Table 1.
Results on Retouch dataset. Model size (M) and testing speed (FPS) are also reported. The best results are bold.
| Method | Size / Speed | ||||
|---|---|---|---|---|---|
| DeepLabv3+ [57] | 60.2 | 82.7 | 0.023 | 86.5 | 59.3 / 38 |
| U-Net [58] | 66.1 | 84.2 | 0.021 | 87.4 | 13.4 / 38 |
| Att-UNet [59] | 65.3 | 83.4 | 0.022 | 86.6 | 34.9 / 36 |
| CE-Net [60] | 67.3 | 84.2 | 0.026 | 84.6 | 29.0 / 37 |
| nnU-Net [61] | 67.2 | 84.3 | 0.023 | 86.4 | 30.0 / 20 |
| CPFNet [62] | 69.0 | 85.7 | 0.022 | 88.0 | 43.3 / 37 |
| Curvature [63] | 68.2 | 84.7 | 0.024 | 87.1 | 43.3 / 37 |
| MsTGANet [64] | 68.9 | 85.0 | 0.023 | 87.1 | 11.6 / 37 |
| DconnNet | 78.2 | 87.7 | 0.020 | 90.5 | 36.4 / 40 |