Skip to main content
. Author manuscript; available in PMC: 2023 Oct 2.
Published in final edited form as: Org Lett. 2022 Mar 17;24(12):2294–2298. doi: 10.1021/acs.orglett.2c00431

Table 1.

Reaction condition optimization

graphic file with name nihms-1932267-t0002.jpg
Entry Conditionsa Yieldb
1 (+)Pt/(−)Pt, DIEA (5 eq.), DCE, 1 h 32%c
2 (+)Pt/(−)Pt, DIEA (5 eq.)
THF, 45 min
35%
(α : β = 1:2.1)c
3 (+)Zn/(−)Pt, DIEA (5 eq.)
THF, 30 min
94%
(α : β = 1 : 1.3)
4 (+)Zn/(−)C, DIEA (5 eq.)
THF, 30 min
22%
(α : β = 1 : 1.3)
5 (+)Zn/(−)Sn, DIEA (5 eq.)
THF, 30 min
84%
(α : β = 1 : 1.5)
6 (+)Mg/(−)Sn, DIEA (5 eq.)
THF, 30 min
66%
(α : β = 1 : 1.2)
7d (+)Zn/(−)Sn, DIEA (3 eq.)
THF, 1 h
93%
(α : β = 1 : 1.3)
8d (+)Zn/(−)Sn, NEt3 (3 eq.)
THF, 1 h
93%
(α : β = 1 : 1.6)
9 (+)Zn/(−)Sn, no base
THF, 1 h
67%
(α : β = 1 : 1.2)
a

The reactions were carried on 0.1 mmol scale.

b

Represents isolated yield.

c

Determined by 19F NMR with trifluorotoluene as internal standard.

d

TBAClO4 = 0.15M