.

In summary, the ligand binding pocket is of paramount importance in the structure-based 

design of small molecule drugs. Understanding the structural and chemical characteristics of 
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the binding pocket, along with employing computational techniques and structural biology 

methods, enable the identification and optimization of ligands that can bind selectively 

and with high affinity, ultimately facilitating the development of effective therapeutic 

interventions.

Structural analysis of small molecule drugs

Molecular structure plays a crucial role in drug development, as the structural features 

of a molecule determine its ability to interact with biological targets and produce desired 

therapeutic effects. There are two main types of drugs: small molecules and biologics. 

Small molecules are typically synthesized chemically and are generally less complex than 

biologics. They are designed to target specific molecules involved in disease processes 

and often have a defined structure that allows them to bind to these targets with high 

specificity.26,27 By contrast, biologics are typically large, complex molecules, such as 

proteins, that are produced by living cells and are designed to interact with specific receptors 

or pathways in the body.27

One important approach to drug discovery is structure-based drug design (SBDD), 

which uses computational tools to predict the position of small molecules within a 3D 

representation of the protein structure and estimate the affinity of ligands to target protein 

with considerable accuracy and efficiency.28,29 SBDD can also help identify potential off-

target effects of a drug candidate, which is important for minimizing unwanted side effects.

The molecular structure of a drug is a critical factor in its ability to interact with biological 

targets and produce therapeutic effects. Small molecules with specific structural features can 

be designed to bind to target proteins with high specificity, whereas biologics are typically 

large, complex molecules that are designed to interact with specific receptors or pathways in 

the body. For example, G protein-coupled receptors (GPCRs) are a family of cell membrane 

proteins that are involved in many physiological processes and are important drug targets. 

Approximately 350 non-olfactory members of the human GPCR family are considered 

druggable, of which 165 are validated drug targets.30 Small molecules that target GPCRs can 

have a variety of structural features, such as the presence of a benzene ring or a carboxyl 

group, which allow them to interact with specific binding sites on the receptor and modulate 

its activity. Computational tools such as SBDD have been used to design and optimize drug 

candidates targeting GPCRs, and demonstrating the structural features is important for drug 

efficacy.31–33

Functional groups are one of the key structural features that are commonly used in small 

molecule drug design (Figure 2). In particular, the presence of certain functional groups 

such as hydroxyl (-OH), carboxyl (-COOH), and amino (-NH2) groups can enable small 

molecules to interact with specific enzymes or receptors and confer specific pharmacological 

properties in the body.34,35 For example, the presence of hydroxyl groups in molecules such 

as ethanol can enable them to interact with receptors in the brain, leading to the well-known 

effects of alcohol consumption.36 Another critical aspect of small molecule drug design is 

stereochemistry (Figure 2), which refers to the 3D arrangement of atoms in a molecule and 

how it can affect the molecule’s interaction with biological targets.37 For example, the active 
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form of the anti-inflammatory drug ibuprofen has a specific stereochemistry that allows it 

to bind to and inhibit the activity of cyclooxygenase enzymes.38 By contrast, the inactive 

form of ibuprofen lacks this stereochemistry and does not bind to cyclooxygenases.38 

Overall, functional groups and stereochemistry are both key features in the design of small 

molecules. Understanding how different functional groups and stereoisomers can affect a 

molecule’s interaction with biological targets can help researchers develop more effective 

and specific drugs for treating a variety of diseases.

Molecular weight is also an important consideration in small molecule drug design, as it 

can affect the pharmacokinetics and pharmacodynamics of a drug. For example, drugs with 

low molecular weight can be rapidly absorbed and excreted from the body, whereas drugs 

with high molecular weight may have a longer half-life and require lower dosages.39 Other 

structural features include the size and shape of the molecule, the presence of specific 

chemical bonds, and the electrostatic properties of the molecule (Figure 2). The presence of 

specific chemical bonds in a molecule can affect its structure and properties. For example, 

covalent bonds are formed when two atoms share a pair of valence shell electrons between 

them, and atoms of Groups IV through VII bond so as to complete an octet of valence shell 

electrons.40 The electrostatic properties of a molecule, such as its dipole moment and charge 

distribution, can affect its interactions with other molecules and its reactivity.40 The size 

and shape of a molecule can affect its physical and chemical properties. For example, larger 

molecules tend to have higher boiling points and melting points than smaller molecules.41 

By understanding the importance of these structural features, researchers can design small 

molecule drug candidates with optimized pharmacological properties and reduced side 

effects.

Computational approaches to small molecule drug design

Computational methods play a crucial role in designing new drug candidates and optimizing 

their properties. The use of computational methods in drug design has increased rapidly 

in recent years, and numerous tools are available to support this process. Here, we discuss 

some of the most commonly used computational approaches in small molecule drug design 

(Figure 3).

Molecular docking

One of the primary computational methods used in small molecule drug design is molecular 

docking. Molecular docking involves predicting the binding affinity and orientation of 

small molecules, known as ligands, with larger macromolecular targets, such as proteins or 

enzymes.42 Docking algorithms use energy minimization and scoring functions to evaluate 

the stability of the ligand–protein complex and rank potential drug candidates. The process 

of molecular docking helps researchers to gain insights into the molecular mechanisms of 

various biological processes such as drug–protein interactions, protein–protein interactions, 

and enzymatic reactions.43,44 In molecular docking, ligands are docked into the binding site 

of the protein, and the resulting complex is scored based on its fitness or complementarity.45 

The docking process generates multiple possible conformations and orientations of the 

ligand with the binding site of the target protein.42 The goal of molecular docking is to 
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identify the best-fit ligand–protein complex based on the calculated binding affinity and 

energy of the complex.42

Molecular docking has a wide range of applications in drug discovery, lead optimization, 

and structure-based drug design.42 It allows researchers to identify potential drug targets 

and predict molecular ligand–target interactions at the atomic level, providing crucial 

information for drug development.44 Moreover, molecular docking can also be used to study 

food proteins and bioactive peptides, providing insights into their structural and functional 

properties.43 Together, molecular docking is a powerful computational technique that is 

widely used in structural biology and drug discovery. It helps researchers gain insights 

into the molecular mechanisms of various biological processes and identify potential drug 

targets. The use of molecular docking is expected to continue to grow in the future as more 

researchers explore its potential applications in various fields.

Over the past few years, remarkable strides have been made in the field of molecular 

docking, resulting in substantial enhancements in the precision and effectiveness of 

this technique. For example, (i) Alchemical free energy methods, such as free energy 

perturbation and thermodynamic integration, have been developed to calculate the binding 

free energy of a ligand to a protein.46 These methods can provide a more accurate prediction 

of binding affinity than traditional docking methods. (ii) New docking tools, such as 

HADDOCK and RosettaDock, have been developed to incorporate protein flexibility into 

docking simulations.47,48 These tools can predict the conformational changes of a protein 

upon ligand binding, which can improve the accuracy of docking predictions. (iii) ML has 

been incorporated into docking tools to improve their predictive accuracy. For example, one 

study proposed a deep neural network model with an attention mechanism to improve the 

prediction accuracy of protein-ligand complex binding affinity.49 Another study investigated 

the use of random forest regression as an alternative to traditional linear regression 

methods and demonstrated improved prediction performance.50 These studies highlight 

the potential of ML techniques, including random forest regression, for predicting binding 

affinities in protein–ligand interactions. By training on known ligand–protein complexes 

with experimentally measured binding affinities, ML models can learn patterns and make 

predictions on new, unseen complexes.

Virtual screening

Another approach that has gained popularity in recent years is virtual screening, which 

involves screening large compound libraries for potential drug candidates using molecular 

docking or other techniques. It is a cost-effective and time-saving method that helps 

researchers narrow down the number of compounds for further experimental analysis. 

Virtual screening is used to identify small molecules that are likely to bind to a target 

protein.51 It involves the use of various software tools such as GOLD, grid-based ligand 

docking with energetics (GLIDE), and Autodock Vina. Autodock Vina is freely accessible 

and provides good results for screening different ligands.52 In the context of drug 

discovery, virtual screening can be used to identify chemical structures that have particular 

properties.53 This process helps researchers identify potential drug candidates that can 

selectively interact with a target protein while minimizing the side effects. Virtual screening 
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has emerged as a groundbreaking technique that is helping to significantly improve and 

speed up the process of drug discovery.54 Research has shown that virtual screening is 

effective in scanning the potential affinity of millions of compounds to selected targets 

simultaneously.

The virtual screening process involves three main steps: preparation of the target protein 

structure, preparation of the compound library, and the screening of compounds against 

the target protein. During the preparation of the target protein structure, the protein is 

optimized by removing any water molecules or co-crystallized ligands. In the preparation of 

the compound library, a large database of small molecules is created from which potential 

lead compounds are identified. Finally, during the screening of compounds against the 

target protein, the compounds are ranked based on their predicted binding affinity to 

the target protein.55 Virtual screening is a powerful tool for identifying potential drug 

candidates, but it also has limitations. The accuracy of virtual screening results depends 

on the quality of the protein structure and the compound library. Additionally, the virtual 

screening process does not consider the pharmacokinetic and toxicological properties of the 

compounds. Therefore, compounds identified through virtual screening need to be validated 

experimentally to determine their efficacy and safety.56,57 In summary, virtual screening is 

a valuable computational technique that is helping to accelerate drug discovery. It involves 

the use of software tools to identify potential lead compounds from a large database of 

molecules. However, virtual screening results need to be validated experimentally, and the 

limitations of the method need to be considered.

MD simulations

MD simulations are a powerful computational tool used to study the physical movements 

and interactions of atoms and molecules in a system.58 MD simulation integrates Newton’s 

equations of motion over time to obtain the motion of the atoms/molecules in a system, 

which provides quantitative and qualitative information about the macroscopic behavior of 

the system at the atomic level.58 In other words, MD simulations provide a ‘movie’ of the 

dynamic ‘evolution’ of the system under investigation.

MD simulations consist of the numerical, step-by-step, solution of the classical equations 

of motion, which for a simple atomic system may be written as m_i * a_i = f_i, where 

m_i is the mass of particle i, a_i is its acceleration, and f_i is the force acting on particle 

i.59 The forces acting on each particle are determined by the interatomic interactions, which 

are typically represented by a mathematical function that describes the potential energy of 

the system as a function of the atomic positions. The interatomic potential function can be 

obtained using quantum mechanics, empirical potentials, or a combination of both.59 Figure 

4 illustrates the basic steps and principle of working of MD simulations.

MD simulations can be used to study a wide range of systems, including biological 

macromolecules, materials science, and chemical physics.60 When applied to biological 

macromolecules, MD simulations can provide insights into the dynamic behavior of 

proteins and nucleic acids, including fluctuations in the relative positions of the atoms in 

a molecule.61 MD simulations are important in the theoretical study of food proteins and 

bioactive peptides, and can be used in conjunction with molecular docking to predict the 
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binding of small molecules to proteins.43 MD simulations can be performed using different 

levels of detail, from atomistic simulations that simulate individual atoms to coarse-grained 

approaches that lump a number of atoms into pseudo-particles.62,63 The choice of simulation 

method depends on the level of detail required for the system under investigation.

Taken together, MD simulations are a powerful computational tool that can provide detailed 

insights into the physical movements and interactions of atoms and molecules in a system. 

The simulations integrate Newton’s equations of motion over time to obtain the motion of 

the atoms/molecules in a system and can provide quantitative and qualitative information 

about macroscopic behavior of the system at the atomic level. MD simulations can be used 

to study a wide range of systems, from biological macromolecules to materials science, and 

can be performed at different levels of detail depending on the system under investigation.

Recently, the following noteworthy advancements have emerged in the field of MD 

simulations. (i) Deep learning algorithms increasingly applied to MD simulations. For 

instance, Atomic Convolutional Networks have been used to predict the potential energy of a 

molecule directly from its atomic coordinates, which can significantly improve the accuracy 

of MD simulations.64 (ii) Enhanced sampling techniques, such as metadynamics, have been 

developed to overcome the limitations of traditional MD simulations.65,66 These techniques 

can explore a larger conformational space and provide a more accurate representation 

of the energy landscape of a system. (iii) Coarse-grained models, which simplify the 

representation of a system by grouping atoms together, have been developed to reduce 

the computational cost of MD simulations.67,68 These models can simulate larger systems 

and longer timescales than traditional all-atom models. (iv) GPU-accelerated tools, such as 

GROMACS and AMBER, have been developed to speed up MD simulations.69,70 These 

tools can perform simulations faster than CPU-based tools, enabling the study of larger 

and more complex systems. Together, these advancements have significantly improved 

the accuracy and efficiency of MD simulations. However, challenges remain, such as 

the accurate prediction of protein flexibility and the computational cost of large-scale 

simulations. The field is rapidly evolving, and we can expect further improvements in the 

coming years.

Quantum mechanics/molecular mechanics calculations

Quantum mechanics/molecular mechanics (QM/MM) calculations are a powerful 

computational approach used to study chemical and biochemical systems at the atomic 

and molecular level. The QM/MM approach combines the accuracy of quantum mechanical 

calculations with the speed of molecular mechanics simulations.71 This method allows for 

the calculation of thermodynamic properties and the characterization of reaction dynamics, 

making it a valuable tool for studying chemical and biochemical systems in solution or 

enzymes.72 QM/MM calculations can provide accurate calculations of reaction energies and 

reaction pathways.

In traditional molecular mechanics and quantum mechanics computations, inter- and 

intramolecular interactions are evaluated for a given frozen configuration of the system, 

often without explicit solvation.73 However, the QM/MM approach can take solvation 

effects into account by treating the QM region as a solute and the MM region as a 
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solvent.74 The QM/MM approach was first introduced in 1976 by Warshel and Levitt.75 

Since then, it has been widely used to study a variety of chemical and biochemical systems 

including enzymes, reaction mechanisms, and protein–ligand binding interactions. One of 

the advantages of the QM/MM approach is its ability to simulate larger systems than can be 

treated with quantum mechanical ab initio methods alone.74 The size of many systems of 

interest in chemistry and biochemistry prevents efficient and accurate treatment by quantum 

mechanical methods alone. Overall, the QM/MM approach is a valuable tool for studying 

the behavior of matter and light at the atomic and subatomic scale, making it a useful 

approach for understanding the properties of molecules and atoms and their constituents.76

ML algorithms

ML algorithms have become increasingly popular in predicting the properties of small 

molecules. These algorithms use computational approaches to predict the properties of 

potential small molecule drug candidates such as their solubility, toxicity, and binding 

affinity.77 Two main groups of ML methods are discussed in drug discovery: traditional ML 

methods (e.g., tree-based methods, latent variable methods) and deep learning methods.78 

The characterization of molecular properties is a critical problem in drug discovery. 

Experimental methods have been widely used across the entire drug discovery process, 

including high-throughput in vitro screening and low-throughput in vivo testing. However, 

on average, one United States Food and Drug Administration (FDA) drug is approved 

for five compounds entering clinical trials, which shows the need for more efficient drug 

discovery methods.79

ML approaches vary in complexity and range from simple sum-over-atoms methods to 

more sophisticated approaches capable of describing collective interactions between many 

atoms or bonds.80 For example, ML models have been used to predict the binding of 

small molecules to RNA targets, and Lasso regression models were used to compare 

the performance of various ML algorithms to predict the binding scores of phenylthiazole-

containing molecules.81

Solubility prediction, which can reduce waste and improve the crystallization process 

efficiency, has attracted increasing attention. However, there are still many urgent 

challenges, and several methods are being developed to address them.82 ML models, such as 

MegaTox, can be used to predict early-stage clinical compounds and recent FDA-approved 

drugs to identify potential drug-induced liver injury.83

Overall, ML algorithms have shown great promise in predicting the properties of 

small molecule drug candidates. These algorithms have the potential to revolutionize 

drug discovery by reducing the need for expensive experimental methods, making drug 

development faster and more efficient.

Computational approaches have made remarkable strides in advancing the field of 

small molecule drug design; however, these approaches are not without their inherent 

limitations. Within this context, several key challenges deserve careful consideration, 

including accounting for protein flexibility, improving scoring functions, addressing solvent 
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effects, extending simulation time scales, managing computational costs, acquiring adequate 

experimental data, predicting induced fit, and accurately anticipating off-target effects.

i. Protein flexibility: Traditional docking algorithms often treat the protein as a 

rigid body, which is a significant oversimplification. Proteins are highly dynamic 

and can adopt a range of conformations. Accounting for this flexibility is a major 

challenge for docking algorithms.

ii. Scoring functions: The scoring functions used in docking algorithms to predict 

the binding affinity of a ligand to a protein are often inaccurate. They are 

typically based on simplified models of molecular interactions and do not fully 

capture the complexity of these interactions.

iii. Solvent effects: Many docking algorithms do not adequately account for the 

effects of the solvent. The solvent can play a crucial role interactions, and 

neglecting these effects can lead to inaccurate predictions.

iv. Time scale: MD simulations can model the dynamic behavior of molecules, but 

they are limited by the time scale they can simulate. Most simulations are on the 

nanosecond to microsecond scale, while many biological processes occur on the 

millisecond to second scale.

v. Computational cost: Both docking and MD simulations are computationally 

intensive. This limits the size of the systems that can be studied and the length of 

the simulations that can be performed.

vi. Lack of experimental data: There is often a lack of experimental data to validate 

the predictions made by docking and MD simulations. This makes it difficult to 

assess the accuracy of these methods.

vii. Difficulty in predicting induced fit: Many docking algorithms struggle to predict 

the conformational changes that occur when a ligand binds to a protein, a 

phenomenon known as induced fit.

viii. Limitations in predicting off-target effects: While computational methods are 

improving in predicting the interaction between a drug and its intended target, 

predicting potential off-target effects remain a significant challenge. Despite 

these challenges, the computational approaches used in small molecule drug 

design are continuously evolving. Emerging computational tools and techniques 

such as deep learning and artificial intelligence are likely to have a significant 

impact on drug design in the future.84 These tools can help researchers generate 

new hypotheses, analyze large data sets, and design new drug candidates with 

enhanced efficacy and safety profiles.

In conclusion, computational methods play a vital role in small molecule drug design. 

Molecular docking and virtual screening are commonly used methods for predicting 

ligand–protein interactions and screening large compound libraries. Other computational 

approaches such as MD simulations, quantum mechanics/molecular mechanics calculations, 

and ML algorithms have also been applied to drug design. Emerging computational tools 
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and techniques are likely to further advance the field of small molecule drug design in the 

future.

Case studies

In recent years, there have been several notable case studies that highlight the importance 

of molecular structure in small molecule drug design. These case studies demonstrate the 

successful application of structure-based drug design and provide insights into the discovery 

process, mechanism of action, and pharmacological properties of the drugs. One such 

example is venetoclax, a small molecule drug used for the treatment of chronic lymphocytic 

leukemia (CLL) and small lymphocytic lymphoma (SLL).85 Venetoclax was designed 

based on the identification of the anti-apoptotic protein B-cell lymphoma 2 (BCL-2) as a 

therapeutic target.86 The drug’s chemical structure consists of a bicyclic scaffold with a 

4-aminoindole core and two benzenesulfonamide moieties.85,87 Venetoclax binds selectively 

to BCL-2, leading to apoptosis of cancer cells by blocking the interaction between BCL-2 

and pro-apoptotic proteins.85,88 Venetoclax has been shown to be effective in the treatment 

of CLL and SLL, with a favorable safety profile.86,89 Its pharmacological properties include 

a long half-life of approximately 26 h and linear pharmacokinetics with dose-proportional 

exposure.90 The discovery of venetoclax was made possible by the application of structure-

based drug design, which involves the use of computational and experimental techniques 

to design small molecules that can selectively bind to a target protein.87,91,92 The structure 

of BCL-2 was determined by X-ray crystallography, which allowed for the identification 

of the binding site and the rational design of Venetoclax.93,94 Molecular docking and other 

computational methods were used to optimize the structure of venetoclax and predict its 

binding affinity.95

Another example is the development of the drug ivacaftor, which is used to treat cystic 

fibrosis. Ivacaftor was designed based on its ability to selectively bind to and enhance the 

activity of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which 

is defective in patients with cystic fibrosis. The drug was designed to interact with specific 

amino acid residues in the CFTR protein, stabilizing the protein and increasing its activity.96 

Once the drug target (CFTR) is chosen, the 3D structure of the protein is determined using 

techniques such as X-ray crystallography or NMR spectroscopy. The protein structure is 

then used to identify potential binding sites for small molecules.97 In the case of ivacaftor, 

the binding site was located in the intracellular domain of the CFTR protein. The next 

step is to design small molecules that can interact with the target protein and modify its 

function. This is done using computer-aided drug design (CADD) tools such as molecular 

docking and MD simulations.98 These tools allow researchers to predict the position of 

small molecules within a 3D representation of the protein structure and estimate the affinity 

of ligands to target protein with considerable accuracy and efficiency.29 After the small 

molecule is designed, it undergoes a series of tests to determine its efficacy and safety. 

This includes in vitro assays, in vivo studies, and toxicity tests. If the drug is found to be 

effective and safe, it proceeds to clinical trials.99,100 In brief, ivacaftor was developed using 

the structure-based drug design methodology. The process involves the choice of a drug 

target, determination of the protein structure, identification of potential binding sites, design 

of small molecules using CADD tools, and testing of the drug for efficacy and safety.
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A recent case study involves the development of a novel metabolic reprogramming strategy 

(MRS) for the treatment of diabetes-associated breast cancer.101 As part of this strategy, 

we aimed to identify potential monocarboxylate transporter 4 (MCT4) inhibitors for 

combination therapy. The 3D model of human MCT4 structure was generated by using the I-

TASSER On-line Server. Then, we used grid-based ligand docking with energetics (GLIDE) 

software to virtually screen seven commercial compound libraries and identify potential 

MCT4 inhibitors. The top-ranked compounds were visually inspected, and the most 

promising candidate CB-2 was pursued for further testing. Experimental testing confirmed 

the binding of CB-2 to MCT4, and further studies demonstrated its cytotoxic activity against 

cancer cells and its antitumor effects on animal models. The methodology used in this study 

highlights the importance of structure-based drug design in the development of novel small 

molecule drug candidates. At present, CB-2 has obtained a global patent and entered the 

preclinical study stage.

In addition to the above few examples, there are some classic case studies, such as the 

development of the drug olaparib for the treatment of breast and ovarian cancers, and the 

development of the drug sofosbuvir for the treatment of hepatitis C. Olaparib was designed 

based on its ability to selectively inhibit poly(ADP-ribose) polymerase (PARP), an enzyme 

that repairs damaged DNA in cancer cells. The drug was designed to mimic the structure 

of the substrate of PARP, allowing it to selectively bind to and inhibit the enzyme in cancer 

cells.102,103 Sofosbuvir was designed based on its ability to selectively inhibit the RNA 

polymerase of the hepatitis C virus. The drug was designed to mimic the structure of the 

natural substrate of the polymerase, allowing it to selectively bind to and inhibit the enzyme 

in the virus.104 Overall, these case studies emphasize the significance of molecular structure 

in drug design and its contribution to the development of effective therapeutic options.

Concluding remarks and future directions

Small molecule drug design is a rapidly growing field that has the potential to revolutionize 

the development of new pharmaceuticals. As advancements in structural biology and 

computational methods continue to expand our understanding of the relationship between 

molecular structure and drug efficacy, researchers are finding new and innovative ways to 

design small molecules that are more potent, selective, and safe than ever before. In this 

review, we explored some of the recent advancements in small molecule drug design from a 

structural perspective and discussed the emerging trends and future directions in this field.

One of the key areas of research in this field is the development of new computational tools 

and methods for predicting and optimizing the structural properties of small molecules. 

These tools are becoming increasingly important as the size and complexity of drug 

targets continue to grow, making it more difficult to design drugs using traditional 

methods. Some of the emerging computational methods that are being used in small 

molecule drug design include ML algorithms, MD simulations, and quantum mechanical 

calculations.105 Besides, other computational tools and methods such as statistical models 

have been developed for predicting toxicity and side effects of small molecules. These 

tools enable the identification and optimization of lead compounds, and the prediction of 

their pharmacological properties.87,106 Overall, the development of new computational tools 
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and methods is crucial for the efficient and cost-effective discovery and development of 

small molecule drugs. These tools enable the prediction and optimization of the structural 

properties of small molecules, which is critical for their safety and efficacy. With the 

increasing use of ML and other computational methods in drug discovery, the future of small 

molecule drug design looks promising.84

Another important trend in small molecule drug design is the exploration of new therapeutic 

applications. While traditional drug design has focused primarily on treating common 

diseases such as cancer and cardiovascular disease, researchers are now beginning to 

investigate the potential of small molecule drugs in treating rare and neglected diseases. 

This has led to the development of new drug discovery programs focused on diseases such as 

rare genetic disorders, neglected tropical diseases, and emerging infectious diseases.107–109

Finally, the future of small molecule drug design is likely to be shaped by new technologies 

and innovations in the field of structural biology. For example, the recent development of 

cryo-electron microscopy has revolutionized the way that researchers study the structures 

of biological macromolecules, and has already led to the discovery of new drug targets and 

the development of new drugs.110,111 Other emerging technologies that are likely to have an 

impact on small molecule drug design include protein engineering, chemical genomics, and 

high-throughput screening.112,113

In conclusion, small molecule drug design is a rapidly evolving field that is driven by 

advancements in structural biology and computational methods. As researchers continue to 

explore the relationship between molecular structure and drug efficacy, new and innovative 

small molecule drug candidates are being developed that have the potential to revolutionize 

the treatment of a wide range of diseases. Looking to the future, the development of new 

computational tools and methods, the exploration of new therapeutic applications, and the 

continued evolution of structural biology are likely to be key drivers of innovation in this 

field.
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CLL chronic lymphocytic leukemia

cryo-EM cryo-electron microscopy

GLIDE grid-based ligand docking with energetics

GPCRs G protein-coupled receptors

MCT4 monocarboxylate transporter 4

MD molecular dynamics

ML machine learning

MRS metabolic reprogramming strategy

PARP poly(ADP-ribose) polymerase

QM/MM quantum mechanics/molecular mechanics

SBDD structure-based drug design
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Teaser:

Exploring the cutting-edge advancements in small molecule drug design, delving into the 

role of protein structures, computational tools, and optimization techniques. This review 

illuminates how integrating structural data can revolutionize drug discovery, enhancing 

efficacy, specificity, and safety.
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Research Highlights:

1. Importance of accurate protein structure prediction for small molecule drug 

design.

2. Key structural features and properties used in small molecule drug design.

3. Computational tools and methods for predicting and optimizing small 

molecule structures.

4. Examples of successful small molecule drug design based on molecular 

structure.
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FIGURE 1. Schematic diagram of the computational methods for predicting 3D protein 
structures in small molecule drug discovery.
Homology modeling utilizes known structures of related proteins to predict the structure 

of the target protein. The process involves template selection, sequence alignment, model 

building, and model refinement. De novo protein structure prediction, on the other hand, 

involves predicting the structure of a protein from scratch without relying on known 

structures. The process involves fragment assembly, model building, and model refinement. 

Both methods are critical for understanding the mechanism of drug binding and designing 

drugs with improved specificity and potency.

Wu et al. Page 24

Drug Discov Today. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. Key structural features considered in small molecule drug design.
These features include functional groups (e.g., hydroxyl, carboxyl, and amino groups) 

that give drugs specific pharmacological properties, stereochemistry that can affect a 

drug’s interaction with biological targets, molecular weight, size and shape that impact 

pharmacokinetics and pharmacodynamics, and specific chemical bonds and electrostatic 

properties that influence a drug’s physical and chemical properties. Understanding these 

features is crucial for designing effective small molecule drugs with desired pharmacological 

properties.
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FIGURE 3. The major computational approaches used in small molecule drug design.
Molecular docking involves predicting the binding affinity and orientation of small 

molecules with larger macromolecular targets. Virtual screening is a cost-effective and time-

saving method that helps researchers to narrow down the number of compounds for further 

experimental analysis. Molecular dynamics (MD) simulations provide detailed insights into 

the physical movements and interactions of atoms and molecules in a system. Quantum 

mechanics/molecular mechanics calculations combine the accuracy of quantum mechanical 

calculations with the speed of molecular mechanics simulations to study chemical and 

biochemical systems. Machine learning algorithms use computational approaches to predict 

the properties of potential small molecule drug candidates. These computational approaches 

are widely used in drug discovery and lead optimization to identify potential drug targets 

and predict molecular ligand-target interactions at the atomic level.
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FIGURE 4. The basic steps and principle of working of molecular dynamics (MD) simulations 
used in new drug development.
(a) Schematic representation of the steps involved in MD simulation for drug research. 

This figure illustrates the sequential steps in conducting MD simulations for drug research. 

The setup and preparation phase involves obtaining and converting the three-dimensional 

structures of protein and drug molecules into appropriate file formats. Essential simulation 

parameters, such as temperature, pressure, and time step, are defined. Additionally, an 

appropriate force field is chosen based on the system and research objectives. It is important 

to select simulation software that is compatible with the chosen force field. (b) During 

the simulation process, energy minimization is performed to alleviate steric clashes and 

minimize potential energy in the system. The equilibration phase allows the system to 

gradually relax by restraining specific atoms and allowing solvent molecules to adjust 

around the protein–drug complex. Subsequently, a time-dependent molecular dynamics run 

is carried out, where the equations of motion are numerically integrated to generate atom 

trajectories. (c) The analysis of the topology file includes various metrics. Root-mean-square 

deviation (RMSD) is used to measure the average deviation between different structures 

at different time points and a reference structure. Root-mean-square fluctuation (RMSF) 

determines the atomic fluctuations of the protein and drug, providing insights into their 

flexibility and stability. The radius of gyration (Rg) quantifies the compactness or spatial 

extent of the protein–drug complex. Hydrogen bonds are assessed to understand their 

formation and dynamics, indicating potential interactions. Finally, the solvent accessible 

surface area (SASA) is calculated to analyze the interactions of the protein and drug with the 

surrounding solvent molecules.
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