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Abstract

This manuscript describes electrochemical synthesis of 17 different glycosyl fluorides in 73–

98% yield on up to 5 g scale that relies on using SF6 as an inexpensive and safe fluorinating 

agent. Subsequently carried cyclic voltammetry and related mechanistic studies suggest that the 

generated through the cathodic reduction of SF6 active fluorinating species are transient under 

these reductive conditions, and that the sulfur and fluoride by-products are effectively scavenged 

by Zn(II) to generate benign salts.
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INTRODUCTION

With the increasing awareness about the impacts of the atmospheric greenhouse gasses 

on the climate changes, many recent efforts of the scientific community have focused on 

reducing the amount of greenhouse gas emission. Among the various problems associated 

with this topic that modern science and engineering face, the utilization of sulfur(VI) 

hexafluoride is one of the significant challenges.1 Sulfur (VI) hexafluoride (SF6), is a 
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very stable and nontoxic gas that is produced on an industrial scale and used worldwide 

as a dielectric insulator.2 Due to its chemical stability and high susceptibility to infrared 

light excitation, SF6 is considered to be one of the strongest greenhouse gasses that is 

regulated by the Kyoto protocol.3 Several recent studies have examined the possibility 

of degrading or converting SF6; however, a feasible protocol is yet to emerge from 

these studies. The inertness of this gas presents a significant challenge as the majority 

of the examples describing SF6 activation involve extreme reaction conditions (very high 

temperatures, pressures or UV radiation <190 nm) that are not desirable for the modern 

organic processes.4 In addition, the decomposition of SF6 results in fluorine and sulfur-

containing waste, disposal of which is often a challenge. Therefore, the processes that do 

not simply decompose SF6, but also take advantage of SF6 as a chemical entity are highly 

desired.5–10

One of the practical uses of SF6 as a chemical reagent was recently reported by Jamison 

and McTeague who demonstrated that photoredox activation of SF6 with Ir(III)-based 

catalysts and blue LED light may result in active fluorinating species that mediate 

deoxyfluorination of allylic alcohols (Scheme 1A).6 The idea of exploring SF6 to generate 

stoichiometric fluorinating reagents for deoxyfluorination was subsequently explored by the 

Rueping group7a and Braun and Kemnitz.7b In addition, several different studies including 

the reduction of SF6 with phosphide anions by Speed and coworkers5i and reductive 

deconstruction of SF6 by Crimmin and coworkers5j have been reported. In parallel to the 

aforementioned studies, the Wagenknecht group described several different applications of 

SF6 for the photochemical pentafluorosulfanylation of alkenes.8

Our group has long-standing interests in developing new organocatalytic methods and their 

application for the synthesis of carbohydrate derivatives.10,11 As a part of these efforts, 

we recently investigated the possibility of developing new approach for the synthesis 

of glycosyl fluorides.11 Glycosyl fluorides represent a unique class of glycosyl donors, 

which are stable to a variety of conditions, but could serve as highly active glycosylating 

agents upon activation with fluorophilic Lewis acids.12 While there are many methods 

that are available for the synthesis of glycosyl fluorides, the deoxyfluorination-based 

reactions involving (diethylamino)sulfur(IV) trifluoride (DAST)13 or HF•Py14 are by far 

the most common and general. The use of these highly corrosive, reactive and toxic 

reagents for larger scale processes is not ideal, and our group recently explored the 

possibility of utilizing nontoxic and inexpensive SF6 as a safer alternative. By using 4,4’-

dimethoxybenzophenone as an inexpensive photocatalyst and DIPEA as the reducing agent, 

we achieved a photochemical activation of SF6 with UVA LED source (λmax=365 nm) that 

resulted in efficient fluorination of 16 protected carbohydrates containing a hydroxyl group 

at the anomeric position.11 While this represented an efficient and safe method for utilizing 

SF6 and producing valuable carbohydrate-based building blocks, this transformation had 

several limitations in comparison to the more traditionally employed DAST-mediated 

2-deoxyfluorination reactions. These limitations included significantly extended reaction 

times, in particular on a larger scale, and, as the result of it, lower conversions. In addition, 

the reaction required using a large excess of DIEA (10 equiv.) and resulted in multiple 

side-products including the photocatalyst decomposition products and sulfur-containing 

waste. These limitations prompted us to search for the alternative new methods to achieve 
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SF6 activation, and this manuscript describes electrochemical deoxyfluorination with SF6 

leading to the fast, efficient and scalable formation of glycosyl fluorides.15 The use of zinc 

sacrificial anode provides an effective mean to scavenge sulfur and fluoride waste to form 

benign Zn(II) sulfides and fluorides, and this protocol holds promise as an inexpensive, safe 

and mild method for utilization of SF6 for the fluorination of organic molecules.

RESULTS AND DISCUSSION

Our study commenced with subjecting the armed 2,3,4,6-tetra-O-benzyl-D-galactose 1a 
to galvanostatic electrolysis in the atmosphere of SF6 using platinum (Pt) anode(+) 

and cathode(–), DIPEA as the base, tetrabutylammonium perchlorate (TBAClO4) as the 

electrolyte, and DCE as the solvent (Table 1, entry 1). Gratifyingly, the exposure of 1a 
to the aforementioned reaction conditions for 1 h resulted in the formation of desired 

product 2a albeit in only 32% yield. In attempts to optimize these conditions, we evaluated 

various solvents (cf. Table S1) and observed that using THF resulted in slightly faster 

reaction with ~70% consumption of the starting material and 35% yield of 2a (Table 1, 

entry 2). The NMR analysis of the crude reaction indicated the formation of unidentified 

fluorine-containing debenzylation side-products in addition to 2a. We surmised that the 

debenzylation reactions happen due to the anodic oxidation of 1a and 2a. Therefore, to 

minimize these undesired oxidation reactions, the use of sacrificial zinc (Zn) anode, which 

would get oxidized to produce Zn2+ cations, was evaluated next (Table 1, entry 3).16 

Excitingly, this modification dramatically improved the yield of 2a and eliminated the 

formation of the side-products. Our further optimizations were focused on making this 

process more practical and identifying a less expensive type of the cathode (entries 4–6 

and Table S2). While the use of C(–) instead of Pt(–) cathode led to a significant reduction 

in the yield (entry 4), we found that Sn(–) cathode provided 2a in 84% yield (entry 5). 

Further attempts to optimize this yield by using magnesium as sacrificial anode17 was not 

successful (entry 6), and, therefore, Zn(+) anode and Sn(–) cathode were selected as the 

optimal electrodes and other reaction parameters were optimized next.

While our attempts to improve the yield by replacing TBAClO4 with other salts were not 

successful, other electrolytes such as TBAPF6 were found to be compatible with the reaction 

conditions (cf. Table S4). It was also observed that the electrolysis time and the nature/

quantities of the base could be used to improve the yield of 2a (entries 7–9 and Table S3 

Thus, 2a could be produced in 93% yield if the amounts of DIEA and TBAClO4 are reduced 

to 3 equivalents and 0.15 M, respectively, and the solution is electrolyzed for 1 h instead 

of 30 min (entry 7). DIEA could be substituted with less expensive triethylamine without 

the decrease in the yield of 2a (entry 8). In addition, our subsequent studies indicated that 

triethylamine is preferred over DIEA for the fluorination of acetylated and PMB protected 

galactose derivatives 1k and 1h (Table S6). Amine base is not an essential component as 

the reaction progresses to 67% in the absence of triethylamine (Table 1, entry 9). However, 

the use of the amine base ensures a full progression of the reaction either by preventing the 

electrode passivation or by promoting the solvation of Zn2+ cation (Figure S1).

With the optimal conditions for the electrochemical fluorination of 1a in hand, our 

subsequent studies were focused on evaluating the substrate scope of this reaction (Scheme 
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2). This evaluation revealed that this method is suitable for a variety of sugars and 

protecting groups typically employed in carbohydrate synthesis. The deoxyfluorination of 

perbenzylated D-galactose, D-glucose, D-mannose, D-xylose, L-fucose and L-rhamnose 

derivatives 1a–1f and D-ribose derivative 1g proceeded in excellent yields (91–98%) and 

resulted in the corresponding products 2a–2g. While the PMB protecting groups are 

sensitive to both oxidative and reductive conditions, the deoxyfluorination of PMB-protected 

D-galactose, D-glucose and D-mannose derivatives 1h–1j proceeded cleanly to provide the 

corresponding products in 96% yield.

The electrochemical fluorination conditions did not affect the acid-sensitive benzylidene 

acetal moiety present in 1p, and glycosidic linkage present in perbenzylated cellobiose 

derivative 1q, and the corresponding products were obtained in 96% and 84% yield 

correspondingly. Finally, the electrochemical fluorination conditions were compatible with 

disarmed peracetylated and perbenzylated glycosides 1k–1o that were previously found to 

be significantly less reactive under the photochemical conditions, and the corresponding 

products 2k–2o were obtained in 73–84% yields. It is important to emphasize that these 

transformations are amenable to scale up, and we were able to adopt an experimental setup 

developed by Baran and coworkers 18 and modified it to carry a 5 g scale deoxyfluorination 

of D-glucose derivative 1b in 98% yield (cf. SI-III-e for additional details).

The results summarized in Scheme 2 suggest that the electrochemical fluorination with 

SF6 proceeds with excellent efficiencies and under mild conditions, which makes it 

favorably comparable with the other popular deoxyfluorination protocols (cf. Table S8). 

Therefore, our subsequent studies were focused on understanding the reaction mechanism 

and showcasing the safety of this protocol by demonstrating that no toxic SFn and SOmFn 

species are accumulated throughout the reaction (cf. Figure 1). Similar to the photochemical 

deoxyfluorination with SF6, no active fluorinating species, such as SF4, were detected by 

the 19F NMR throughout the reaction. A control experiment with Zn(II) fluoride instead 

of SF6 demonstrated that the presence of salt alone does not lead to the formation of 

glycosyl fluorides (cf. SI-Vb). The continuous electrolysis was essential for the progression 

of this reaction, and the formation of 2b from 1b stopped when the current was turned 

off (Figure 1A). While the photochemical activation of SF6 with DMBP led to significant 

accumulation of the active fluorination species that reacted with triphenylphosphine to 

produce difluorotriphenylphosphine, only trace amounts of this compound were detected 

by 31P and 19F NMR after the treatment of the crude electrochemical fluorination mixture 

with PPh3 (Figure 1B). This suggests that electrochemical conditions prevent accumulation 

of the active SFn and SOmFn species by reducing them to Zn(II) fluorides and sulfides. To 

demonstrate this and to understand the role of the amine base in this process, we carried 

series of cyclic voltammetry (CV) studies (cf. Figure 1C and 1D, and Figure S6–S12). Based 

on the observation from chemical experiments, our initial assumption was that the amine 

base is not directly involved in the catalytic cycle, but it is important for preventing the 

electrode passivation. We first attempted to identify the half reduction potential of SF6 by 

adopting the previously published experimental setup (Figure S6).15b The voltammogram 

showed irreversible reduction of SF6 around –2.4 V (vs Fc+/Fc), which is similar to the 

previously measured value (–2.17 V vs Fc+/Fc). CV data for the reduction of SF6 with 
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zinc as counter electrode in the absence of Et3N revealed the current attenuation in the 

chronological order of the scan (Figure 1C). This suggests the electrode passivation via the 

formation of nonconducting zinc salts on its surface, which leads to the increased internal 

resistance. As expected, we observed consistent current throughout the scans when the CV 

experiment was repeated with Pt as counter electrode (Figure S8). Next, we conducted 

the CV experiment in the presence of triethyl amine for the reduction of SF6 with zinc 

as counter electrode (Figure 1D). The current was dependent on the scan rate rather than 

the chronological order of the scan. With the slower scan rate, triethylamine has more 

time to either promote the solvation of zinc cation or scavenge the deposited zinc salts. 

This would prevent the electrode passivation and keep the resistance in the cell relatively 

steady, which enhances the current flow compared to faster scan rate. Since our method 

is under galvanostatic condition, triethylamine keeps the voltage steady and prevents the 

undesired reduction reactions. Based on these considerations, the tentative mechanism of 

this transformation is proposed in Figure 1D. SF6 undergoes cathodic reduction that leads to 

SF4 or related S(IV)- or S(II)-based active fluorinating agents. The various SFn or SOmFn 

species resulting from the reduction of SF6 and deoxyfluorination undergo subsequent 

reduction to S2− and F− anions that undergo binding to Zn2+ cations to form zinc(II) sulfides 

and fluorides and their complexes with triethylamine.

CONCLUSION

In conclusion, we have developed a mild and highly efficient protocol for the 

electrochemical utilization of SF6 leading to the formation of 17 different glycosyl fluorides 

in 73–98% yield. To demonstrate the utility of this transformation, 5g scale synthesis 

of 2,3,4,6-O-tetrabenzyl-D-glucopyranosyl fluoride was accomplished in 98% yield. 

Subsequently carried cyclic voltammetry and other mechanistic studies were consistent 

with the cathodic reduction of sulfur(VI) fluoride and oxidation of Zn anode. These studies 

suggest that the generated from SF6 active fluorinating species are transient under these 

reductive conditions, and that the sulfur and fluoride by-products are effectively scavenged 

by Zn(II) to generate benign and unreactive salts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Studies focused on understanding the reaction mechanism
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Scheme 1. 
Summary of deoxyfluorination with SF6
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Scheme 2. 
Substrate scopea

aThe provided yields and diastereomeric ratios represent the average values over two runs 

on 0.1 mmol scale. For the specific yields and selectivities obtained for each individual run 

please refer to the SI. bThis reaction was performed on 9.25 mmol (5.0 g) scale.
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Table 1.

Reaction condition optimization

Entry Conditionsa Yieldb

1 (+)Pt/(−)Pt, DIEA (5 eq.), DCE, 1 h 32%c

2 (+)Pt/(−)Pt, DIEA (5 eq.)
THF, 45 min

35%

(α : β = 1:2.1)c

3 (+)Zn/(−)Pt, DIEA (5 eq.)
THF, 30 min

94%
(α : β = 1 : 1.3)

4 (+)Zn/(−)C, DIEA (5 eq.)
THF, 30 min

22%
(α : β = 1 : 1.3)

5 (+)Zn/(−)Sn, DIEA (5 eq.)
THF, 30 min

84%
(α : β = 1 : 1.5)

6 (+)Mg/(−)Sn, DIEA (5 eq.)
THF, 30 min

66%
(α : β = 1 : 1.2)

7d (+)Zn/(−)Sn, DIEA (3 eq.)
THF, 1 h

93%
(α : β = 1 : 1.3)

8d (+)Zn/(−)Sn, NEt3 (3 eq.)
THF, 1 h

93%
(α : β = 1 : 1.6)

9 (+)Zn/(−)Sn, no base
THF, 1 h

67%
(α : β = 1 : 1.2)

a
The reactions were carried on 0.1 mmol scale.

b
Represents isolated yield.

c
Determined by 19F NMR with trifluorotoluene as internal standard.

d
TBAClO4 = 0.15M
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